Managing the Nutraceutical and Sensorial Qualities of Pisanello, an Ancient Tomato Landrace, in Soilless Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Growth Conditions
2.1.1. Experiment 1 (2020)
2.1.2. Experiment 2 (2021)
2.2. Fruit Organoleptic Quality
2.3. Total Phenolic Content, Free Radical Scavenging Assay, and Lycopene Content
2.4. Sensory Profile
2.5. Statistical Analysis
3. Results and Discussion
3.1. Organoleptic and Nutraceutical Quality of Soil- and Soilless-Grown Tomatoes in the Preliminary Experiment (2020)
3.2. Organoleptic and Nutraceutical Quality of Soilless-Grown Pisanello Tomatoes (2021)
3.3. Organoleptic and Nutraceutical Quality of Soil-Grown Tomatoes (2021)
3.4. Sensory Profile of Soil-Grown Pisanello and Goldmar F1 Tomatoes and Soilless-Grown Pisanello Tomatoes (2021)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berni, R.; Romi, M.; Parrotta, L.; Cai, G.; Cantini, C. Ancient Tomato (Solanum lycopersicum L.) Varieties of Tuscany Have High Contents of Bioactive Compounds. Horticulturae 2018, 4, 51. [Google Scholar] [CrossRef]
- Barone, D.; Cito, L.; Tommonaro, G.; Abate, A.A.; Penon, D.; De Prisco, R.; Penon, A.; Forte, I.M.; Benedetti, E.; Cimini, A.; et al. Antitumoral Potential, Antioxidant Activity and Carotenoid Content of Two Southern Italy Tomato Cultivars Extracts: San Marzano and Corbarino. J. Cell. Physiol. 2018, 233, 1266–1277. [Google Scholar] [CrossRef]
- Coelho, M.; Pereira, R.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. Extraction of Tomato By-Products’ Bioactive Compounds Using Ohmic Technology. Food Bioprod. Process. 2019, 117, 329–339. [Google Scholar] [CrossRef]
- Giovannetti, M.; Avio, L.; Barale, R.; Ceccarelli, N.; Cristofani, R.; Iezzi, A.; Mignolli, F.; Picciarelli, P.; Pinto, B.; Reali, D.; et al. Nutraceutical Value and Safety of Tomato Fruits Produced by Mycorrhizal Plants. Br. J. Nutr. 2012, 107, 242–251. [Google Scholar] [CrossRef]
- Gonzali, S.; Perata, P. Anthocyanins from Purple Tomatoes as Novel Antioxidants to Promote Human Health. Antioxidants 2020, 9, 1017. [Google Scholar] [CrossRef]
- Jurić, S.; Vlahoviček-Kahlina, K.; Uher, S.F.; Vinceković, M. Amplifying Synthesis of Health-Promoting Metabolites in Tomatoes via Stimulation with Encapsulated Biological and Chemical Agents in Hydroponic and Soil Cultivation. Food Biosci. 2024, 61, 104717. [Google Scholar] [CrossRef]
- Marinaccio, L.; Zengin, G.; Bender, O.; Dogan, R.; Atalay, A.; Masci, D.; Flamminii, F.; Stefanucci, A.; Mollica, A. Lycopene Enriched Extra Virgin Olive Oil: Biological Activities and Assessment of Security Profile on Cells. Food Biosci. 2024, 60, 104466. [Google Scholar] [CrossRef]
- Pons, C.; Casals, J.; Palombieri, S.; Fontanet, L.; Riccini, A.; Rambla, J.L.; Ruggiero, A.; Figás, M.D.R.; Plazas, M.; Koukounaras, A.; et al. Atlas of Phenotypic, Genotypic and Geographical Diversity Present in the European Traditional Tomato. Hortic. Res. 2022, 9, uhac112. [Google Scholar] [CrossRef]
