Personalized 3D Printing of Artificial Vertebrae: A Predictive Bone Density Modeling Approach for Robotic Cutting Applications
Abstract
:1. Introduction
2. Three-Dimensional Printing Program of Artificial Vertebrae and Analysis of Influencing Factors
2.1. Three-Dimensional Printing Program of Artificial Vertebrae
- (1)
- Lumbar spine 3D modeling program
- (2)
- Three-Dimensional printing process parameter prediction program
2.2. Effect of 3D Printing Process Parameters on Bone Density
2.2.1. Effect of Filling Density on Specimen Density
2.2.2. Effect of Layer Thickness on Specimen Density
2.2.3. Effect of Material Flow on Specimen Density
2.2.4. Effect of Printing Speed on Specimen Density
3. Establishment of Bone Density Prediction Models and Analysis of Parameter Effects
3.1. Bone Density Prediction Modeling
3.2. Results and Discussion
3.2.1. Cortical Bone Density Prediction Modeling and Analysis
3.2.2. Predictive Modeling and Analysis of Cancellous Bone Density
3.3. Parameter Sensitivity Analysis of Bone Density Prediction Models
4. Prediction of 3D Printing Process Parameters Based on GA-BP Neural Network
4.1. Bone Density BP Neural Network Prediction Modeling
- (1)
- Design of the input and output layers
- (2)
- Design of hidden layers
- (3)
- Selection of activation function
- (4)
- Selection of training algorithm
- (5)
- BP neural network prediction results
4.2. GA-BP Neural Network Prediction Method for 3D Printing Process Parameters
- (1)
- Initial population
- (2)
- Adaptation function
- (3)
- Genetic operator
5. Personalized 3D Printing of Artificial Vertebrae
5.1. Data Acquisition and Modeling
5.2. Bone Density Measurement and 3D Printing
6. Experiments on Robotic Cutting of Artificial Vertebrae
7. Conclusions
- (1)
- The development of programs for 3D printing artificial vertebral bodies, including an analysis of influencing factors: A 3D modeling technique for lumbar vertebrae was established, alongside methods for predicting printing process parameters. Through one-way experiments, primary parameters affecting bone density—such as the filling density, material flow rate, and layer thickness—were identified.
- (2)
- The systematic development of bone density prediction models using RSM: Experiments were designed to establish predictive models under varying 3D printing conditions (filling density, material flow rate, layer thickness). Sobol’s sensitivity analysis quantitatively assessed each parameter’s influence on bone density, offering critical insights into process optimization.
- (3)
- The implementation of a GA-BP neural network for predicting 3D printing process parameters: This involved constructing BP neural network models to correlate printing parameters with bone density, optimizing model architecture, activation functions, and training algorithms using genetic algorithms. The resulting GA-BP framework provided robust predictions of optimal process parameters.
- (4)
- The construction and preparation of lumbar spine models, including the L4 segment and composite vertebral models suitable for 3D printing: Bone density values derived from CT scans of the L4 segmental lumbar spine were integrated into the GA-BP neural network to determine precise 3D printing parameters, facilitating accurate model preparation.
