Application of Differential Scanning Calorimetry and Thermogravimetry for Thermal Analysis of Dark Chocolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Extraction of the Lipid Fraction
2.3. Fatty Acid Composition/GC Analysis
2.4. Distribution of Fatty Acids in the sn-2 and sn-1,3 Positions of Triacylglycerols
2.5. DSC Measurements of Melting Characteristics of Fats Extracted from Chocolates
2.6. Thermogravimetry Analysis for Chocolates and Fats Extracted from Chocolates
2.7. Chemicals
- Chloroform—Merck Life Science Ltd., Poznań, Poland; analytical standards.
- Methanol—Merck Life Science Ltd., Poznań, Poland; analytical standards.
- NaCl—Merck Life Science Ltd., Poznań, Poland; analytical standards.
- Purified Pancreatic Lipase—Merck Life Science Ltd., Poznań, Poland; analytical standards.
- Tris Buffer—Merck Life Science Ltd., Poznań, Poland; analytical standards.
- Bile Salts—Merck Life Science Ltd., Poznań, Poland; analytical standards.
- Calcium Chloride—Merck Life Science Ltd., Poznań, Poland; analytical standards.
- HCl—Merck Life Science Ltd., Poznań, Poland; analytical standards.
- Diethyl Ether—Merck Life Science Ltd., Poznań, Poland; analytical standards.
- Hexane—Merck Life Science Ltd., Poznań, Poland; analytical standards.
- Acetic Acid—Merck Life Science Ltd., Poznań, Poland; analytical standards.
2.8. Statistical Analysis
3. Results
3.1. Analysis of Fatty Acid Composition Extracted from Dark Chocolates
3.2. Analysis of the Distribution of Fatty Acids Between the sn-2 and sn-1,3 Positions of Triacylglycerols
3.3. The Melting Profiles of Fat Extracted from Chocolates
3.4. Thermogravimetric Characterization of Chocolates
3.5. Thermogravimetric Characterization of Fat Extracted from Chocolates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agibert, S.A.; Lannes, S.C. Dark Chocolate with a High Oleic Peanut Oil Microcapsule Content. J. Sci. Food Agric. 2018, 98, 5591–5597. [Google Scholar] [CrossRef]
- Di Mattia, C.; Sacchetti, G.; Mastrocola, D.; Serafini, M. From Cocoa to Chocolate: The Impact of Processing on in Vitro Antioxidant Activity and the Effects of Chocolate on Antioxidant Markers in Vivo. Front. Immunol. 2017, 8, 1207. [Google Scholar] [CrossRef]
- Torres-Moreno, M.; Tarrega, A.; Costell, E.; Blanch, C. Dark Chocolate Acceptability: Influence of Cocoa Origin and Processing Conditions. J. Sci. Food Agric. 2012, 92, 404–411. [Google Scholar] [CrossRef]
- Bartkiene, E.; Mockus, E.; Monstaviciute, E.; Klementaviciute, J.; Mozuriene, E.; Starkute, V.; Zavistanaviciute, P.; Zokaityte, E.; Cernauskas, D.; Klupsaite, D. The Evaluation of Dark Chocolate-Elicited Emotions and Their Relation with Physico Chemical Attributes of Chocolate. Foods 2021, 10, 642. [Google Scholar] [CrossRef]
- Ostrowska-Ligęza, E.; Marzec, A.; Górska, A.; Wirkowska-Wojdyła, M.; Bryś, J.; Reich, A.; Czarkowska, K. A comparative study of thermal and textural properties of milk, white and dark chocolates. Termochim. Acta 2019, 671, 60–69. [Google Scholar] [CrossRef]
- Lillah, M.; Asghar, A.; Pasha, I.; Murtaza, G.; Ali, M. Improving heat stability along with quality of compound dark chocolate by adding optimized cocoa butter substitute (hydrogenated palm kernel stearin) emulsion. LWT Food Sci. Technol. 2017, 80, 531–536. [Google Scholar] [CrossRef]
- Kruszewski, B.; Obiedziński, M. Multivariate analysis of essential elements in raw cocoa and processed chocolate mass materials from three different manufacturers. LWT Food Sci. Technol. 2018, 98, 113–123. [Google Scholar] [CrossRef]