- Moles, T.M.; de Brito Francisco, R.; Mariotti, L.; Pompeiano, A.; Lupini, A.; Incrocci, L.; Carmassi, G.; Scartazza, A.; Pistelli, L.; Guglielminetti, L.; et al. Salinity in Autumn-Winter Season and Fruit Quality of Tomato Landraces. Front. Plant Sci. 2019, 10, 1078. [Google Scholar] [CrossRef]
- Ruiz, J.J.; García-Martínez, S.; Picó, B.; Gao, M.; Quiros, C.F. Genetic Variability and Relationship of Closely Related Spanish Traditional Cultivars of Tomato as Detected by SRAP and SSR Markers. J. Am. Soc. Hortic. 2005, 130, 88–94. [Google Scholar] [CrossRef]
- Conti, V.; Mareri, L.; Faleri, C.; Nepi, M.; Romi, M.; Cai, G.; Cantini, C. Drought Stress Affects the Response of Italian Local Tomato (Solanum lycopersicum L.) Varieties in a Genotype-Dependent Manner. Plants 2019, 8, 336. [Google Scholar] [CrossRef]
- Conti, V.; Romi, M.; Parri, S.; Aloisi, I.; Marino, G.; Cai, G.; Cantini, C. Morpho-physiological Classification of Italian Tomato Cultivars (Solanum lycopersicum L.) According to Drought Tolerance during Vegetative and Reproductive Growth. Plants 2021, 10, 1826. [Google Scholar] [CrossRef]
- Berni, R.; Cantini, C.; Romi, M.; Hausman, J.F.; Guerriero, G.; Cai, G. Agrobiotechnology Goes Wild: Ancient Local Varieties as Sources of Bioactives. Int. J. Mol. Sci. 2018, 19, 2248. [Google Scholar] [CrossRef]
- Berni, R.; Romi, M.; Cantini, C.; Hausman, J.F.; Guerriero, G.; Cai, G. Functional Molecules in Locally-Adapted Crops: The Case Study of Tomatoes, Onions, and Sweet Cherry Fruits from Tuscany in Italy. Front. Plant Sci. 2019, 9, 1983. [Google Scholar] [CrossRef]
- Mesías, F.J.; Martín, A.; Hernández, A. Consumers’ Growing Appetite for Natural Foods: Perceptions towards the Use of Natural Preservatives in Fresh Fruit. Food Res. Int. 2021, 150, 110749. [Google Scholar] [CrossRef]
- Herforth, A.; Ahmed, S. The Food Environment, Its Effects on Dietary Consumption, and Potential for Measurement within Agriculture-Nutrition Interventions. Food Secur. 2015, 7, 505–520. [Google Scholar] [CrossRef]
- Sinesio, F.; Moneta, E.; Peparaio, M. Sensory characteristics of traditional field grown tomato genotypes in southern italy. J. Food Qual. 2007, 30, 878–895. [Google Scholar] [CrossRef]
- Sinesio, F.; Cammareri, M.; Cottet, V.; Fontanet, L.; Jost, M.; Moneta, E.; Palombieri, S.; Peparaio, M.; Del Castillo, R.R.; Civitelli, E.S.; et al. Sensory Traits and Consumer’s Perceived Quality of Traditional and Modern Fresh Market Tomato Varieties: A Study in Three European Countries. Foods 2021, 10, 2521. [Google Scholar] [CrossRef]
- Phani, V.; Gowda, M.T.; Dutta, T.K. Grafting Vegetable Crops to Manage Plant-Parasitic Nematodes: A Review. J. Pest Sci. 2023, 97, 539–560. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, P.; Kumar, A.; Kyriacou, M.C.; Colla, G.; Rouphael, Y. Grafting Tomato as a Tool to Improve Salt Tolerance. Agronomy 2020, 10, 263. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving Vegetable Quality in Controlled Environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Savvas, D.; Gruda, N. Application of Soilless Culture Technologies in the Modern Greenhouse Industry—A Review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Corrado, G.; Caramante, M.; Piffanelli, P.; Rao, R. Genetic Diversity in Italian Tomato Landraces: Implications for the Development of a Core Collection. Sci. Hortic. 2014, 168, 138–144. [Google Scholar] [CrossRef]
