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Abstract: As mental health issues become increasingly prominent, we are now facing challenges
such as the severe unequal distribution of medical resources and low diagnostic efficiency. This
paper integrates finite state machines, retrieval algorithms, semantic-matching models, and medical-
knowledge graphs to design an innovative intelligent auxiliary evaluation tool and a personalized
medical-advice generation application, aiming to improve the efficiency of mental health assessments
and the provision of personalized medical advice. The main contributions include the folowing:
(1) Developing an auxiliary diagnostic tool that combines the Mini-International Neuropsychiatric
Interview (M.I.N.I.) with finite state machines to systematically collect patient information for pre-
liminary assessments; (2) Enhancing data processing by optimizing retrieval algorithms for efficient
filtering and employing a fine-tuned RoBERTa model for deep semantic matching and analysis,
ensuring accurate and personalized medical-advice generation; (3) Generating intelligent sugges-
tions using NLP techniques; when semantic matching falls below a specific threshold, integrating
medical-knowledge graphs to produce general medical advice. Experimental results show that this
application achieves a semantic-matching degree of 0.9 and an accuracy of 0.87, significantly improv-
ing assessment accuracy and the ability to generate personalized medical advice. This optimizes the
allocation of medical resources, enhances diagnostic efficiency, and provides a reference for advancing
mental health care through artificial-intelligence technology.

Keywords: mental health; artificial intelligence; natural language processing; medical-knowledge
graph; automatic generation

1. Introduction

With modern life accelerating and societal competition increasing, mental and psy-
chological health issues have become significant global public health challenges. A World
Health Organization report indicates that over one billion people globally suffer from
various mental health issues [1]. However, many individuals still lack access to proper
detection and treatment. These issues not only profoundly affect individuals but also place
a substantial burden on families and societies [2]. Globally, there is a severe imbalance in
the distribution of mental and psychological healthcare resources across various countries
and regions [3]. This imbalance is especially pronounced in developing countries and
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low-income areas, marked by a lack of professional personnel and medical facilities, com-
plicating access to high-quality medical services. In developed countries, the distribution of
mental health services frequently fails to meet population needs, leading to many patients
struggling to receive timely and effective treatment.

Current medical practice faces multiple challenges in assessing, diagnosing, and
treating mental and psychological disorders [4]. Firstly, the uncertainty of symptoms
and subjectivity of patient perception make accurate disease state assessment difficult for
doctors in clinical practice. Secondly, the lack of objective indicators means these subjec-
tive perceptions often compromise the accuracy of assessment, diagnosis, and treatment.
Despite abundant online professional medical knowledge, existing knowledge retrieval
systems often provide low-quality information and lack precision. Some specialized plat-
forms provide reliable online consultation services with professional psychiatrists, but
these services are typically time-consuming and labor-intensive.

To tackle these challenges, this paper leverages the latest computer technology and
artificial-intelligence algorithms. Specifically, we integrate the RoBERTa model, based on
BERT [5] (Bidirectional Encoder Representations from Transformers), for effective process-
ing and analysis of medical literature and patient records. Additionally, we use the M.I.N.I
tool [6], a validated, simple, and effective diagnostic tool for psychiatric disorders. The com-
bination of these methods aims to improve the accuracy of assessments and medical-advice
generation for mental and psychological disorders.

Existing research mainly relies on doctors’ clinical experience and traditional diag-
nostic tools, which are often lacking in flexibility and personalization [7]. The limited
understanding of complex and variable mental disorder characteristics constrains the ef-
fectiveness and adaptability of medical advice. Therefore, this paper aims to develop a
novel auxiliary assessment tool and an application for generating personalized medical
advice. The goal is to enhance the accuracy of mental disorder assessments and treatment
efficiency through technological innovation. Our approach aims to comprehensively and
objectively assess patients’ mental states and provide tailored medical advice, improving
medical resource allocation and patient quality of life. We believe this innovation will
benefit patients directly and offer new perspectives and tools for medical practice.