- Toker, O.S.; Konarb, N.; Palabiyik, I.; Pirouzian, H.R.; Oba, S.; Polat, D.G.; Poyrazoglu, E.S.; Sagdic, O. Formulation of dark chocolate as a carrier to deliver eicosapentaenoic and docosahexaenoic acids: Effects on product quality. Food Chem. 2018, 254, 224–231. [Google Scholar] [CrossRef]
- Sumiyoshi, E.; Matsuzaki, K.; Sugimoto, N.; Tanabe, Y.; Hara, T.; Katakura, H.; Miyamoto, M.; Mishima, S.; Shido, O. Sub-Chronic Consumption of Dark Chocolate Enhances Cognitive Function and Releases Nerve Growth Factors: A Parallel-Group Randomized Trial. Nutrients 2019, 11, 2800. [Google Scholar] [CrossRef]
- Fox, M.; Meyer-Gerspach, A.C.; Wendebourg, M.J.; Gruber, M.; Heinrich, H.; Sauter, M.; Woelnerhanssen, B.; Koeberle, D.; Juengling, F. Effect of cocoa on the brain and gut in healthy subjects: A randomised controlled trial. Br. J. Nutr. 2019, 121, 654–661. [Google Scholar] [CrossRef]
- Pruijm, M.; Hofmann, L.; Charollais-Thoenig, J.; Forni, V.; Maillard, M.; Coristine, A.; Stuber, M.; Burnier, M.; Vogt, B. Effect of dark chocolate on renal tissue oxygenation as measured by BOLD-MRI in healthy volunteers. Clin. Nephrol. 2013, 80, 211–217. [Google Scholar] [CrossRef]
- Petyaev, I.M.; Bashmakov, Y.K. Dark chocolate: Opportunity for an alliance between medical science and the food industry? Front. Nutr. 2017, 4, 43. [Google Scholar] [CrossRef]
- Montagna, M.; Diella, G.; Triggiano, F.; Caponio, G.; De Giglio, O.; Caggiano, G.; Di Ciaula, A.; Portincasa, P. Chocolate, “Food of the Gods”: History, Science, and Human Health. Int. J. Environ. Res. Public Health 2019, 16, 4960. [Google Scholar] [CrossRef]
- Aprotosoaie, A.; Luca, S.; Miron, A. Flavor chemistry of cocoa and cocoa products—An overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef]
- Lim, P.; Wong, K.; Thoo, Y.; Siow, L. Effect of Inulin, Fructo-Oligosaccharide, Trehalose or Maltodextrin (M10 and M30) on the Physicochemical and Sensory Properties of Dark Compound Chocolate. LWT Food Sci. Technol. 2021, 149, 111964. [Google Scholar] [CrossRef]
- Quispe-Sanchez, L.; Mestanza, M.; Oliva-Cruz, M.; Rimarachín, N.; Caetano, A.; Chuquizuta, T.; Goñas, M.; Gill, E.R.A.; Chavez, S. Oxidative stability and physicochemical changes of dark chocolates with essential oils addition. Heliyon 2023, 9, e18139. [Google Scholar] [CrossRef]
- Engeseth, N.; Pangan, M. Current context on chocolate flavor development—A review. Curr. Opin. Food Sci. 2018, 21, 84–91. [Google Scholar] [CrossRef]
- de Oliveira, D.; Camargo, A.; Melo, C.; Catharino, R. A fast semi-quantitative screening for cocoa content in chocolates using MALDI-MSI. Food Res. Int. 2018, 103, 8–11. [Google Scholar] [CrossRef]
- Batista, N.; de Andrade, D.; Ramos, C.; Dias, D.; Schwan, R. Antioxidant capacity of cocoa beans and chocolate assessed by FTIR. Food Res. Int. 2016, 90, 313–319. [Google Scholar] [CrossRef]
- Quelal-Vásconez, M.; Pérez-Esteve, É.; Arnau-Bonachera, A.; Barat, J.; Talens, P. Rapid fraud detection of cocoa powder with carob flour using near infrared spectroscopy. Food Control 2018, 92, 183–189. [Google Scholar] [CrossRef]
- Santos, I.A.; Conceição, D.G.; Viana, M.B.; Silva, G.J.; Santos, L.S.; Ferrão, S.P.B. NIR and MIR spectroscopy for quick detection of the adulteration of cocoa content in chocolates. Food Chem. 2021, 349, 129095. [Google Scholar] [CrossRef]
- Hapsari, T.; Yuniasih, A. The determinant factors of Indonesian competitiveness of cocoa exports to Germany. J. Ekon. Pembanguna 2020, 18, 75–84. [Google Scholar] [CrossRef]
- Available online: https://www.pap.pl/aktualnosci/news%2C1412271%2Cpolska-jest-czekoladowa-potega-ile-zjadamy-jej-rocznie.html (accessed on 2 February 2024). (In Polish).