- (5)
- The execution of robotic cutting experiments on artificial vertebrae to validate the proposed preparation technique: A specialized setup enabled the collection of cutting force data, demonstrating the practicality of the method based on bone density predictions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qu, H.; Geng, B.; Chen, B.; Zhang, J.; Zhao, Y. Force perception and bone recognition of vertebral lamina milling by robot-assisted ultrasonic bone scalpel based on backpropagation neural network. IEEE Access 2021, 99, 52101–52112. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Wang, X.; Fu, Y. Effects of robot-assisted minimally invasive surgery on osteoporotic vertebral compression fracture: A systematic review, meta-analysis, and meta-regression of retrospective study. Arch. Osteoporos. 2023, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Berman, B. 3-D printing: The new industrial revolution. Bus. Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Kantaros, A. 3D printing in regenerative medicine: Technologies and resources utilized. Int. J. Mol. Sci. 2022, 23, 1462. [Google Scholar] [CrossRef] [PubMed]
- Wurm, G.; Tomancok, B.; Pogady, P.; Holl, K.; Trenkler, J. Cerebrovascular stereolithographic biomodeling for aneurysm surgery. J. Neurosurg. 2004, 100, 139–145. [Google Scholar] [CrossRef]
- Hamid, K.S.; Parekh, S.G.; Adams, S.B. Salvage of severe foot and ankle trauma with a 3D printed scaffold. Foot Ankle Int. 2016, 37, 433–439. [Google Scholar] [CrossRef]
- Ghomi, E.R.; Khosravi, F.; Neisiany, R.E.; Singh, S.; Ramakrishna, S. Future of additive manufacturing in healthcare. Curr. Opin. Biomed. Eng. 2021, 17, 100255. [Google Scholar]
- Kantaros, A.; Petrescu, F.I.T.; Abdoli, H.; Diegel, O.; Chan, S.; Iliescu, M.; Ungureanu, L.M. Additive Manufacturing for Surgical Planning and Education: A Review. Appl. Sci. 2024, 14, 2550. [Google Scholar] [CrossRef]
- Ashammakhi, N.; Hasan, A.; Kaarela, O.; Byambaa, B.; Sheikhi, A.; Gaharwar, A.K.; Khademhosseini, A. Bone bioprinting: Advancing frontiers in bone bioprinting. Adv. Healthc. Mater. 2019, 8, 1970030. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Zhang, C.; Wu, Z.; Liu, J. Recent developments of biomaterials for additive manufacturing of bone scaffolds. Adv. Healthc. Mater. 2020, 9, 2000724. [Google Scholar] [CrossRef]
- Yang, X.; Wan, W.; Gong, H.; Xiao, J. Application of individualized 3D-printed artificial vertebral body for cervicotho-racic reconstruction in a six-level recurrent chordoma. Turk. Neurosurg. 2020, 30, 149–155. [Google Scholar] [PubMed]
- Hasan, A.; Bagnol, R.; Owen, R.; Latif, A.; Rostam, H.M.; Elsharkawy, S.; Mata, A. Mineralizing coating on 3D printed scaffolds for the promotion of osseointegration. Front. Bioeng. Biotechnol. 2022, 10, 836386. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Li, Y.; Liu, X.; Tang, Y.; Li, Z.; Liu, Z. Clinical outcomes of 3D-printing stand-alone artificial vertebral body in anterior cervical surgeries. J. Peking. Univ. Health Sci. 2024, 56, 161–166. [Google Scholar]
- Kim, C.G.; Han, K.S.; Lee, S.; Kim, M.C.; Kim, S.Y.; Nah, J. Fabrication of biocompatible polycaprolactone–hydroxyapatite composite filaments for the FDM 3D printing of bone scaffolds. Appl. Sci. 2021, 11, 6351. [Google Scholar] [CrossRef]
- Elsen, R.; Nayak, S. Artificial Intelligence-Based 3D Printing Strategies for Bone Scaffold Fabrication and Its Application in Preclinical and Clinical Investigations. ACS Biomater. Sci. Eng. 2024, 10, 677–696. [Google Scholar]
- Han, W.; El Botty, R.; Montaudon, E.; Malaquin, L.; Deschaseaux, F.; Espagnolle, N.; Camonis, J. In vitro bone metastasis dwelling in a 3D bioengineered niche. Biomaterials 2021, 269, 120624. [Google Scholar] [CrossRef]