2. Literature Review

The assessment and diagnosis of mental and psychological disorders are complex
and multidimensional processes. Traditionally, this field has relied on physicians’ clinical
experience and standardized assessment tools, such as DSM-5 [8] and ICD-10 [9], which
provide guidelines for diagnosing mental disorders. Chakraborty, N., Ali, A., et al. [10]
highlighted the World Health Organization’s mhGAP Intervention Guide’s effectiveness
and practicality in assessing and providing mental health services. However, their prac-
tical application is limited by the need for professional knowledge and flexibility in the
assessment and diagnostic process. The M.I.N.I questionnaire, popular for its brevity and
structured format, allows for quicker assessment of major mental disorders. Arrow, K.,
Resnik, P., Michel, H., et al. [11] demonstrated these tools’ feasibility and effectiveness in
assessing mental and psychological symptoms.

In medicine, text-generation technology [12–14] is an emerging research area. Re-
searchers like Hasani, A.M. and Singh, S. [15] have successfully used advanced pre-trained
deep-learning models like GPT-4 for generating and standardizing medical reports. How-
ever, this method, while flexible, has limitations in content control, and its reliability and
safety in medicine are not fully established. A more prudent approach is using information-
retrieval technology to find relevant information and extract keywords and key information
for generating medical advice.

Most text-retrieval technologies [16,17] rely on full-sentence matching, which is fast
but lacks specificity in key information extraction. To address this issue, some researchers
have proposed semantic retrieval-based models [18–20]. While these improve knowledge-
acquisition precision, their effects vary, and they are computationally intensive. They also
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do not fully consider the patient’s unique situation for personalized medical advice. We
propose a keyword-weight [21,22] matching algorithm for preliminary information filtering.
In addition, Liu, Y., Ott, M., Goyal, N., et al. [23] confirmed that RoBERTa, a variant of
BERT, performed exceptionally well in semantic sentence-matching tasks. Therefore, we
adopted a RoBERTa model based on the Cross-Encoder [24,25] network structure to further
enhance the accuracy of information retrieval.

This combination lays the foundation for generating personalized medical advice. The
introduction of medical-knowledge graphs [26–29] offers a structured way to organize and
query medical information, showing great potential in medical-advice generation.

Building on existing literature and technologies, this paper aims to combine finite
state machines, the RoBERTa model, and medical-knowledge graphs to improve mental
disorder assessment accuracy and the personalization and universality of medical-advice
generation. Our method focuses on assessment accuracy and emphasizes medical-advice
personalization and specificity, addressing issues like uneven resource distribution and
variable service quality. The following sections will elaborate on our research methods,
experimental design, and results and discuss how these innovations can enhance the quality
and efficiency of mental and psychological health services.

3. Materials and Methods
3.1. Materials

The dataset, named “Huatuo-26M” [30] is one of the largest Chinese medical Q&A
datasets currently available, compiled from multiple reliable sources, as detailed in Table 1.
It contains over 26 million high-quality medical Q&A pairs, primarily sourced from public
medical Q&A forums on the internet. The forums feature responses from certified medical
professionals, with verifiable personal and employment details, ensuring data reliability
and credibility.

Table 1. Huatuo-26M dataset information.

Source Data Fields

Online Medical Encyclopedia Huatuo_encyclopedia_qa
Medical-Knowledge Graph Huatuo_knowledge_graph_qa

Public Online Medical Q&A Forums Huatuo_consultation_qa

The dataset includes diverse Q&A pairs, with internet forum data being particularly
valuable due to their detailed patient-related information, aligning well with this study’s
experimental environment. For this paper, data from these forums were meticulously
gathered and cleaned to build a preliminary dataset. By applying a set of keywords
specific to the mental and psychological domain, high-quality Q&A data were filtered and
saved as pairs, with questions containing detailed information such as names, symptoms,
medications, and patients’ personal information. The answer section consists of expert
treatment methods, guidance, and suggestions, totaling approximately 1 million entries.

To date, several studies have utilized the “Huatuo-26M” dataset to construct and
evaluate medical question-and-answer systems [31–33], demonstrating its advantages in
improving the accuracy and practicality of medical Q&A. The “Huatuo-26M” dataset
encompasses a wide range of medical fields, including internal medicine, surgery, pe-
diatrics, and obstetrics and gynecology, among others. The content of the Q&A covers
the diagnosis, treatment, and prevention of common diseases, primarily focusing on gen-
eral medical knowledge. Additionally, it includes a substantial number of Q&A pairs in
both the mental and psychological domains, thereby forming a comprehensive medical
question-and-answer knowledge base.