- Hannum, S.; Erdman, J. Emerging health benefits from cocoa and chocolate. J. Med. Food 2000, 3, 73–75. [Google Scholar] [CrossRef]
- Tokede, O.; Gaziano, J.; Djoussé, L. Effects of cocoa products/dark chocolate on serum lipids: A meta-analysis. Eur. J. Clin. Nutr. 2011, 65, 879–886. [Google Scholar] [CrossRef]
- Didar, Z. Enrichment of dark chocolate with vitamin D3 (free or liposome) and assessment quality parameters. J. Food Sci. Technol. 2021, 58, 3065–3072. [Google Scholar] [CrossRef]
- Samanta, S.; Sarkar, T.; Chakraborty, R.; Rebezov, M.; Shariati, M.A.; Thiruvengadam, M.; Rengasamy, K.R.R. Dark chocolate: An overview of its biological activity, processing, and fortification approaches. Curr. Opin. Food Sci. 2022, 5, 1916–1943. [Google Scholar] [CrossRef]
- Ewens, H.; Metilli, L.; Simone, E. Analysis of the effect of recent reformulation strategies on the crystallization behaviour of cocoa butter and the structural properties of chocolate. Curr. Res. Food Sci. 2021, 4, 105–114. [Google Scholar] [CrossRef]
- Norazlina, M.R.; Jahurul, M.H.A.; Hasmadi, M.; Mansoor, A.H.; Norliza, J.; Patricia, M.; Ramlah George, M.R.; Noorakmar, A.W.; Lee, J.S.; Fan, H.Y. Trends in blending vegetable fats and oils for cocoa butter alternative application: A review. Trends Food Sci. Tech. 2021, 116, 102–114. [Google Scholar] [CrossRef]
- Watanabe, S.; Yoshikawa, S.; Sato, K. Formation and properties of dark chocolate prepared using fat mixtures of cocoa butter and symmetric/asymmetric stearic-oleic mixed acid triacylglycerols: Impact of molecular compound crystals. Food Chem. 2021, 339, 127808. [Google Scholar] [CrossRef]
- Castro-Alayo, E.M.; Balcázar-Zumaeta, C.R.; Torrejón-Valqui, L.; Medina-Mendoza, M.; Cayo-Colca, I.S.; Cárdenas-Toro, F.P. Effect of tempering and cocoa butter equivalents on crystallization kinetics, polymorphism, melting, and physical properties of dark chocolates. LWT Food Sci. Technol. 2023, 173, 114402. [Google Scholar] [CrossRef]
- Sonwai, S.; Kaphueakngam, P.; Flood, A. Blending of mango kernel fat and palm oil mid-fraction to obtain cocoa butter equivalent. J. Food Sci Tech. 2014, 51, 2357–2369. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Budryn, G.; Oracz, J.; Antolak, H.; Kregiel, D.; Kaczmarska, M. The effect on bioactive components and characteristics of chocolate by functionalization with raw cocoa beans. Food Res Int. 2018, 113, 23–244. [Google Scholar] [CrossRef]
- Ghazani, S.M.; Zou, L.; Rakitsky, W.G.; Marangoni, A.G. Algal butter, a novel cocoa butter equivalent: Chemical composition, physical properties, and functionality in chocolate. J. Am. Oil Chem. Soc. 2018, 95, 1239–1251. [Google Scholar] [CrossRef]
