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Abstract: Maritime transport has adapted to recent political and economic shifts by addressing
stringent pollution reduction requirements, redrawing transport routes for safety, reducing onboard
technical incidents, managing data security risks and transitioning to autonomous vessels. This
paper presents a novel approach to predictive maintenance in the maritime industry, leveraging
Artificial Intelligence (AI) and Machine Learning (ML) techniques to enhance fault detection and
maintenance planning for naval systems. Traditional maintenance strategies, such as corrective
and preventive maintenance, are increasingly ineffective in meeting the high safety and efficiency
standards required by maritime operations. The proposed model integrates AI-driven methods to
process operational data from shipboard systems, enabling more accurate fault diagnosis and early
identification of system failures. By analyzing historical operational data, ML algorithms identify
patterns and estimate the functional states, helping prevent unplanned failures and costly downtime.
This approach is critical in environments where technical failures are a leading cause of incidents,
as demonstrated by the high rate of machinery-related accidents in maritime operations. Our study
highlights the growing importance of AI and ML in predictive maintenance and offers a practical
tool for improving operational safety and efficiency in the naval industry. The paper discusses the
development of a fault detection approach, evaluates its performance on real shipboard data-through
tests on a seawater cooling system from an oil tanker and concludes with insights into the broader
implications of AI-driven maintenance in the maritime sector.

Keywords: artificial intelligence; machine learning; kNN; maritime fault diagnosis; data-driven
maintenance; predictive maintenance; maritime maintenance optimization

1. Introduction

In the maritime industry, predictive maintenance has gained significant importance
due to the complexity and scale of naval operations. The objective is to optimize main-
tenance activities by analyzing data provided by the system, thus enhancing operational
efficiency and safety. Predictive maintenance involves transmitting operational data from
sensors to storage units, where the onboard monitoring and control system triggers alarms
and protections. Maintenance teams evaluate the received data, respond to alarms, and take
appropriate actions to restore system functionality. This proactive approach aims to prevent
system failures and minimize downtime, especially in high-risk maritime environments.

Fault diagnosis is crucial in the naval industry, given the high number of incidents
related to technical failures. Between 2014 and 2023, machinery damage or failure accounted
for 11,506 maritime incidents, almost four times the number of collisions, which totaled
3014 cases. In 2023 alone, over 50% of incidents were caused by technical equipment failures.
This highlights the need for effective fault detection and diagnosis methods to prevent
such occurrences. Maritime regions like the British Isles, North Sea, English Channel and
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the Bay of Biscay, where a significant portion of naval incidents occur, could benefit from
improved fault diagnosis systems to ensure safer and more reliable operations [1].

Artificial Intelligence (AI) and Machine Learning (ML) have become indispensable in
improving predictive maintenance. Traditional maintenance strategies, such as corrective
and preventive maintenance, are increasingly insufficient to meet the stringent safety and
efficiency standards required by the maritime industry. AI-based learning systems, which
simulate the state of industrial processes or components using available measurement data,
are widely adopted in maintenance engineering. These systems help increase equipment
availability, reduce maintenance costs and enhance system reliability by predicting potential
failures before they occur [2].

ML, in particular, plays a critical role in analyzing large volumes of multidimensional
data, enabling operators to predict system failures and estimate Remaining Useful Life
(RUL) [3]. By learning from historical operational data, ML applications can identify
patterns and trends that signal potential equipment failures. This is especially important
in maritime operations, where incidents often result from a chain of risky events. By
applying ML techniques, maintenance teams can detect faults more accurately and quickly,
improving overall system safety and operational efficiency.

Prognostics and Health Management (PHM), also known as Condition-Based Main-
tenance (CBM), addresses the limitations of traditional maintenance strategies [4]. PHM
focuses on predicting and diagnosing system failures to optimize maintenance programs.
It includes three main approaches: model-based, data-driven and hybrid methods [5].
Model-based approaches are highly accurate when system degradation is well-understood
but require specialized expertise. Data-driven approaches, on the other hand, rely on
large datasets and are more practical as they demand less specialized knowledge. Hybrid
approaches combine the strengths of both methods to provide a comprehensive solution
for predictive maintenance.

By integrating reliability and risk analysis methods with ML, we propose a novel
algorithm for enhancing equipment maintenance activities. The proposed approach mon-
itors the functional status of naval systems and detects early signs of failure, allowing
maintenance teams to act before failures become safety risks. This ML-driven mainte-
nance solution is particularly effective in maritime operations, where the complexity of the
systems and the environment requires advanced predictive capabilities.

The use of AI in maintenance seeks to replicate human reasoning and decision-making
processes but with greater efficiency. AI-driven maintenance management increases opera-
tional safety, optimizes maintenance plans based on real-time data, and enhances resource
efficiency and cost control. The maritime industry is undergoing a digital transformation,
with stakeholders—including ship designers, equipment manufacturers and shipping
companies—collaborating to develop fully autonomous vessels. As part of this transforma-
tion, AI-based solutions play a key role in predictive maintenance, ensuring that technical
systems operate at their full potential.