- Conti, V.; Romi, M.; Guarnieri, M.; Cantini, C.; Cai, G. Italian Tomato Cultivars under Drought Stress Show Different Content of Bioactives in Pulp and Peel of Fruits. Foods 2022, 11, 270. [Google Scholar] [CrossRef]
- Conti, V.; Parrotta, L.; Romi, M.; Duca, S.D.; Cai, G. Tomato Biodiversity and Drought Tolerance: A Multilevel Review. Int. J. Mol. Sci. 2023, 24, 10044. [Google Scholar] [CrossRef]
- Cela, F.; Carmassi, G.; Najar, B.; Taglieri, I.; Sanmartin, C.; Cialli, S.; Ceccanti, C.; Guidi, L.; Venturi, F.; Incrocci, L. Salinity Impact on Yield, Quality and Sensory Profile of ‘Pisanello’ Tuscan Local Tomato (Solanum lycopersicum L.) in Closed Soilless Cultivation. Horticulturae 2024, 10, 570. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Adejo, G.O.; Agbali, F.A.; Otokpa, O.S. Antioxidant, Total Lycopene, Ascorbic Acid and Microbial Load Estimation in Powdered Tomato Varieties Sold in Dutsin-Ma Market. OALib J. 2015, 2, 1–7. [Google Scholar] [CrossRef]
- Billeci, L.; Sanmartin, C.; Tonacci, A.; Taglieri, I.; Bachi, L.; Ferroni, G.; Braceschi, G.P.; Odello, L.; Venturi, F. Wearable Sensors to Evaluate Autonomic Response to Olfactory Stimulation: The Influence of Short, Intensive Sensory Training. Biosensors 2023, 13, 478. [Google Scholar] [CrossRef]
- Knaapila, A.; Laaksonen, O.; Virtanen, M.; Yang, B.; Lagström, H.; Sandell, M. Pleasantness, Familiarity, and Identification of Spice Odors Are Interrelated and Enhanced by Consumption of Herbs and Food Neophilia. Appetite 2017, 109, 190–200. [Google Scholar] [CrossRef]
- Marchioni, I.; Taglieri, I.; Dimita, R.; Ruffoni, B.; Zinnai, A.; Venturi, F.; Sanmartin, C.; Pistelli, L. Postharvest Treatments on Sensorial and Biochemical Characteristics of Begonia cucullata Wild Edible Flowers. Foods 2022, 11, 1481. [Google Scholar] [CrossRef]
- Sanmartin, C.; Taglieri, I.; Venturi, F.; Macaluso, M.; Zinnai, A.; Tavarini, S.; Botto, A.; Serra, A.; Conte, G.; Flamini, G.; et al. Flaxseed Cake as a Tool for the Improvement of Nutraceutical and Sensorial Features of Sourdough Bread. Foods 2020, 9, 204. [Google Scholar] [CrossRef]
- Atzori, G.; Pane, C.; Zaccardelli, M.; Cacini, S.; Massa, D. The Role of Peat-Free Organic Substrates in the Sustainable Management of Soilless Cultivations. Agronomy 2021, 11, 1236. [Google Scholar] [CrossRef]
- Voogt, W.; Bar-Yosef, B. Water and Nutrient Management and Crops Response to Nutrient Solution Recycling in Soilless Growing Systems in Greenhouses. In Soilless Culture: Theory and Practice; Elsevier: Amsterdam, The Netherlands, 2019; pp. 425–507. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Impacts of Protected Vegetable Cultivation on Climate Change and Adaptation Strategies for Cleaner Production—A Review. J. Clean. Prod. 2019, 225, 324–339. [Google Scholar] [CrossRef]