- Mokbul, M.; Cheow, Y.L.; Siow, L.F. Physical properties, sensory profile and storage stability of compound chocolates made with cocoa butter replacer consisting of mango kernel fat and rice bran oil. Food Chem. Adv. 2023, 3, 100515. [Google Scholar] [CrossRef]
- Khuda, S.E.; Jackson, L.S.; Fu, T.J.; Williams, K.M. Effects of processing on the recovery of food allergens from a model dark chocolate matrix. Food Chem. 2015, 168, 580–587. [Google Scholar] [CrossRef]
- Buchgraber, M.; Androni, S.; Anklam, E. Determination of cocoa butter equivalents in milk chocolate by triacylglycerol profiling. J. Agr. Food. Chem. 2007, 55, 3284–3291. [Google Scholar] [CrossRef]
- Dionisi, F.; Golay, P.A.; Hug, B.; Baumgartner, M.; Callier, P.; Destaillats, F. Triacylglycerol analysis for the quantification of cocoa butter equivalents (CBE) in chocolate: Feasibility study and validation. J. Agr. Food Chem. 2004, 52, 1835–1841. [Google Scholar] [CrossRef]
- Truzzi, E.; Marchetti, L.; Fratagnoli, A.; Rossi, M.C.; Bertelli, D. Novel application of 1H NMR spectroscopy coupled with chemometrics for the authentication of dark chocolate. Food Chem. 2023, 404, 134522. [Google Scholar] [CrossRef]
- Materazzi, S.; De Angelis Curtis, S.; Vecchio Ciprioti, S.; Risoluti, R.; Finamore, J. Thermogravimetric characterization of dark chocolate. J. Therm. Anal. Calorim. 2014, 116, 93–98. [Google Scholar] [CrossRef]
- Ostrowska-Ligęza, E.; Dolatowska-Żebrowska, K.; Wirkowska-Wojdyła, M.; Bryś, J.; Górska, A. Comparison of Thermal Characteristics and Fatty Acids Composition in raw and roasted Cocoa Beans from Peru (Criollo) and Ecuador (Forastero). Appl. Sci. 2021, 11, 2698. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane, S. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- ISO. Animal and Vegetable Fats and Oils—Preparation of Methyl Esters of Fatty Acids; International Organization for Standardization: Geneva, Switzerland, 2001; Volume 5509. [Google Scholar]
- Wirkowska, M.; Ostrowska-Ligęza, E.; Górska, A.; Koczoń, P. Thermal properties of fats extracted from powdered baby formulas. J. Therm. Anal. Calorim. 2012, 110, 137–143. [Google Scholar] [CrossRef]
- Bryś, J.; Vaz Flores, I.F.; Wirkowska-Wojdyła, M.; Górska, A.; Ostrowska-Ligęza, E.; Bryś, A. Use of GC and PDSC methods to characterize human milk fat substitutes obtained from lard and milk thistle oil mixtures. J. Therm. Anal. Calorim. 2017, 130, 319–327. [Google Scholar] [CrossRef]
- Brzezińska, R.; Górska, A.; Gotowicka, K.; Bryś, J.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M. Quality Assessment of Avocado Pulp Oils during Storage. Proceedings 2021, 70, 14. [Google Scholar]
- Tapia-Ledesma, C.; Araujo-Diaz, S.B.; Dibildox-Alvarado, E.; Ornelas-Paz, J.J.; Perez-Martinez, J.D. Phase diagrams of mixtures of n-hentriacontane and saturated monoacid triacylglycerols. Thermochim. Acta 2020, 683, 1–10. [Google Scholar] [CrossRef]