This study aims to develop a tool that leverages AI and ML techniques for fault
detection in naval auxiliary systems. By analyzing operational parameters, we aim to
identify trends in system component failures and improve maintenance planning. The
proposed solution will provide a diagnosis tool and decision support system, enabling
more precise and timely maintenance actions. Ultimately, this approach will help prevent
future incidents, increase equipment efficiency and improve the safety and reliability of
maritime operations.

The remainder of the paper is structured as follows: First, we discuss the foundational
concepts and related work in the field. Subsequently, we provide an overview of naval
equipment maintenance. Following this, the paper presents our methodology, proposes
a fault detection algorithm and discusses the results of testing on a shipboard system.
The research concludes with a summary, limitations and recommendations for future
research directions.
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2. Literature Review

Fault detection and diagnosis (FDD) ensures system reliability and safety by iden-
tifying, isolating and addressing faults using techniques like Fault Tree Analysis (FTA)
and Failure Mode Effect Analysis (FMEA), while recent advances in AI and ML enhance
predictive maintenance and optimize fault management in complex systems.

FDD involves identifying, isolating and understanding system faults to ensure the
reliability, safety and efficiency of complex systems across various domains. The first step
is detecting abnormalities using sensors, monitoring devices, data analysis techniques and
expert knowledge. Once detected, the root cause is isolated by analyzing system behavior
and sensor data through fault isolation techniques such as FTA, root cause analysis and
model-based reasoning. Faults are then classified based on type, severity, duration and
impact on performance. Diagnosis determines the fault’s nature and effects, while prognosis
predicts the system’s future behavior considering fault progression. Fault diagnosis systems
offer decision support tools, helping operators and engineers respond effectively to faults.
Continuous system monitoring refines fault detection algorithms, improving fault isolation
techniques and system reliability.

Fault diagnosis (FD) varies by system type and fault nature, but it is crucial for timely
detection and resolution to prevent downtime and catastrophic failures and optimize
system performance. Safety and reliability are critical in technical system design and
operation, whether involving machines, vehicles, or complex installations. Probabilistic
risk assessment (PRA) processes, including FTA, FMEA and Event Tree Analysis (ETA),
are widely used to manage these risks. These methods depend on component failure data
for quantitative analysis, though data collection is often incomplete due to monitoring
limitations in maritime systems [6].

FTA, developed by Bell Telephone Laboratories in 1962 and later advanced by Boeing,
analyzes potential failure causes and provides a logical, graphical model of system failures.
It is a structured method for qualitative and quantitative failure analysis [7,8] but requires
expert involvement and focuses only on potential failures [9–11]. FMEA, first used in the
aerospace industry, identifies and prioritizes potential failure modes by assessing severity,
occurrence and detectability, aiming to mitigate risks and improve system reliability [12].
When paired with Criticality Analysis (CA), FMEA becomes FMECA, which quantitatively
prioritizes system vulnerabilities. Both FTA and FMEA are recommended for reliability
applications, with research suggesting forward and backward integration of the methods
for improved risk evaluation [13].

Recent studies have focused on enhancing maritime system reliability and risk assess-
ment through the integration of FTA, FMEA and other techniques [14–18]. Research [19–22]
focused on assessing risks and improving reliability in maritime systems. For example,
some researchers have proposed reconfigurations to increase system reliability, others have
used reliability block diagrams to modify ship systems, and some have applied advanced
techniques like the Fuzzy Multi-Criteria Decision-Making Approach [21] (FMCDMA) and
Dynamic Fault Tree Analysis (DFTA) to prioritize maintenance actions [22]. The Risk
Priority Number (RPN) method (1) in FMEA prioritizes failure modes based on severity
(S), occurrence (O) and detectability (D), though its simple multiplication formula has been
widely critiqued.

RPN = S × O × D, (1)

Alternative approaches [23–26], such as weighted RPN calculations and fuzzy logic,
have been proposed to improve accuracy.

Moreover, the integration of AI and ML in predictive maintenance has gained signifi-
cant attention, with AI techniques used to predict equipment failures and optimize mainte-
nance schedules [27–29]. ML algorithms—supervised, unsupervised, semi-supervised and
reinforcement learning—can automate tasks [30–32], discover patterns in data and make
intelligent decisions without explicit human intervention. Recent applications of deep
learning, neural networks and other ML algorithms like decision trees and support vector
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machines have shown promise in fault pattern recognition and classification in technical
systems [33,34].

Finally, performance metrics for ML algorithms [35], such as the confusion matrix,
help assess classification accuracy by comparing predicted labels with actual outcomes,
providing insights into precision, recall and overall model performance.