Data for constructing the domain-knowledge graph in mental and psychological
health were sourced from online medical encyclopedias, medical websites, books, academic
papers, and other resources.
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The data used to construct the knowledge graph in the field of mental and psychologi-
cal health were collected from various sources, including online medical encyclopedias,
medical information websites, medical books, and academic papers. The entire graph
includes 5 types of entities, with a total of 2430 instances; 8 types of attributes; and 9 types
of entity relationships, with 5575 instances, as shown in Table 2 below.

Table 2. Knowledge graph data.

Data Category Category Count Total Count

Entity 5 2430
Attribute 8 N/A

Public Online 9 5140

3.2. Methods

The methodology proposed in this article consists of three main components: the devel-
opment and implementation of an auxiliary assessment tool for mental and psychological
health, the generation of personalized medical advice, and the application of a medical-
knowledge graph. Firstly, patient information is gathered using the auxiliary assessment
tool and is then evaluated. This information is then used to generate personalized medical
advice. In instances where the data quality is poor or the model matching accuracy falls
below a predetermined threshold, making it insufficient for generating personalized advice,
the system employs the knowledge graph to produce universally applicable medical advice.
The overall architecture is depicted in Figure 1.
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3.2.1. Construction and Implementation of the M.I.N.I-Based Diagnostic Tool

With advancements in medical technology and the growth of digitalization, an increas-
ing number of diagnostic tools are utilizing computer technology to boost their efficiency
and accuracy. In this study, M.I.N.I version 6.0.0 serves as the basis for the auxiliary assess-
ment of mental and psychological disorders. It is supported by technologies like finite state
machines and web interaction for automated and intelligent information support.

1. Overview of M.I.N.I

M.I.N.I is an extensive diagnostic assessment tool, comprising 16 independent modules
from A to P. Each module covers a broad range of content and employs intricate logical
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calculations and judgment mechanisms. Considering the substantial differences in the
assessment methods of diagnostic results among these modules, simplifying M.I.N.I into a
standard questionnaire is not recommended.

To realize the objectives of automation and intelligence, this paper adopts a specialized
modeling approach for each module. By applying the finite-state-machine model, precise
logic calculations and logical jumps based on user responses are possible. This approach
not only facilitates the flexible collection of multiple indicator information but also enables
comprehensive result assessment based on this data. Once information collection is com-
pleted in all modules, the system can generate an integrated preliminary assessment report.
The use of this method is expected to significantly enhance the precision and efficiency
of diagnoses. The implementation effect is illustrated in Figure 2. The picture presents
three parts from left to right: an overview of the overall auxiliary diagnosis module, the
information collection process, and the evaluation results.
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2. Finite state machine and its application in this study

State machines [34,35] are computational models that describe the behavior or state
transitions of objects or systems in response to external events or conditions. In event-
driven systems, their behavior or state changes in response to external events or conditions.
Table 3 shows the basic components of a state machine. A simple diagram illustrating this
concept is shown in Figure 3.
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Table 3. State-machine component table.

Component Category Count

States Different operational phases of the system, representing specific
behaviors or attributes.

Events External factors that trigger state changes, such as user input or
sensor feedback.

Transitions Rules for transitioning between states, associated with specific events
and conditions.

Actions Specific operations performed during state transitions.

In this study, we utilize the principles of the state-machine model to structure each
module of M.I.N.I 6.0.0. Each user’s response to a question triggers an event, determining
the next question to be asked. This process continues until either the assessment criteria
are met or all questions in the module are answered, followed by result evaluation. The
flowchart for this process is depicted in Figure 4.
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3.2.2. Generation of Personalized Medical Advice

In the age of big data, the increasing demand for personalized medical care matches
well with the growing volume of medical data. The internet abounds with high-quality
medical advice from medical experts, tailored to patients’ conditions. By leveraging ad-
vanced computer technology, we can effectively gather and share this knowledge, providing
robust support for generating personalized medical advice.