- Dolatowska-Żebrowska, K.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M.; Bryś, J.; Górska, A. Characterization of thermal properties of goat milk fat and goat milk chocolate by using DSC, PDSC and TGA methods. J. Therm. Anal. Calorim. 2019, 138, 2769–2779. [Google Scholar] [CrossRef]
- Kunachowicz, H.; Nadolna, I.; Przygoda, B.; Iwanow, K. Tables of Food Composition and Nutritional Value; PZWL: Warsaw, Poland, 2005; pp. 345–360. (In Polish) [Google Scholar]
- Rutkowska, J.; Adamska, A.; Białek, M. Comparison of the composition of fatty acids contained in mare and cow milk fat. Żywność Nauka Technol. Jakość 2011, 74, 28–38. (In Polish) [Google Scholar]
- Afoakwa, E.O. Industrial chocolate manufacture. In Chocolate Science and Technology, 1st ed.; Afoakwa, E.O., Ed.; Wiley-Blackwell, John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 11–253. [Google Scholar]
- Jia, C.-H.; Shin, J.-A.; Lee, K.-T. Evaluation model for cocoa butter equivalents based on fatty acid compositions and triacylglycerol patterns. Food Sci. Biotechnol. 2019, 28, 1649–1658. [Google Scholar] [CrossRef]
- Kowalska, J.; Bzducha, A.; Derewiaka, D.; Kopańska, K.; Nitek, A. Evaluation of the authenticity of selected chocolates. Nauka Technol. Żywność Jakość 2008, 4, 74–79. (In Polish) [Google Scholar]
- Kowalska, J.; Łata, A. Characteristics of cocoa butter substitutes and products obtained from them. Bromat. Chem. Toksykol. 2009, 3, 257–262. (In Polish) [Google Scholar]
- Kruszewski, B.; Obiedziński, M. Characterization and quality evaluation of cocoa butter and its substitutes. Apar. Badaw. Dydakt. 2013, 18, 107–114. (In Polish) [Google Scholar]
- Weyland, M.; Hartel, R. Emulsifiers in Confectionery. In Food Emulsifiers and Their Applications; Hasenhuettl, G.L., Hartel, R.W., Eds.; Springer: New York, NY, USA, 2008; pp. 285–304. [Google Scholar]
- Kruszewski, B.; Obiedziński, M. Analysis of triacylglycerol fractions as a tool for assessing the quality of selected dark chocolates and cocoa liquors. Zesz. Probl. Postępów Nauk. Rol. 2011, 566, 99–107. (In Polish) [Google Scholar]
- Bryś, J.; Wirkowska, M. The importance of triacylglycerol structure in the design of structured lipids. Postępy Tech. Przetwórstwa Spożywczego 2010, 20, 86–89. (In Polish) [Google Scholar]
- Belitz, H.-D.; Grosch, W.; Schieberle, P. Lipids. In Food Chemistry, 3rd ed.; Grosch, W., Schieberle, P., Eds.; Springer: New York, NY, USA, 2004; pp. 157–241. [Google Scholar]
- Afoakwa, E.O.; Paterson, A.; Fowler, M.; Vieira, J. Characterization of melting properties in dark chocolates from varying particle size distribution and composition using differential scanning calorimetry. Food Res. Int. 2008, 41, 751–757. [Google Scholar] [CrossRef]