- Van Os, E.A.; Gieling, T.H.; Heinrich Lieth, J. Technical Equipment in Soilless Production Systems. In Soilless Culture: Theory and Practice; Elsevier: Amsterdam, The Netherlands, 2019; pp. 587–635. [Google Scholar] [CrossRef]
- Leyva, R.; Constán-Aguilar, C.; Blasco, B.; Sánchez-Rodríguez, E.; Romero, L.; Soriano, T.; Ruíz, J.M. Effects of Climatic Control on Tomato Yield and Nutritional Quality in Mediterranean Screenhouse. J. Sci. Food Agric. 2014, 94, 63–70. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic Compounds and Related Enzymes as Determinants of Quality in Fruits and Vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of Environmental Factors and Agricultural Techniques on Antioxidant content of Tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Cammareri, M.; Sinesio, F.; Peparaio, M.; Pons, C.; Romero del Castillo, R.; Saggia Civitelli, E.; Vitiello, A.; Granell, A.; Casals, J.; Grandillo, S. Local Agro-Environmental Conditions Impact Fruit Quality, Sensory Properties and Consumer Acceptance of Long Shelf-Life Tomatoes. Agronomy 2023, 13, 1265. [Google Scholar] [CrossRef]
- Carillo, P.; Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; dell’Aversana, E.; D’Amelia, L.; Colla, G.; Caruso, G.; De Pascale, S.; Rouphael, Y. Sensory and Functional Quality Characterization of Protected Designation of Origin ‘Piennolo Del Vesuvio’ Cherry Tomato Landraces from Campania-Italy. Food Chem. 2019, 292, 166–175. [Google Scholar] [CrossRef]
- Manzo, N.; Pizzolongo, F.; Meca, G.; Aiello, A.; Marchetti, N.; Romano, R. Comparative Chemical Compositions of Fresh and Stored Vesuvian PDO “Pomodorino Del Piennolo” Tomato and the Ciliegino Variety. Molecules 2018, 23, 2871. [Google Scholar] [CrossRef]
- Renna, M.; Durante, M.; Gonnella, M.; Buttaro, D.; D’Imperio, M.; Mita, G.; Serio, F. Quality and Nutritional Evaluation of Regina Tomato, a Traditional Long-Storage Landrace of Puglia (Southern Italy). Agriculture 2018, 8, 83. [Google Scholar] [CrossRef]
- Patanè, C.; Malvuccio, A.; Saita, A.; Rizzarelli, P.; Siracusa, L.; Rizzo, V.; Muratore, G. Nutritional Changes during Storage in Fresh-Cut Long Storage Tomato as Affected by Biocompostable Polylactide and Cellulose Based Packaging. LWT-Food Technol. 2019, 101, 618–624. [Google Scholar] [CrossRef]
- Ilahy, R.; Hdider, C.; Lenucci, M.S.; Tlili, I.; Dalessandro, G. Phytochemical Composition and Antioxidant Activity of High-Lycopene Tomato (Solanum lycopersicum L.) Cultivars Grown in Southern Italy. Sci. Hortic. 2011, 127, 255–261. [Google Scholar] [CrossRef]
- Faraone, I.; Russo, D.; Ponticelli, M.; Candido, V.; Castronuovo, D.; Cardone, L.; Sinisgalli, C.; Labanca, F.; Milella, L. Preserving Biodiversity as Source of Health Promoting Compounds: Phenolic Profile and Biological Activity of Four Varieties of Solanum lycopersicum L. Plants 2021, 10, 447. [Google Scholar] [CrossRef]
- Georgaki, E.; Nifakos, K.; Kotsiras, A.; Fanourakis, D.; Tsaniklidis, G.; Delis, C.; Spiliopoulos, I.K. Comparison of Nutrient Composition and Antioxidant Activity of Hydroponically Grown Commercial and Traditional Greek Tomato Cultivars. Horticulturae 2023, 9, 163. [Google Scholar] [CrossRef]