Naval Maintenance

Degradation is traditionally considered a measured performance characteristic of
cumulative changes over time leading to system failures [36]. Equipment maintenance
aims to prevent the degradation of systems and thus reduce downtime. Traditionally,
maintenance is classified based on whether it is performed as preventive or corrective
maintenance [37]. Preventive maintenance is conducted to avert accidental equipment
failure through scheduled repairs or the replacement of worn components, following
established procedures. In addition, corrective maintenance involves performing the
necessary repairs to restore the equipment to its working condition after a breakdown.
Understanding the concept of maintenance is crucial despite the significant confusion
associated with the terminology used to define the types of maintenance.

A systematic classification proposed by Trojan [38] considers factors such as associated
risks, intervention modes, action planning, costs and available resources to assist decision-
makers in choosing the most suitable type of maintenance for parts, equipment, facilities
or systems, resulting in four major domains: reactive, proactive, predictive and advanced
maintenance. Although traditional ship maintenance relies on the practical knowledge of
ship personnel, modern maritime maintenance programs adhere to the standards set by the
International Maritime Organization (IMO), employing written procedures and Planned
Maintenance Systems (PMS) to ensure effective maintenance practices.

The development of Computerized Maintenance Management Systems (CMMS),
akin to onboard PMS, was driven by advancements in computer operation systems and
dedicated software creation. Since 2015, these programs have included modules for main-
tenance management and feature modules designed to manage information and enhance
operational safety [39]. The introduction of CMMS in maritime transport has brought
improvements in communication efficiency and speed with the office, easier monitoring
of maintenance activities and procurement and simplification of data exchange processes.
Currently, the maritime industry estimates the existence of over 70 CMMS programs with
various operating features and designs [40].

Studies conducted by Wang Chaowe [41], Vlatko Kneževic [42] and Eriksen [43] and
Park [44] addressed maintenance strategies and reliability in maritime systems. Wang
Chaowe introduced Maintenance Progress-FMECA (MP-FMECA), which combines techni-
cal activities to prevent failure. Vlatko Kneževic focused on enhancing the maintenance
plans and optimizing the turbocharger operation. Eriksen examined the limitations of Reli-
ability Centered Maintenance (RCM) in autonomous ships, particularly in the main engine
cooling system, emphasizing the need to consider the voyage duration when developing
failure mode. Using data from alarm monitoring and ML, an algorithm was developed to
discover anomalistic symptom judgments to be used for ship maintenance prediction [44]

3. Methodology

A comprehensive fault diagnosis methodology involves several steps to systematically
detect, isolate and understand faults in a system. The proposed approach involves system
understanding, data acquisition and preprocessing, feature selection and extraction, fault
detection, fault localization and isolation, fault classification and severity assessment,
diagnostic decision-making, feedback and continuous improvement.

Understanding the system architecture and expected behaviors is fundamental to
fault diagnosis methodologies, ensuring a comprehensive grasp of critical components
and operational norms. Acquiring and preprocessing relevant data involves collecting and
refining information from sensors and monitoring devices and refining it through filtering
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and normalization to enhance accuracy. The selection of informative features is crucial
for capturing meaningful patterns in the data, which facilitates effective fault detection
and localization.

Applying fault diagnosis algorithms enables the identification of anomalies or de-
viations from normal system behavior, laying the foundation for subsequent diagnostic
steps. Localizing and isolating faults involves narrowing down potential causes to specific
components or subsystems, thereby aiding in the identification of root causes and effective
mitigation strategies. Classifying and assessing fault severity helps prioritize response
actions, ensuring that critical issues are addressed promptly to minimize disruptions and
optimize system performance. Decision support systems play a pivotal role in guiding
informed fault response decisions considering various factors such as safety, reliability
and cost implications. Continuous feedback and improvement drive the evolution of fault
diagnosis methodologies, ensuring their effectiveness in terms of addressing emerging
insights and adapting to changes in system behavior.

To properly analyze a problem, it is necessary to utilize three primary data sources:
operational parameters, maintenance history and the technical condition of components, to
allow for the estimation of future values based on trends, seasonal variations and cyclical
phenomena, in accordance with the theoretical principles of ML in the product–program
lifecycle [45,46].

Fault detection and diagnosis methods, such as FTA, FMEA and ETA, are integral
components of PRA methodologies. FTA, a systematic approach to identifying and ana-
lyzing potential system failures, is often utilized within PRA to assess the likelihood and
consequences of various fault scenarios. Similarly, FMEA and ETA complement PRA by pro-
viding detailed evaluations of the failure modes and their effects, as well as the sequences
of events following fault occurrence, respectively. In research [47], authors identified limita-
tions in the traditional risk assessment method and proposed an improved analysis model
using frequency–impact values plotted on a four-quadrant evaluation chart. Meanwhile,
research [48] evaluated the failure modes using the FMECA method and prioritized the risk
factors, which were then used for opportunity analysis regarding the implementation of
Condition Monitoring Systems (CMS) and CBM practices. Potential failures in FTA-based
naval propulsion systems are outlined in research [49]. The impact of disruptive events
on critical ship components is assessed in research [50], which proposed a method for
evaluating operational time without human intervention. Research [51] explored FTA’s
applicability across industries, including maritime ones and incorporated fuzzy logic to
address event interdependencies. Also, research [52] analyzed failures in the propulsion
systems of four identical ships, identifying key components for reliability calculations
and suggesting improvements through Reliability Availability and Maintainability (RAM)
analysis and FTA.