1. Information collection

The generation of personalized medical advice primarily depends on two types
of information:

Basic Information: Includes gender, age, etc., collected before using the tool.
Special Information: Includes diagnostic results, personal experiences, drug allergy

history, concurrent symptoms, etc., gathered during the use of the diagnostic tool.
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2. Retrieval matching strategy

The evolution of text-retrieval technology has progressed from the initial Boolean
retrieval models [36] to modern deep-learning-based models, such as the Transformer archi-
tecture [37]. These technologies have strong information-retrieval capabilities. However, in
specific scenarios, particularly with limited data volumes, they may not fully meet precise
retrieval requirements.

This study adopts a keyword-weight-matching method. Initially, patient-related
information is collected via the M.I.N.I tool, and this is then cleaned and filtered to extract
keywords and assign weights. Using these keywords, a preliminary match is performed on
a pre-stored high-quality mental and psychological Q&A dataset in MySQL 5.7, forming
subsets of question–answer pairs. These subsets are then ranked according to their weight
scores, and the top N-ranked data are selected as the candidate set. The advantage of this
method is its focus on key information, significantly enhancing the quality of the final data,
while also substantially reducing the computational load of subsequent semantic matching.
The process schematic is illustrated in Figure 5.
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3. Semantic matching model

Semantic matching, the process of measuring textual similarity, has evolved from early
neural network-based methods, like Word2Vec [38] and GloVe [39], to Long Short-Term
Memory networks (LSTM/BiLSTM) [40]. In 2018, Devlin et al. [5] introduced the BERT
model, based on the Transformer architecture, which excels in learning deep language
representations from unlabeled text and exhibits remarkable multi-tasking capabilities. Its
Cross-Encoder structure, depicted in Figure 6, assesses the relationship between two texts
by providing a direct relational score, considering both inputs in their entirety. A variant of
BERT, RoBERTa, shows superior performance in tasks like semantic sentence matching.
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This study employs the RoBERTa model and a Cross-Encoder structure to develop a
semantic-matching model, fine-tuned with knowledge in mental and psychological health.
It evaluates the relevance between Text_Question (question) and Text_Answer (answer),
as shown in Figure 7. Equations (1) and (2) illustrate the ReLU and Sigmoid activation
functions, respectively, commonly used in neural networks and deep learning.

ReLU(x) = max(0, x) (1)

Sigmoid(x) =
1

1 + e−x (2)
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The model architecture includes the following four main layers, as detailed in Table 4.
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Table 4. Model structure.

Layer Function Description

Input Text Preprocessing Merges text and uses a tokenizer to convert it
into the three standard inputs for RoBERTa.

Model Semantic Extraction
Uses the pre-trained RoBERTa model to
extract semantic information from text,
outputting token embedding vectors.

Fully Connected Feature Transformation
Extracts the CLS token vector from

RoBERTa’s output and performs a nonlinear
transformation using Equation (1).

Output Relevance Scoring
Uses a fully connected layer with the

activation function in Equation (2) to map to
a relevance score between 0 and 1.

After training and fine-tuning with mental and psychological disorder-related data, the
model outputs a relevance score ranging from 0 (unrelated) to 1 (closely related), effectively
measuring the connection between Text_Question and Text_Answer. This architecture is
designed to deeply understand text content and capture complex relationships.

4. Generate medical advice

We propose an innovative framework for generating personalized medical advice,
integrating natural language processing technology with expert medical knowledge. Ini-
tially, patient information collected via the M.I.N.I tool is used to form a preliminary
subset of candidate advice using a keyword-weight-matching algorithm. This subset is
then processed through the semantic-matching model, which scores the advice based on
relevance, selecting the top M pieces. The refinement process includes data cleaning and
extraction, filtering out various treatment methods, medications, and suggestions, and
information filtering and analysis, identifying commonly and uniquely occurring treatment
plans, removing duplicates, and retaining unique, relevant advice.