- Beckett, S. Cocoa butter separation. In The Science of Chocolate, 3rd ed.; The Royal Society of Chemistry, RSC Publishing: Cambridge, UK, 2019; pp. 213–241. [Google Scholar]
- Roy, S.; Sarma, B.; Nangia, A.; Wagner, M.; Riesen, R. The characterization of polymorphs by thermal analysis. Mettler Toledo User Com. 2007, 25, 9–13. [Google Scholar]
- Pan, P.; Kai, B.; Dong, T.; Inoue, Y. Polymorphous crystallization and multiple melting behavior of poly(l-lactide): Molecular Weight Dependence. Macromolecules 2007, 40, 6898–6905. [Google Scholar] [CrossRef]
- Tomaszewska-Gras, J. Melting and crystallization DSC profiles of milk fat depending on selected factors. J. Therm. Anal. Calorim. 2013, 113, 199–208. [Google Scholar] [CrossRef]
- Liang, B.; Hartel, R. Effects of milk powders in milk chocolate. J. Dairy Sci. 2004, 87, 20–31. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Ping, L.L.; Sharifudin, M.S.; Hasmadi, M.; Mansoor, A.H.; Lee, J.S.; Noorakmar, B.W.; Amir, H.M.S.; Jinap, S.; Mohd Omar, A.K.; et al. Thermal properties, triglycerides and crystal morphology of bambangan (Mangifera pajang) kernel fat and palm stearin blends as cocoa butter alternatives. LWT Food Sci. Technol. 2019, 107, 64–71. [Google Scholar] [CrossRef]
- Sathivel, S.; Prinyawiwatkul, W.; Negulescu, I.; King, J.M. Determination of melting points, specific heat capacity and enthalpy of catfish visceral oil during the purification process. J. Am. Oil Chem. Soc. 2008, 85, 291–296. [Google Scholar] [CrossRef]
- Ostrowska-Ligęza, E.; Górska, A.; Wirkowska-Wojdyła, M.; Bryś, J.; Dolatowska-Żebrowska, K.; Shamilowa, M.; Ratusz, K. Thermogravimetric characterization of dark and milk chocolates at different processing stages. J. Therm. Anal. Calorim. 2018, 134, 623–631. [Google Scholar] [CrossRef]
Number of Chocolate | Cocoa Liquor Content (%) | Mass of a Bar (g) | Emulsifiers | Other Fats/Additives | Fat Content (g/100 g) | Sugar Content (g/100 g) |
---|---|---|---|---|---|---|
1 | 45 | 90 | Soy lecithin, polyglycerol polyricinoleate | Palm, Shea | 30 | 49 |
2 | 65 | 80 | Soy lecithin | Whole milk powder | 39.5 | 32 |
3 | 60 | 100 | Soy lecithin | - | 32 | 37 |
4 | 45 | 100 | Soy lecithin | Palm, Shea | 28 | 49 |
5 | 40 | 90 | Soy lecithin | Palm, Shea | 27 | 54 |
6 | 60 | 90 | Soy lecithin | - | 32 | 30 |
7 | 70 | 100 | Soy lecithin | - | 39 | 30 |
8 | 52 | 100 | Soy lecithin | - | 32 | 49 |
9 | 74 | 100 | Soy lecithin | - | 40.5 | 27.1 |
Chocolate Number | Type of Fatty Acid | Composition of Fatty Acids in TAG [%] | The Composition of a Fatty Acid in Position [%] | The Share of a Fatty Acid in Position sn-2 [%] | |
---|---|---|---|---|---|
sn-2 | sn-1,3 | ||||
1. | C16:0 | 24.3 | 11.9 | 30.4 | 16.3 |
C18:0 | 37.2 | 17.2 | 47.2 | 15.4 | |