Furthermore, in fault diagnosis tasks, techniques like k Nearest Neighbors (kNN),
Approximate Nearest Neighbors (ANN) and Condensed Nearest Neighbors (CNN) can be
employed to classify and identify faults based on similarities with known fault patterns,
which contributes to the overall reliability and safety analysis of complex systems. The
ML algorithm used in this study is versatile for both classification and regression tasks,
utilizing a simple approach to classify new cases based on a majority vote from its nearest
neighbors, assessed through a distance function [53].

To determine the final accuracy of the tests, the confusion matrix is used. The confusion
matrix is a performance evaluation tool in ML that represents the accuracy of a classification
model, particularly for multi-class methods. It assesses the performance of a classification
model by comparing predicted and actual class labels [54]. This provides insight into the
classification model’s operation and the types of errors it makes. The comparison of actual
target values with those predicted by the model is displayed within an n × n matrix, where
n represents the total number of target classes. The difference from the regular confusion
matrix was in calculating the final results with the cumulative overall precision accuracy
for the test data.
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In this study, the proposed predicted algorithm is used to make predictions across
multiple classes and follows a lifecycle guided by theoretical principles of ML, resulting in
an algorithm adhering to this cycle, as depicted in Figure 1.
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Beginning with developing requirements, the problem is stated, and a solution is
proposed that emphasizes the purpose and benefits. The analysis evaluates the existing
situation and proposes methods and algorithms for problem-solving, often using intuitive
graphical representations for clarity.

The design involves abstracting the facts from the analysis to realize information and
action modeling, while implementation and testing bring the product model to life through
programming and debugging. Once completed, the algorithm is deployed for operation,
and updates are provided to address issues and improve performance.

This life cycle repeats with each iteration of development. In a specific research context,
analysis, design and implementation are essential for developing predictive data analysis
programs using ML techniques that are adapted from existing works [55,56]. System
analysis identifies critical points and variables, enabling the model’s application to various
installations and enhancing operational understanding and automation potential [57].

The algorithm further involves data collection from installation sensors and processing
raw data to distinguish normal and faulty states through techniques like feature generation.
This iterative process ensures a high-quality database, facilitating reliable analysis and
results generation [58]. The algorithm creation process involves flexibility in terms of
strategy and technique selection, which is tailored to the available data types and volume.
Multiple techniques are simultaneously employed to build various predictive models, each
offering various solutions to the problem at hand, the notable results will be considered in
defining the optimal method.

When dealing with large-scale data, kNN can become computationally expensive due
to the need to calculate distances between all data points. To address this, we take into
account suitable solutions, such as ANN, Dimensionality Reduction, Data Sampling, CNN,
Parallel Processing and Efficient Distance Metrics.

In high-dimensional datasets, distance calculations become more expensive (curse
of dimensionality). To improve computational efficiency without losing too much infor-
mation, techniques like Principal Component Analysis (PCA) help to reduce the number
of dimensions. In our case, PCA projects the data onto a lower-dimensional space while
retaining most of the variance, making kNN faster.

In the case of storing or processing historical data, techniques like random sampling
or stratified sampling are used to maintain the dataset’s statistical properties.
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Some distance metrics (e.g., Euclidean distance) may be computationally expensive in
high dimensions. Choosing faster distance metrics like Manhattan (Cityblock) distance or
precomputing distances can reduce computation time.

Combining these techniques based on the nature of our available data and resources,
we managed large-scale data efficiently with kNN.

Fault Detection Algorithm

This paper proposes a new fault detection approach, integrating risk analysis tools like
FTA and FMECA, along with ML techniques, to enhance maritime maintenance practices.
In addition, it introduces the Supplier Inputs Process Output Customer (SIPOC) diagram
as a graphical representation tool to illustrate the inputs, utility and benefits of a maritime
maintenance system. Originating from Edward Deming’s Total Quality Management
principles, the SIPOC diagram visualizes processes as integrated entities, emphasizing the
interconnectedness of various elements (Figure 2).
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This concept portrays manufacturing as a complete and integrated process rather
than a series of disjointed elements, aiding in understanding the diverse applications and
stages preceding and succeeding any action. To pinpoint real issues within the manufac-
turing process, SIPOC components include both internal and external customers, product
requirements and the inputs and outputs of the process [59,60].

The proposed approach effectively analyzes a problem and utilizes three primary data
sources: operating parameters encompassing both normal and faulty operations, detailed
maintenance history and the technical condition of components, including degradation over
time, to estimate operating hours until failure [44]. By analyzing the recorded parameter
values, it is possible to estimate values for future moments, the type of trend (long-term
increase or decrease in values), seasonal phenomena (changes in values over equal time
periods) and cyclical phenomena (fluctuations that do not always have the same duration,
i.e., are not periodic).