Finally, new templates are designed based on the filtered information to generate
personalized medical advice containing core treatment plans. The detailed process of
generating medical advice is illustrated in Figure 8.
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Compared to advice generated solely by text generation technology, this method
ensures data reliability and effectiveness, as all medical advice originates from human
medical experts and undergoes professional review. It also guarantees the quality of
the final medical advice by extracting key information from multiple sources, providing
patients with more trustworthy and personalized advice.

3.2.3. Application of Medical-Knowledge Graph

A knowledge graph is a structured management tool for knowledge, with medical-
knowledge graphs extensively used to integrate and organize a vast array of medical and
health-related information. Leveraging the foundations of artificial intelligence and data
science, these graphs aim to provide comprehensive medical knowledge and insights and
have broad applications.

1. Knowledge generation

When encountering complex cases with scarce relevant Q&A examples, difficulties
arise in matching appropriate medical advice due to a lack of precision. In such instances,
the characteristics of medical-knowledge graphs can be utilized to provide universal
and structured medical information as a supplement, achieving the goal of generating
universally applicable medical advice. The process of knowledge generation is shown in
Figure 9.
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Initially, the patient’s disease assessment results obtained from the M.I.N.I auxiliary
assessment tool are used as input. Then, multiple combinational searches are conducted in
the mental and psychological health domain-knowledge graph. The search results include
information on disease symptoms, treatment methods (including treatment modalities,
medications, recommended diets), prevention measures, etc. Finally, after the classification
and organization of knowledge, the information is compiled into a knowledge list.

4. Experiment Details
4.1. RoBERTa Model Fine-Tuning

To train an efficiently fine-tuned FT_RoBERTa model for accurately determining the
relevance of question–answer pairs, the following steps were employed:

4.1.1. Data Preparation

• Positive Examples: We used original question–answer pairs as highly relevant in-
stances, where each question was paired with its correct answer. These pairs were
labeled as positive (e.g., label 1), representing high relevance.
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• Negative Examples: To generate low-relevance or irrelevant instances, we deliberately
disrupted the original question–answer pairings. This was done by randomly selecting
mismatched answers for the questions, creating instances that were unrelated to the
specific questions. These mismatched instances were assigned negative labels (e.g.,
label 0), representing low relevance or irrelevance.

4.1.2. Model Training

The model was fine-tuned using the labeled positive and negative examples, with the
optimization guided by the cross-entropy loss function, as shown below:

L = −[y·log (p) + (1 − y)·log(1 − p)] (3)

where:

• y represents the true label (0 or 1),
• p is the predicted probability from the model.

To prevent overfitting, we employed an early stopping strategy during training. Addi-
tionally, learning rates and batch sizes were adjusted to achieve optimal performance.

4.2. Data Processing in the System

Before introducing the FT_RoBERTa model for relevance calculation, the keyword in-
formation collected by the M.I.M.I. assistant evaluation tool was flexibly assigned different
weights based on importance. The total weight was normalized to 1. Then, fuzzy keyword
matching was applied to the question portion of the dataset stored in the MySQL database,
scoring the matches based on the assigned weights. To ensure data reliability, only the
top-ranked data with a score greater than 0.7 were selected as the candidate dataset.

After filling the keyword information into a question template to form a complete
question, the FT_RoBERTa model was used to compute the relevance between this question
and the candidate dataset. Instances with a relevance score greater than 0.85 were selected
for the final dataset.

The final dataset underwent data cleaning using NLP techniques. Common and
unique treatment methods, medications, and recommendations were extracted from the
medical advice within the dataset. The filtered information was then applied to a pre-
designed medical recommendation template to generate personalized medical suggestions.

5. Results and Discussion
5.1. Keyword-Weight-Matching Algorithm

By assigning different weights to keywords related to diagnostic results, symptoms,
and patient basic information, we can effectively enhance the focus and accuracy of match-
ing. For example, the keyword information group [‘depression’: 0.4, ‘insomnia’: 0.2, ‘low
spirits’: 0.1, ‘appetite’: 0.1, ‘motor inhibition’: 0.1, ‘female’: 0.05, ‘24’: 0.05] is weighted as
shown in Figure 10, with an average precision score of 7.5.
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Taking 30 different keyword information groups to the MySQL database for fuzzy
matching and scoring by weight, the top 15 Q&A pairs averaged 0.7 (out of 1), as shown in
Figure 11, indicating rich content and high quality.
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5.2. Semantic-Matching Models