C18:1c | 32.3 | 63.0 | 17.0 | 65.0 | |
C18:2c | 3.4 | 5.6 | 2.3 | 55.4 | |
2. | C16:0 | 21.0 | 15.5 | 23.8 | 24.6 |
C18:0 | 38.5 | 21.7 | 46.9 | 18.8 | |
C18:1c | 34.0 | 55.3 | 23.4 | 54.2 | |
C18:2c | 3.7 | 5.1 | 3.0 | 45.9 | |
3. | C16:0 | 24.5 | 10.0 | 31.8 | 13.5 |
C18:0 | 36.3 | 13.4 | 47.8 | 12.3 | |
C18:1c | 32.4 | 67.6 | 14.7 | 69.7 | |
C18:2c | 3.9 | 6.7 | 2.5 | 57.5 | |
4. | C16:0 | 25.9 | 19.7 | 29.0 | 25.3 |
C18:0 | 35.1 | 24.1 | 40.6 | 22.9 | |
C18:1c | 32.5 | 48.9 | 24.4 | 50.0 | |
C18:2c | 3.3 | 4.3 | 2.8 | 43.8 | |
5. | C16:0 | 27.3 | 19.6 | 31.1 | 24.0 |
C18:0 | 33.3 | 25.4 | 37.2 | 25.4 | |
C18:1c | 32.5 | 47.4 | 25.1 | 48.6 | |
C18:2c | 4.1 | 4.6 | 3.8 | 37.7 | |
6. | C16:0 | 24.2 | 10.6 | 30.9 | 14.7 |
C18:0 | 35.9 | 13.3 | 47.1 | 12.4 | |
C18:1c | 32.6 | 68.0 | 14.9 | 69.5 | |
C18:2c | 4.2 | 6.0 | 3.3 | 47.9 | |
7. | C16:0 | 24.1 | 9.8 | 31.3 | 13.6 |
C18:0 | 37.5 | 13.0 | 49.7 | 11.6 | |
C18:1c | 32.3 | 69.5 | 13.7 | 71.6 | |
C18:2c | 3.2 | 5.6 | 2.0 | 58.0 | |
8. | C16:0 | 24.9 | 12.3 | 31.2 | 16.4 |
C18:0 | 35.5 | 16.9 | 44.8 | 15.8 | |
C18:1c | 33.2 | 63.6 | 17.9 | 64.0 | |
C18:2c | 3.7 | 5.5 | 2.8 | 49.7 | |
9. | C16:0 | 24.6 | 13.9 | 30.0 | 18.8 |
C18:0 | 35.8 | 17.9 | 44.7 | 16.7 | |
C18:1c | 33.3 | 61.0 | 19.4 | 61.1 | |
C18:2c | 3.5 | 5.9 | 2.3 | 56.3 |
Fat Extracted from Chocolate | Enthalpy [J/g] |
---|---|
1 | 73.64 ± 0.59 a |
2 | 64.38 ± 0.44 b |
3 | 54.74 ± 0.19 c |
4 | 74.16 ± 0.69 a |
5 | 66.86 ± 0.54 b |
6 | 55.00 ± 0.65 c |
7 | 69.86 ± 0.09 ab |
8 | 64.50 ± 0.78 b |
9 | 75.39 ± 0.82 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M.; Brzezińska, R.; Piasecka, I.; Synowiec, A.; Gondek, E.; Górska, A. Application of Differential Scanning Calorimetry and Thermogravimetry for Thermal Analysis of Dark Chocolates. Appl. Sci. 2024, 14, 9502. https://doi.org/10.3390/app14209502
Ostrowska-Ligęza E, Wirkowska-Wojdyła M, Brzezińska R, Piasecka I, Synowiec A, Gondek E, Górska A. Application of Differential Scanning Calorimetry and Thermogravimetry for Thermal Analysis of Dark Chocolates. Applied Sciences. 2024; 14(20):9502. https://doi.org/10.3390/app14209502
Chicago/Turabian StyleOstrowska-Ligęza, Ewa, Magdalena Wirkowska-Wojdyła, Rita Brzezińska, Iga Piasecka, Alicja Synowiec, Ewa Gondek, and Agata Górska. 2024. "Application of Differential Scanning Calorimetry and Thermogravimetry for Thermal Analysis of Dark Chocolates" Applied Sciences 14, no. 20: 9502. https://doi.org/10.3390/app14209502
APA StyleOstrowska-Ligęza, E., Wirkowska-Wojdyła, M., Brzezińska, R., Piasecka, I., Synowiec, A., Gondek, E., & Górska, A. (2024). Application of Differential Scanning Calorimetry and Thermogravimetry for Thermal Analysis of Dark Chocolates. Applied Sciences, 14(20), 9502. https://doi.org/10.3390/app14209502