The proposed algorithm named FaultApp, tailored to meet the operational and main-
tenance requirements of a ship’s crew, utilizes planned activities and data from onboard
monitoring systems to efficiently manage information, provide insights and enhance opera-
tional and maintenance processes through five structured operational modules, which are
integrated for comprehensive functionality as described in Algorithm 1.

Algorithm 1. FaultApp

1.While data are being imported (import_data):
2. Set MonitoringArray to the import_data;
3. Call the MONITOR function;
4. Call the GRAPH function.
5. If a deviation is detected:
6. Call the ANALYSIS function;
7. Call the DIAG function;
8. Call the LINK_PMS function;
9. end if;
10.end the while loop.
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Algorithm 1 has a universal character, is applicable to monitoring all installations
onboard a ship and contains five modules: MONITOR and GRAPH were enhanced based
on similar monitoring systems onboard, while DIAG, ANALYSIS and LINK_PMS were
developed to conduct a technical state analysis of shipboard installations. Particularly,
for the implementation, testing and operation stages, an onboard ship installation (e.g.,
seawater cooling system) was chosen to validate the results.

The algorithm utilizes operational parameters from sensors installed on the ship’s
system and calculates additional parameters by comparing input and output values for
the same component. It also evaluates the efficiency of redundant system components,
storing this information in a Monitoring Array used by the MONITOR, DIAG, and GRAPH
modules. The algorithm transmits real-time data to a database, flags functional imbalances,
and saves data for analysis, identifying defects and deviations from nominal values.

The MONITOR module displays, in real-time, within the interface of the chosen
installation, the values of the functional parameters obtained from the sensors.

The DIAG module (2) provides a graphical representation of the evolution of the
operating data values according to the user’s preference over set time intervals. The
deviation of these parameters lies between the minimum and maximum values accepted
for the optimal operating regime. Any value exceeding the maximum or minimum limits
(values exceeding 100%) indicates an abnormal functional state. To normalize the data
presented in the graph, the domain (−100, 100) was utilized, and deviations from optimal
parameters were measured as percentage values, where −100% and 100% denote negative
and positive deviations, respectively, and 0 represents the optimal operation.

This information is required to correlate the functional states of the components with
the values of the operating data.

Step 1. Initialize GraphData as MonitoringArray;
Step 2. Determine the dimensions of GraphData and store them in variables
m (rows) and n (columns);
Step 3. Loop through each element of GraphData:

- For each row index i from 1 to m:
- For each column index j from 1 to n:

a. If GraphData(i,j) == min_max(2,j):
- Set DiagArray(i,j) to 0.

b. Else if GraphData(i,j) < min_max(2,j) and ≥ min_max(1,j):
- Compute and set DiagArray(i,j) as follows:

(−1 + (GraphData(i,j) − min_max(1,j))/(min_max(2,j) −
min_max(1,j))) × 100.

c. Else if GraphData(i,j) > min_max(2,j) and ≤ min_max(3,j):
- Compute and set DiagArray(i,j) as follows:

(GraphData(i,j) − min_max(2,j))/(min_max(3,j) −
min_max(2,j)) × 100.

d. Otherwise,
- Set DiagArray(i,j) to fault value.

End the loops.

(2)

The ANALYSIS module, having possible faults in the functional state as reference
points, analyzes the provided dataset online or offline to determine the trend for each
variable. The module extracts the time and variables provided by the sensors from the
installation under test, sets a threshold for small variations and fits a linear model to each
variable (3) to analyze, determine and display trends for each variable (5) based on a
model (4). Thus, depending on the size of the database or the multitude of data provided
by the sensors placed on board the ship, combining these techniques (kNN, ANN, CNN,
PCA, EDM) based on the nature of the available data and resources, we can efficiently
handle large-scale data with kNN.
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mdl = fitlm(time,sensors(:,i));
Mdl = fitcknn(X,Y,‘NumNeighbors’,5,‘Standardize’,1);;
Mdl = fitcknn(X, Y, ‘Distance’, ‘cityblock’);
Mdl = KDTreeSearcher(import_data); [idx, dist] = knnsearch(mdl, query
Point, ‘K’, 5);
[coeff, score] = pca(import_data);
reducedData = score(:, 1:k); % Keep top k principal components
Mdl = fitcknn(reducedData, labels, ‘NumNeighbors’, 5);

(3)

slope = mdl.Coefficients.Estimate, (4)

trends{i} = determineTrend(slope,threshold), (5)

Taking into account that our scenario dataset is small to moderately sized and low-
dimensional and the fault classes are well-separated, for fault diagnosis, the kNN model is
most suitable based on its simplicity and non-parametric nature, which makes it effective
for real-time fault diagnosis and applications in which minimal assumptions about data
distribution are required.