- Laayouni, Y.; Tlili, I.; Henane, I.; Ali, A.B.; Égei, M.; Takács, S.; Azam, M.; Siddiqui, M.W.; Daood, H.; Pék, Z.; et al. Phytochemical Profile and Antioxidant Activity of Some Open-Field Ancient-Tomato (Solanum lycopersicum L.) Genotypes and Promising Breeding Lines. Horticulturae 2023, 9, 1180. [Google Scholar] [CrossRef]
- Athinodorou, F.; Foukas, P.; Tsaniklidis, G.; Kotsiras, A.; Chrysargyris, A.; Delis, C.; Kyratzis, A.C.; Tzortzakis, N.; Nikoloudakis, N. Morphological Diversity, Genetic Characterization, and Phytochemical Assessment of the Cypriot Tomato Germplasm. Plants 2021, 10, 1698. [Google Scholar] [CrossRef]
- Periago, M.J.; Martínez-Valverde, I.; Chesson, A.; Provan, G. Phenolic Compounds, Lycopene and Antioxidant Activity in Commercial Varieties of Tomato (Lycopersicum esculentum). J. Sci. Food Agric. 2002, 82, 323–330. [Google Scholar] [CrossRef]
- Eldridge, B.M.; Manzoni, L.R.; Graham, C.A.; Rodgers, B.; Farmer, J.R.; Dodd, A.N. Getting to the Roots of Aeroponic Indoor Farming. New Phytol. 2020, 228, 1183–1192. [Google Scholar] [CrossRef]
- Dobričević, N.; Voća, S.; Benko, B.; Pliestić, S. The Quality of Fresh Tomato Fruit Produced by Hydroponic. Agric. Conspec. Sci. 2007, 72, 351–355. [Google Scholar]
- Aguirre-Becerra, H.; Vazquez-Hernandez, M.C.; Saenz de la O., D.; Alvarado-Mariana, A.; Guevara-Gonzalez, R.G.; Garcia-Trejo, J.F.; Feregrino-Perez, A.A. Role of Stress and Defense in Plant Secondary Metabolites Production. Adv. Struct. Mater. 2021, 140, 151–195. [Google Scholar] [CrossRef]
- Isah, T.; Isah, T. Stress and Defense Responses in Plant Secondary Metabolites Production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef]
- Selorm Kofi Agbemavor, W.; Torgby-Tetteh, W.; Kwatei Quartey, E.; Nunoo, J.; Nunekpeku, W.; Owureku-Asare, M.; Agyei-Amponsah, J.; Apatey, J. Physico-Chemical Evaluation of Fruits from the Fourth Filial Generation of Some Breeding Lines of Tomatoes. Int. J. Nutr. Food Sci. 2014, 3, 318. [Google Scholar] [CrossRef]
- Bertin, N.; Génard, M. Tomato Quality as Influenced by Preharvest Factors. Sci. Hortic. 2018, 233, 264–276. [Google Scholar] [CrossRef]
- Tandon, K.S.; Baldwin, E.A.; Scott, J.W.; Shewfelt, R.L. Linking Sensory Descriptors to Volatile and Nonvolatile Components of Fresh Tomato Flavor. J. Food Sci. 2003, 68, 2366–2371. [Google Scholar] [CrossRef]
- Villena, J.; Moreno, C.; Roselló, S.; Beltrán, J.; Cebolla-Cornejo, J.; Moreno, M.M. Breeding Tomato Flavor: Modeling Consumer Preferences of Tomato Landraces. Sci. Hortic. 2023, 308, 111597. [Google Scholar] [CrossRef]
- Hagenguth, J.; Kanski, L.; Kahle, H.; Naumann, M.; Pawelzik, E.; Becker, H.C.; Horneburg, B. Breeders’ Sensory Test: A New Tool for Early Selection in Breeding for Tomato (Solanum lycopersicum) Flavour. Plant Breed. 2022, 141, 96–107. [Google Scholar] [CrossRef]
Farm Site | Livorno 1 | Lucca 1 | Lucca 2 | Pisa 1 | Livorno 2 | Pisa 2 | |
---|---|---|---|---|---|---|---|
Cultivation system | Soilless | Soilless | Soilless | Soil | Soil | Soil | |