- Jiao, C.; Xie, D.; He, Z.; Liang, H.; Shen, L.; Yang, Y.; Wang, C. Additive manufacturing of Bio-inspired ceramic bone Scaffolds: Structural Design, mechanical properties and biocompatibility. Mater. Des. 2022, 217, 110610. [Google Scholar] [CrossRef]
- Kantaros, A.; Ganetsos, T.; Petrescu, F.I.T. Transforming object design and creation: Biomaterials and contemporary manufacturing leading the way. Biomimetics 2024, 9, 48. [Google Scholar] [CrossRef]
- Kantaros, A.; Ganetsos, T. From static to dynamic: Smart materials pioneering additive manufacturing in regenerative medicine. Int. J. Mol. Sci. 2023, 24, 15748. [Google Scholar] [CrossRef]
- Li, T.; Chang, J.; Zhu, Y.; Wu, C. 3D printing of bioinspired biomaterials for tissue regeneration. Adv. Healthc. Mater. 2020, 9, 2000208. [Google Scholar] [CrossRef]
- Deswal, S.; Narang, R.; Chhabra, D. Modeling and parametric optimization of FDM 3D printing process using hybrid techniques for enhancing dimensional preciseness. Int. J. Interact. Des. Manuf. 2019, 13, 1197–1214. [Google Scholar] [CrossRef]
- Dwivedi, K.; Joshi, S.; Nair, R.; Sapre, M.S.; Jatti, V. Optimizing 3D printed diamond lattice structure and investigating the influence of process parameters on their mechanical integrity using nature-inspired machine learning algorithms. Mater. Today Commun. 2024, 38, 108233. [Google Scholar] [CrossRef]
- Boparai, K.S.; Singh, R.; Singh, H. Development of rapid tooling using fused deposition modeling: A review. Rapid Pro-Totyping J. 2016, 22, 281–299. [Google Scholar] [CrossRef]
- Domingos, M.; Chiellini, F.; Gloria, A.; Ambrosio, L.; Bartolo, P.; Chiellini, E. Effect of process parameters on the mor-phological and mechanical properties of 3D bioextruded poly (ε-caprolactone) scaffolds. Rapid Prototyp. J. 2012, 18, 56–67. [Google Scholar] [CrossRef]
- Shan, D.; Li, Q.; Khan, I.; Zhou, X. A novel finite element model updating method based on substructure and response surface model. Eng. Struct. 2015, 103, 147–156. [Google Scholar] [CrossRef]
- Tian, W. A review of sensitivity analysis methods in building energy analysis. Renew. Sustain. Energy Rev. 2013, 20, 411–419. [Google Scholar] [CrossRef]
- Öhman-Mägi, C.; Holub, O.; Wu, D.; Hall, R.M.; Persson, C. Density and mechanical properties of vertebral trabecular bone—A review. JOR Spine 2021, 4, e1176. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.C.; Wang, F.; Wang, Q.G.; Wang, D.M. Relationship between mineral density and elastic modulus of human cancellous bone. J. Med. Biomech. 2014, 6, E465–E470. [Google Scholar]
- Bradley, J.G.; Huang, H.K.; Ledley, R.S. Evaluation of calcium concentration in bones from CT scans. Radiology 1978, 128, 103–107. [Google Scholar] [CrossRef]
Parameters | Layer Thickness (mm) | Material Flow (%) | Print Speed (mm/s) | Molding Temperature (°C) |
---|---|---|---|---|
Numerical value | 0.2 | 100 | 60 | 210 |
Parameters | Filling Density (%) | Material Flow (%) | Print Speed (mm/s) | Printing Temperature (°C) |
---|---|---|---|---|
Numerical value | 100 | 100 | 60 | 210 |
Parameters | Filling Density (%) | Layer Thickness (mm) | Print Speed (mm/s) | Printing Temperature (°C) |
---|---|---|---|---|
Numerical value | 100 | 0.2 | 60 | 210 |
Parameters | Filling Density (%) | Layer Thickness (mm) | Material Flow (%) | Printing Temperature (°C) |
---|---|---|---|---|
Numerical value | 100 | 0.2 | 100 | 210 |
Printing Speed (mm/s) | Printing Time (min) | |
---|---|---|
30 | 1.246 | 66 |
50 | 1.245 | 41 |
70 | 1.246 | 30 |
90 | 1.244 | 24 |
110 | 1.242 | 21 |
Typology | Sum of Squared Deviations | Degrees of Freedom | Mean Square Error | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 0.1680 | 9 | 0.0187 | 11,958.13 | <0.0001 | significance |