The module trains a kNN classifier where the number of nearest neighbors in the
predictors (k) is 5. The kNN model (Mdl) is created to classify data points based on the
given features and labels and ensures that the numeric data are standardized to realize
better performance (6).

Mdl = fitcknn(X,Y,‘NumNeighbors’,5,‘Standardize’,1), (6)

The predicted class labels are generated to evaluate the model’s performance on the
training set using trained regression models (7). Possible increasing or decreasing trends
are translated into +1 and −1, respectively. A very small fluctuation is transferred to the
value 0. Every possible failure mode of the system is characterized by a unique combination
of trend values (+. 0, −1) of each monitored parameter.

predictedY = resubPredict(Mdl), (7)

A suitable ML technique for multi-class fault diagnosis depends on the specific charac-
teristics of the dataset and the diagnosis requirements. In the proposed algorithm, the kNN
model is best fitted for fault diagnosis based on a predefined fault and confusion array
because the dataset is small to moderately sized, the feature space is low-dimensional, and
the fault classes are well separated. In this case study, the simplicity, ease of implementation
and effectiveness of the proposed method in scenarios with distinct clusters of faults make
it a viable choice for real-time and straightforward fault diagnosis applications. However,
careful consideration of the dataset’s size and dimensionality is critical to ensure kNN’s
efficiency and accuracy in fault diagnosis.

Therefore, a confusion array/chart and the derived metrics are crucial for assessing
performance and guiding the selection of the best model for fault diagnosis, providing a
summary of prediction results by showing the counts of true positives, false positives, true
negatives and false negatives. The confusion chart (cm) visually represents the performance
of the kNN classifier by displaying the actual versus predicted class labels, which helps
assess the model’s accuracy and identify any misclassifications (8).

The confusion chart’s rows correspond to the true class, the columns correspond to the
predicted class and diagonal and off-diagonal cells correspond to correctly and incorrectly
classified observations, respectively.
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cm = confusionchart(Y,predictedY), (8)

CM = cm.NormalizedValues, (9)

The normalized confusion matrix (CM) provides a more interpretable view of the
classification performance by showing the proportion of each predicted class relative to the
actual class, which can be useful for comparing performance across different classes (9).

Thus, in the proposed algorithm, the typology of the faults was structured as an
array (the MonitoringArray) corresponding to the 12 functional states, each containing
41 functional parameters, described in Section 4.

Algorithm testing, validation and updating were performed using test files obtained
during the operation of the onboard installations, online or offline, during or after the trip
was completed. Using kNN, we classify a new data point by analyzing and voting on
the classes of the k closest points from the initial dataset and visualize the predictions in
the confusion matrix chart created from the true labels and the predicted labels, and we
compare the performance across different classes. In the end, the algorithm indicates the
defects in order of their incidence.

The GRAPH module allows a graphical representation of the operating data values
according to the user option. The module serves as an essential tool for operational
personnel to observe changes over time in monitored and calculated parameter values,
functioning as an analysis instrument for failure modes in cases where the analysis report
from the preceding module does not provide sufficient information for classification, when
results are very close in value, or when necessary, analysis trends are not identified. Using
data stored in the Monitoring Array matrix for monitored pressure and temperature
parameters, the algorithm enables real-time or continuous two-dimensional (2D) displays
of the target parameters throughout the recording period. The information is necessary to
correlate the functional state of the components with the values of the operating data.

The LINK_PMS module assists users in managing maintenance processes by providing
relevant information on facility failures and displaying possible causes and remedial
measures from FTA and FMECA analyses in a table format. It integrates with PMS on
transport vessels to demonstrate the key features of the affected components and details of
recent maintenance work.

4. Results

The algorithm was tested on a centralized seawater cooling system from a tanker ship.
This system is designed to cool the freshwater liquid that is forced circulated by designated
pumps in a closed circuit through heat exchangers and absorbs the heat from engine room
equipment and machinery. The interest parameters are as follows:

• Twenty basic operational parameters provided by sensors at the inlet and outlet for
each component;

• Ten calculated parameters, referred to as “Delta” (difference between inlet and outlet
values on the same component of the system);

• Eleven calculated parameters, referred to as “Load” (in terms of efficiency for re-
dundant components of the systems), to identify unbalance between similar com-
ponents that are used for an improved prediction using the kNN classifier for the
ANALYSIS module.

These parameters are stored as a matrix called the ‘’Monitoring Array”, which serves
as input data for subsequent modules (MONITOR, DIAG and GRAPH). The initial module
transmits real-time operational data to a database, and the algorithm’s novelty lies in its
calculation of DELTA parameters, which are crucial for signaling functional imbalances in
component failures.
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4.1. The MONITOR Module

The MONITOR module (Figure 3) displays the real-time values of the functional
parameters obtained from the sensors within the interface of the selected installation.
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After each display, the data are saved for the analysis phase in the ANALYSIS mod-
ule, which also offers additional data calculation and displays defect states representing
deviations from nominal parameter values.