Cultivation cycle | Transplant (date/month) | 1–5/2 | 1–7/2 | 1–7/2 | 1–5/3 | 20–25/2 | 10–15/5 |
Harvest started (date/month) | 10–15/5 | 10–15/5 | 10–15/5 | 20–25/5 | 15–20/5 | 10–15/7 | |
Harvest finished (date/month) | 31/8 | 31/8 | 31/8 | 15/8 | 15/8 | 30/9 |
Farm Site | Cultivation System | DMC (%) | pH Juice | TA (g Citric Acid 100 g−1 FW) | TSS (°Brix) | Lycopene (mg 100 g−1 FW) | Total Phenols (mg GAE 100 g−1 FW) | DPPH (mg TE 100 g−1 FW) |
---|---|---|---|---|---|---|---|---|
Livorno 1 | Soilless | 4.9 ± 0.2 | 4.4 ± 0.0 | 0.67 ± 0.0 | 4.9 ± 0.0 | 3.9 ± 0.5 | 42.8 ± 6.3 | 47.6± 7.3 |
Lucca 1 | Soilless | 4.9 ± 0.2 | 4.5 ± 0.0 | 0.53 ± 0.0 | 3.9 ± 0.2 | 2.3 ± 0.2 | 39.2 ± 4.7 | 38.7 ± 10.1 |
Lucca 2 | Soilless | 5.5 ± 0.1 | 4.5 ± 0.0 | 0.61 ± 0.0 | 4.0 ± 0.0 | 3.9 ± 0.6 | 46.2 ± 7.3 | 90.5 ± 9.2 |
Pisa 1 | Soil | 5.5 ± 0.3 | 4.5 ± 0.0 | 0.61 ± 0.0 | 5.0 ± 0.0 | 5.6 ± 0.6 | 61.6 ± 6.7 | 57.9 ± 13.8 |
Livorno 1 | Soil | 5.9 ± 0.6 | 4.6 ± 0.0 | 0.50 ± 0.0 | 5.0 ± 0.0 | 2.5 ± 0.8 | 43.2 ± 5.7 | 56.7 ± 22.3 |
Pisa 2 | Soil | 6.5 ± 0.1 | 4.3 ± 0.0 | 0.60 ± 0.0 | 4.8 ± 0.0 | 3.2 ± 0.5 | 81.7 ± 3.1 | 62.2 ± 13.4 |
LSD | 0.58 | 0.11 | 0.06 | 0.35 | 1.26 | 13.00 | 20.67 | |
Soilless | 5.1 ± 0.3 b | 4.5 ± 0.1 a | 0.60 ± 0.1 a | 4.3 ± 0.5 b | 3.4 ± 0.49 a | 43.2 ± 6.2 b | 56.1 ± 25.2 a | |
Soil | 6.0 ± 0.8 a | 4.5 ± 0.1 a | 0.57 ± 0.1 a | 4.9 ± 0.1 a | 3.9 ± 1.50 a | 60.1 ± 17.3 a | 60.2 ± 14.9 a |
Tomato Varieties and County | Growing Conditions | TPC 1 | DPPH 2 | Lycopene 3 | Reference |
---|---|---|---|---|---|
Pisanello tomato, spring–summer 2021. Pisa, Tuscany, Italy | Soilless greenhouse | 36.9–117.2 | 20.6–80.3 | 4.05–7.87 | Department of Agriculture, Food and Environment University of Pisa. Data not published yet |
Eight traditional varieties and one commercial variety (Liscio da Serbo Toscano, Rosso di Pitigliano, Quarantino ecotipo (ec.) Valdarno, Fragola, Canestrino di Lucca, Costoluto Fiorentino, Giallo di Pitigliano, Pisanello, and Cuore di Bue, Tuscany, Italy) | Open field | 51.4–90.4 | 4.02–6.21 | [14] | |
Vesuvian Piennolo cherry tomato; six red-pigmented types and one yellow-pigmented tomato type, Southern Italy | Open field | 99.4–134.6 | 3.63–15.09 | [43] | |
Vesuvian Piennolo cherry tomato, Southern Italy | Open field | 29.6–38.5 | 2.71–7.35 | [44] | |
Regina tomato, a traditional long-storage landrace with three ecotypes, Puglia, Southern Italy | Open field | 4.12–5.37 | [45] | ||
Local landrace of a long-storage tomato, Catania, Sicily, Southern Italy | Cold greenhouse and open field | 45.0–90.0 | 75.0–85.0 | 5.50–11.00 | [46] |
Six high-lycopene cultivars and one ordinary tomato cultivar, Lecce, Puglia, Southern Italy | Open field | 10.6–39.5 | 9.69–23.29 | [47] | |
Different parts of tomato (peel, fruit, pulp, and seeds) of niche cultivars compared with commercial ones, Campania region, Southern Italy | Open field | 30.4–86.8 (Fruit pulp) | 1.99–3.13 (Fruit pulp) | [48] | |
Five traditional tomato Greek germplasm varieties alongside a commercial F1 hybrid, Greece | Soilless greenhouse | 27.5 (F1 hybrid)—48.3 (traditional) | 2.24 (F1 hybrid)—7.98 (traditional) | [49] | |