A—Filling density | 0.1364 | 1 | 0.1364 | 87,412.05 | <0.0001 | significance |
B—Material flow | 0.0311 | 1 | 0.0311 | 19,950.51 | <0.0001 | significance |
C—Layer thickness | 0.0001 | 1 | 0.0001 | 43.31 | <0.0001 | significance |
AB | 0.0003 | 1 | 0.0003 | 192.30 | <0.0001 | significance |
AC | 1.250 × 10−7 | 1 | 1.250 × 10−7 | 0.0801 | 0.7829 | |
BC | 1.125 × 10−6 | 1 | 1.125 × 10−6 | 0.7208 | 0.4157 | |
A2 | 5.818 × 10−6 | 1 | 5.818 × 10−6 | 3.73 | 0.0823 | |
B2 | 6.568 × 10−6 | 1 | 6.568 × 10−6 | 4.21 | 0.0673 | |
C2 | 0 | 1 | 0 | 10.62 | 0.0086 | |
Residual | 0 | 10 | 1.561 × 10−6 | |||
Misfit term | 0 | 5 | 2.055 × 10−6 | 0.9306 | 0.2446 | insignificance |
Pure error | 5.333 × 10−6 | 5 | 1.067 × 10−6 |
Typology | Sum of Squared Deviations | Degrees of Freedom | Mean Square Error | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 0.2944 | 9 | 0.0327 | 14,799.1 | <0.0001 | significance |
A—Filling density | 0.2819 | 1 | 0.2819 | 12,7500 | <0.0001 | significance |
B—Material flow | 0.0097 | 1 | 0.0097 | 4403.35 | <0.0001 | significance |
C—Layer thickness | 0.0001 | 1 | 0.0001 | 7.64 | 0.0200 | |
AB | 0.0028 | 1 | 0.0028 | 1255.33 | <0.0001 | significance |
AC | 1.125 × 10−6 | 1 | 1.125 × 10−6 | 0.5089 | 0.4919 | |
BC | 1.250 × 10−7 | 1 | 1.250 × 10−7 | 0.0565 | 0.8168 | |
A2 | 5.818 × 10−6 | 1 | 5.818 × 10−6 | 2.63 | 0.1358 | |
B2 | 2.506 × 10−6 | 1 | 2.506 × 10−6 | 1.13 | 0.1321 | |
C2 | 6.568 × 10−6 | 1 | 6.568 × 10−6 | 2.97 | 0.1155 | |
Residual | 0 | 10 | 2.211 × 10−6 | |||
Misfit term | 9.273 × 10−6 | 5 | 1.855 × 10−6 | 0.7226 | 0.6349 | insignificance |
Pure error | 0 | 5 | 2.567 × 10−6 |
Predictive Model | Parameters | First-Order Sensitivity | Global Sensitivity |
---|---|---|---|
Cortical bone density | Filling density (%) | 0.8700 | 0.8100 |
Material flow (%) | 0.1878 | 0.1892 | |
Layer thickness (mm) | 0.0004 | 0.0005 | |
Cancellous bone density | Filling density (%) | 0.9738 | 0.9658 |
Material flow (%) | 0.0340 | 0.0371 | |
Layer thickness (mm) | 0.0000 | 0.0001 |
Number of Training Sessions | Learning Rate | Training Goal | Momentum Factor | Training Algorithms | Activation Function |
---|---|---|---|---|---|
1000 | 0.01 | 0.00001 | 0.01 | trainlm | Tansig, purelin |
Bone Type | Bone Density (mg/cm3) | Filling Density (%) | Material Flow (%) | Layer Thickness (mm) |
---|---|---|---|---|
Cancellous bone | 340.98 | 32.83 | 84.28 | 0.14 |
Cortical bone | 1169.78 | 100 | 93.85 | 0.19 |
Bone Type | Artificial Vertebra Density (mg/cm3) | Porcine Spine Density (mg/cm3) | Relative Error (%) |
---|---|---|---|
Cortical bone | 340.98 | 353.26 | 3.60 |
Cancellous bone | 1169.78 | 1152.36 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, H.; Sun, Y.; Zhao, J.; Pang, B. Personalized 3D Printing of Artificial Vertebrae: A Predictive Bone Density Modeling Approach for Robotic Cutting Applications. Appl. Sci. 2024, 14, 9479. https://doi.org/10.3390/app14209479
Tian H, Sun Y, Zhao J, Pang B. Personalized 3D Printing of Artificial Vertebrae: A Predictive Bone Density Modeling Approach for Robotic Cutting Applications. Applied Sciences. 2024; 14(20):9479. https://doi.org/10.3390/app14209479
Chicago/Turabian StyleTian, Heqiang, Ying Sun, Jing Zhao, and Bo Pang. 2024. "Personalized 3D Printing of Artificial Vertebrae: A Predictive Bone Density Modeling Approach for Robotic Cutting Applications" Applied Sciences 14, no. 20: 9479. https://doi.org/10.3390/app14209479
APA StyleTian, H., Sun, Y., Zhao, J., & Pang, B. (2024). Personalized 3D Printing of Artificial Vertebrae: A Predictive Bone Density Modeling Approach for Robotic Cutting Applications. Applied Sciences, 14(20), 9479. https://doi.org/10.3390/app14209479