4.2. The DIAG Module

The DIAG module (Figure 4) graphically represents the evolution of the operating data
values over user-defined time intervals, highlighting deviations (10) within a normalized
domain of (−100, 100) where −100% and 100% denote deviations and 0 represents optimal
operation, where any value exceeding these limits indicates an abnormal functional state,
thereby correlating the component functionality with the operating data values. The range
of optimum values for each monitored parameter represents the nominal operating values
given by the manufacturer. Any value outside them is categorized as a deviation from
the nominal operation. The minimum and maximum values, noted with min_max, are
assimilated to the equipment fault operation (in which it runs with very low performance
or overload, close to the safety limit).
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4.3. The ANALYSIS Module

The ANALYSIS module examines sensor data to determine trends and detect faults by
fitting linear regression models to each variable and using a kNN classifier for real-time
fault diagnosis. It standardizes numeric data, visualizes predictions with a confusion matrix
to assess model performance and indicates defects based on their incidence. The proposed
approach leverages kNN’s simplicity and effectiveness of kNN on small, well-separated
datasets, making it suitable for real-time fault diagnosis in maritime installations. To vali-
date the results of the algorithm, 12 functional states on the tested installation, 12 functional
states were taken as a reference. Following the specific analysis, for the targeted installation,
a malfunction matrix (Fault Array) was created for 12 existing functional states, 11 func-
tional states with deviations from optimal parameters and 1 operating state with nominal
parameters (and in this situation, some fluctuations of parameter values were identified).
The functional states are as follows:

• F1—seawater chest malfunction;
• F2—seawater pump malfunction;
• F3—clogging main seawater cooler;
• F4—clogging main freshwater cooler;
• F5—low-efficiency main freshwater cooler;
• F6—clogging secondary seawater cooler;
• F7—clogging secondary freshwater cooler;
• F8—low-efficiency secondary freshwater cooler;
• F9—seawater pump failure and clogging main sea water cooler;
• F10—seawater pump failure and low-efficiency main freshwater cooler;
• F11—clogging main seawater cooler and low-efficiency main freshwater cooler;
• F12—operation with minimal deficiencies.

In the proposed algorithm, fault types were structured as arrays corresponding to
12 functional states, each containing 41 functional parameters defined above. The algorithm
was tested, validated and updated using test files from onboard installations, either online
or offline, during or after trips. Using kNN, new data points are classified by analyzing
and voting on the classes of the k closest points from the initial dataset, with predictions
visualized in a confusion matrix to compare performance across classes, ultimately indi-
cating defects in order of incidence and descending highlighting possible failure modes
(Figure 5).

Furthermore, incorporation of these techniques—noise filtering, outlier detection,
robust ML models and redundancy—the approach can indeed operate under interference
and disturbances. However, the success of this approach will depend on how well the
system is designed to detect and mitigate interference while maintaining accuracy in
predictions and fault diagnosis. Regular calibration, monitoring and validation against
real-world scenarios enhance system reliability in the face of interference.

Instead of relying on fixed thresholds for detecting anomalies or faults, the implement-
ing Dynamic Thresholds can adapt based on historical data and the current state of the
system and accommodate variations in sensor readings due to environmental factors. Also,
Self-Learning Mechanisms can adapt over time by learning from new data, thus improving
the algorithm’s robustness against changes in data patterns due to disturbances.

The algorithm indicates the defects in the order of their incidence, as is depicted in
Figure 6.
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4.4. The GRAPH Module

The GRAPH module (Figure 7) graphically represents the evolution of operating data
values based on user preferences, serving as a crucial tool for operational personnel to
monitor changes in parameter values over time, analyze failure modes when the previous
module’s report is insufficient and display real-time or continuous 2D data from the
Monitoring Array matrix for monitored parameters (pressure and temperature) to correlate
the component functional states with the operating data.
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4.5. The LINK_PMS Module

The LINK_PMS module is designed to provide users with relevant information for
managing the maintenance process based on the type of component failure. Possible causes
and remedial measures for the identified defects extracted from qualitative analyses of FTA
and FMECA are displayed.

5. Discussion

This paper proposes an innovative approach to enhancing the reliability and safe
operation of equipment by implementing a new model for the automated evaluation of the
technical conditions of equipment using ML techniques. The objective is to provide early
warning of operational deviations, eliminate human errors, notify upcoming maintenance
stages in advance and reduce costs.

In developing the algorithm, several methods were considered, including fault tree
analysis, failure mode and effects analysis (FMEA) and fault detection using ML techniques.
Using the SIPOC diagram, all these methods were integrated to construct the algorithm.
The algorithm was designed to handle both continuous data flow from onboard the ship
and offline analysis by exporting recorded data for shore-based analysis during and after a
voyage. Based on specified requirements and development possibilities and through the
integration of ML techniques, the algorithm facilitates the monitoring of operations and
the evaluation of the functional state of naval installations by analyzing operational data to
assist maintenance decision-making.