Seven cultivars, comprising two high-pigment varieties, five underutilized ancient tomato genotypes considered as landraces, Tunisia | Open field | 13.98–35.24 | 111.6–196.9 | 7.60–22.78 | [50] |
Ten Cypriot landraces, eight Greek varieties and one French variety, Cyprus | Soil greenhouse | 4.50–8.87 | 1.42–5.85 | [51] | |
Nine commercial varieties, Spain | Open field | 25.9–49.9 | 1.86–6.50 | [52] |
Treatment | pH | EC (dS m−1) | TA (g Citric Acid 100 g−1 FW) | TSS (°Brix) | DMC (%) | Firmness (kg cm−2) |
---|---|---|---|---|---|---|
Pisanello Rockwool | 4.23 ± 0.03 a | 9.00 ± 0.04 b | 0.77 ± 0.01 b | 5.72 ± 0.10 b | 6.58 ± 0.13 b | 1.23 ± 0.05 a |
Pisanello Aeroponics | 4.10 ± 0.03 b | 10.74 ± 0.15 a | 1.03 ± 0.02 a | 6.77 ± 0.19 a | 7.49 ± 0.11 a | 1.41 ± 0.13 a |
Significance | ** | *** | *** | ** | *** | ns |
Treatment | Total Phenols (mg GAE 100 g−1 FW) | Lycopene (mg 100 g−1 FW) | DPPH (mg TE 100 g−1 FW) |
---|---|---|---|
Pisanello Rockwool | 66.15 ± 8.24 a | 5.40 ± 0.24 a | 65.60 ± 6.66 a |
Pisanello Aeroponics | 65.56 ± 1.11 a | 6.33 ± 0.83 a | 65.97 ± 8.77 a |
Significance | ns | ns | ns |
Variety | pH | EC (dS m−1) | TA (g Citric Acid 100 g−1 FW) | TSS (°Brix) | DMC (%) | Firmness (kg cm−2) |
---|---|---|---|---|---|---|
Pisanello | 4.57 ± 0.02 a | 8.20 ± 0.09 a | 0.54 ± 0.02 a | 5.02 ± 0.18 a | 4.86 ± 0.35 a | 1.43 ± 0.16 b |
Goldmar F1 | 4.14 ± 0.03 b | 7.81 ± 0.15 b | 0.53 ± 0.01 a | 4.62 ± 0.12 b | 4.62 ± 0.10 a | 1.99 ± 0.16 a |
Significance | *** | * | ns | * | ns | * |
Treatment | Total Phenolic Content (mg GAE 100 g−1 FW) | Lycopene (mg 100 g−1 FW) | DPPH (mg TE 100 g−1 FW) |
---|---|---|---|
Pisanello | 56.52 ± 9.24 a | 4.52 ± 0.56 a | 58.30 ± 1.06 a |
Goldmar F1 | 49.80 ± 6.03 a | 3.65 ± 0.77 a | 28.82 ± 7.37 b |
Significance | ns | ns | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cela, F.; Najar, B.; Taglieri, I.; Sanmartin, C.; Carmassi, G.; Ceccanti, C.; Incrocci, L.; Venturi, F. Managing the Nutraceutical and Sensorial Qualities of Pisanello, an Ancient Tomato Landrace, in Soilless Conditions. Appl. Sci. 2024, 14, 9503. https://doi.org/10.3390/app14209503
Cela F, Najar B, Taglieri I, Sanmartin C, Carmassi G, Ceccanti C, Incrocci L, Venturi F. Managing the Nutraceutical and Sensorial Qualities of Pisanello, an Ancient Tomato Landrace, in Soilless Conditions. Applied Sciences. 2024; 14(20):9503. https://doi.org/10.3390/app14209503
Chicago/Turabian StyleCela, Fatjon, Basma Najar, Isabella Taglieri, Chiara Sanmartin, Giulia Carmassi, Costanza Ceccanti, Luca Incrocci, and Francesca Venturi. 2024. "Managing the Nutraceutical and Sensorial Qualities of Pisanello, an Ancient Tomato Landrace, in Soilless Conditions" Applied Sciences 14, no. 20: 9503. https://doi.org/10.3390/app14209503
APA StyleCela, F., Najar, B., Taglieri, I., Sanmartin, C., Carmassi, G., Ceccanti, C., Incrocci, L., & Venturi, F. (2024). Managing the Nutraceutical and Sensorial Qualities of Pisanello, an Ancient Tomato Landrace, in Soilless Conditions. Applied Sciences, 14(20), 9503. https://doi.org/10.3390/app14209503