The assessment metrics for this experiment were relevance and precision. We used
a pre-trained RoBERTa-based model to generate embeddings for template questions and
for each answer. For the template question (Text1) and answers (Text2. . .n) in the dataset,
corresponding vector representations v1 and v1. . .n were generated. The relevance between
these vectors was measured by calculating the Manhattan Distance, Euclidean Distance,
and Cosine Similarity between them. The formulas for these calculations are as follows:
(4)–(6), where P and Q represent two points and pi and qi are their coordinates on the ith
dimension. Manhattan Distance sums the absolute differences in each dimension, reflecting
the cumulative difference between two points; the larger the value, the greater the difference.
Euclidean Distance calculates the “straight-line” distance between two points, representing
the spatial distance; the larger the value, the further apart the points. Cosine Similarity
calculates the angle between vectors, with a larger value indicating greater similarity.

Dmanhattan(P, Q) = ∑n
i=1|pi − qi| (4)

Deuclidean(P, Q) =
√

∑n
i=1 (pi − qi)2 (5)

Cosine(
→
v1,

→
v2) =

→
v1 ·

→
v2

∥ →
v1 ∥ × ∥ →

v2 ∥
(6)

Precision is the ratio of correctly retrieved relevant Q&A pairs (U1) to all retrieved
Q&A pairs (U2). A Q&A pair is defined as correctly retrieved if its cosine similarity with
the template question is greater than 0.85, calculated using Formula (7):

Accuracy(U1, U2) =
U1
U2

(7)

The candidate data obtained from the keyword-weight-matching step are further
processed using the semantic-matching model, significantly enhancing the precision and
quality of answers. For instance, with the template question “[Gender: female, age: 24],
suffering from [depression] with symptoms of [insomnia, low spirits, loss of appetite,
motor inhibition], what treatment should be taken? What medication? Any suggestions?”,
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we conducted comparative experiments on several advanced models with 15 different
template questions and their corresponding candidate answer datasets. The average results
are presented in Table 5.

Table 5. Comparative experimental results of different methods.

Model Manhattan Distance Euclidean Distance Cosine Value

BERT 158 7.32 0.84
RoBERTa 52 4.26 0.88

ALBERT [41] 278 6.67 0.73
XLNet [42] 767 69.72 0.87

FT_RoBERTa 50 4.46 0.90

Figures 12–14 illustrate the line graphs showing the scores of various models across
15 sets of data for different metrics. From Figure 14, it is clear that RoBERTa’s cosine
similarity score (0.88) is the closest to XLNet’s (0.87), and both significantly outperform
BERT (0.84) and ALBERT (0.73). Figures 12 and 13 show that RoBERTa maintains lower
scores for Manhattan distance (52) and Euclidean distance (4.62), while XLNet’s scores for
Manhattan distance (767) and Euclidean distance (69.72) remain extremely high. Based
on these analyses, we conclude that RoBERTa outperforms the other models in terms of
both vector similarity and spatial distance when processing our dataset, demonstrating its
superior performance. This further indicates that RoBERTa exhibits higher precision and
robustness in capturing semantic similarity.

Specifically, RoBERTa’s deeper pre-training and more optimized training strategies en-
able it to better understand and represent complex medical question–answer pairs, leading
to higher relevance and accuracy in semantic-matching tasks. Furthermore, the method
employed in this study, which incorporates a keyword-weight-matching algorithm, not
only significantly reduces computational costs compared to previous semantic retrieval
models but also enhances the focus and accuracy of the matching process. This strategy
prioritizes highly relevant question–answer pairs during the initial candidate data screen-
ing, providing more precise input for subsequent semantic matching. This is one of the key
reasons behind the superior overall performance of our approach.
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Using domain-specific data from the mental health field, we fine-tuned the RoBERTa
model to create a new FT_RoBERTa model, which was then tested on the same 15 datasets.
As shown in the scatter plot in Figure 15, the fine-tuned FT_RoBERTa model achieved
an average cosine similarity score of 0.9 for semantic relevance, an improvement of 0.02
compared to the original RoBERTa model (0.88). According to the calculation in Equation (7),
both models achieved a precision score of 0.87, indicating that the fine-tuned FT_RoBERTa
model performed well and showed a slight improvement.