The algorithm enhances the monitoring phase of onboard installations by alerting
potential defects and their effects on the components. In addition, the proposed algorithm
facilitates the visualization of trends and functional deviations, mapping them to possible
failure modes.

Scalability is achievable, accommodating the complexities of installations and enabling
the integration of additional sensors. The scalability of the algorithm can be demonstrated
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and validated by Handling Large Datasets, which involves progressively introducing
larger datasets by simulating extra sensor data or incorporating historical records into the
monitoring process. Additionally, Validation Through Predictive Accuracy can assess the
algorithm’s capacity to identify potential defects and correlate them with failure modes as
system complexity increases. Stress Testing for Real-Time Monitoring serves as a method to
conduct stress tests by simulating a high volume of real-time sensor data from ship systems
under various operational conditions, including peak loads and fault occurrences.

The obtained results contribute to the field of maintenance for ship systems and
installations in several ways: (1) the integration of risk and reliability analysis (FTA and
FMECA), simulation tools and ML techniques is achieved using the SIPOC method; (2) a
database has been created to identify fault precursors by analyzing operational parameter
provided by ship sensor and calculated parameters for measuring the load and efficiency
of system components; (3) the monitoring system and graphical analysis of operational
data have been enhanced; (4) a fault matrix has been constructed to identify possible
failure modes in naval installations; (5) the analysis of operational parameter trends is
integrated with ML techniques to identify potential failure modes in naval installations.
Finally, an algorithm was developed leveraging the research findings to enhance the current
monitoring system and assist in maintenance decision-making for naval installations. The
primary advantage lies in the reduced time required for diagnosing the root cause of
failures through rapid system evaluation using operational data. However, testing and
validating the proposed algorithm on a generic installation revealed potential limitations
arising from the complexity of the employed methods and tools.

Methodologically, two risk analysis methods (FTA and FMECA) were employed,
which provided the best results in the naval field. The limitations of each method were
minimized by integrating them into the research. Although the choice of installation for
the case study was thoroughly justified, applying the algorithm to a single installation was
a limitation of the study. Due to the varying technological levels of the testing installation
(limited number of monitored parameters, depending on the sensors placed on the installa-
tion), evaluating trends can be challenging. However, by calculating additional parameters,
functional trends become evident, and the early detection of these trends can differentiate
between possible failure modes.

Considering the above points, combined with the rapid technological development
and application of ML techniques, the proposed algorithm represents a significant advance-
ment in naval maintenance. It contributes to the safe operation of naval equipment by
immediately reporting parameter deviations and improving the activities of personnel
involved in ship operation, thereby enhancing autonomous maritime transport.

Furthermore, new research directions are thus outlined, aiming at the development of
an application that enables (1) automation of the diagnosis process for naval equipment by
integrating the application into the ship’s maintenance management system; (2) application
of the study to other onboard installations by replicating the steps described in the SIPOC
diagram; (3) mapping fault matrices for other naval installations and automating the diag-
nosis process; (4) updating the application with new technological capabilities (additional
sensors for measuring operational parameters) to unequivocally differentiate between the
various and complex possible failure modes; (5) creating support materials (operating
manuals and training videos) to develop new competencies for operating personnel.

This work aims to serve as a foundation for developing an application that integrates
the study conducted by creating a pilot model to diagnose faults in naval installations and
evaluate operational parameters. The proposed model is intended to estimate functional
deviations and assist maintenance decision-making.

6. Conclusions

This research offers a significant contribution to the field of naval maintenance by
advancing fault diagnosis automation, improving the monitoring of onboard systems and
supporting the development of autonomous maritime transport.
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Incorporating ML algorithms like kNN, ANN and CNN into fault diagnosis tasks
improves fault classification by comparing new cases with known fault patterns. These
techniques effectively classify and identify faults by comparing new data points to known
fault patterns, contributing to the overall reliability and safety of the system. Performance
evaluation tools, such as the confusion matrix, assess the classification model’s accuracy,
providing insights into errors and overall model performance.

The proposed algorithm in this study, designed for multi-class predictions, follows
an ML lifecycle involving problem identification, analysis, design, implementation and
testing, with iterative development to refine the model. The algorithm demonstrates the
potential to improve fault detection, classification and visualization of operational trends,
enabling more informed and timely maintenance decisions for complex installations. By
combining strategies for efficiency (dimensionality reduction, efficient distance metrics),
robustness (cross-validation, noise handling), flexibility (adaptive parameters, weighted
kNN), and adaptability (incremental learning, real-time processing), the algorithm can
perform effectively across a wide range of general-purpose scenarios. This makes it suitable
for diverse real-world applications, from fault detection in industrial systems to dynamic
decision-making in online environments.

Future research should focus on expanding the algorithm’s applicability to other
naval systems, integrating more sensors and developing tools for training and personnel
development to optimize system operation and maintenance management.
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