Several groups of data selected through the semantic-matching model are combined
with advanced natural language processing (NLP) technology to generate personalized
medical advice. This advice includes treatment suggestions, recommended medications,
lifestyle advice, and mental health guidance, all highly accurate, complete, and consistent,
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matching the patient’s personal circumstances and derived from solutions provided by
experts in the relevant medical field.
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5.3. Construction of Medical-Knowledge Graph

To support knowledge retrieval and the generation of universally applicable medical
advice in the field of mental and psychological health, we specifically constructed a domain-
knowledge graph. The mental and psychological health domain medical-knowledge graph
developed in this experiment, as illustrated in Figures 16–19, displays information related to
entity categories, entity attributes, and entity relationship types. It includes five entity types
with 2430 entities, eight attribute types, and nine relationship types with 5140 relationships,
showing a well-developed initial scale.
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This knowledge graph enables the retrieval of extensive knowledge related to mental
and psychological illnesses through specific query templates. For diseases such as depres-
sion and mania, the knowledge graph provides detailed information, including symptoms,
comorbidities, susceptible populations, treatment duration, cure probabilities, treatment
methods, medication use, recommended diets, foods to avoid, and preventive measures.
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Figures 20 and 21 show the effectiveness of using query statements to retrieve data from
the knowledge graph and filling the results into prepared templates, effectively generating
universally applicable medical advice.
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5.4. Limitations and Future Work

While our methods have shown promising results on a subset of the Huatuo-26M
dataset, several limitations exist. Firstly, although models like BERT and RoBERTa capture
deep semantic meanings, they are not specifically tailored for the mental and psychological
health domain, potentially limiting precision. Future work includes fine-tuning these
models with larger domain-specific datasets to enhance accuracy. Secondly, the use of
the Cross-Encoder structure with RoBERTa incurs high computational costs and poses
challenges in parallelization. Exploring more efficient network architectures is planned to
reduce computational overheads. Thirdly, the dataset and the mental health-knowledge
graph used are not comprehensive. Expanding these resources and testing with more
diverse datasets are future objectives.

Importantly, our methods have not yet been validated in real clinical settings, which
may affect clinician adoption due to concerns about clinical validity. To address this, future
work will focus on the following:

• Clinical Validation: Collaborating with mental health professionals to deploy our tools in
clinical environments and compare their performance against standard clinical practices.

• Feedback Collection: Gathering insights from clinicians and patients on usability and
practical utility.

• Evaluating Key Metrics: Assessing improvements in assessment time, diagnostic
accuracy, and patient satisfaction.
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By undertaking these steps, we aim to demonstrate the practical applicability of
our work, addressing concerns about clinical validity and encouraging adoption in real-
world settings.

6. Conclusions

This paper developed a strategy for auxiliary assessment and personalized medical-
advice generation in the mental and psychological health domain. Initially, an effective
auxiliary assessment tool using M.I.N.I was constructed, enabling the automatic and intelli-
gent collection of patient data and providing preliminary diagnostic results. Subsequently, a
keyword-weight-matching retrieval algorithm and an improved semantic-matching model
based on RoBERTa were proposed. This approach enhances data quality by focusing on key
information through keyword weighting, and the semantic model filters the most relevant
data. A medical-advice generation template was then designed, with NLP technology
extracting key information from various pieces of advice. After cleaning, calculation, and
filtering, this resulted in personalized medical advice. Additionally, a method using a
knowledge graph was introduced to generate universally applicable advice in cases of
data insufficiency. The proposed algorithms and models were validated on a public bench-
mark dataset and demonstrated good performance and reliability in generating medical
advice. This work aims to alleviate resource distribution issues in mental and psychological
health care and enhance diagnostic and treatment efficiency, ultimately improving mental
health services’ quality and efficiency. Future efforts will focus on optimizing algorithm
performance and expanding the knowledge graphs for broader clinical application.
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