Impact of Nanoparticle Addition and Ozone Pre-Treatment on Mesophilic Methanogenesis in Temperature-Phased Anaerobic Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Innoculum and Substrate Characterization
2.2. Experimental Setup
2.3. Nanoparticles
2.4. Ozonation
2.5. Analytical Methods
2.6. Kinetic Analysis
3. Results and Discussion
3.1. Initial and Final Characterization of the Mixtures Tested in the Biochemical Methane Potential
3.2. Evolution of Solids and Soluble Compounds
3.3. Volatile Fatty Acid Evolution
3.4. Kinetic Analysis of Methane Production
3.5. Cost-Effectiveness Study
- −
- Without pre-treatment: 0.160 m3/kg VS0 <> 0.110 m3/kg TS0 <> 2.36 m3/ton
- −
- With ozone and nanoparticle pre-treatment: 0.195 m3/kg VS0 <> 0.139 m3/kg TS0 <> 3.00 m3/ton
- −
- Without pre-treatment: 2.36 m3 CH4/ton·10.55 kWh/m3·0.11 €/kWh = 2.74 €/ton
- −
- With ozone and nanoparticle pre-treatment: 3.00 m3 CH4/ton·10.55 kWh/m3·0.11 €/kWh = 3.48 €/ton
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Lu, Y.; Zheng, L.; Wang, Z.; Dai, X. Perspective on Enhancing the Anaerobic Digestion of Waste Activated Sludge. J. Hazard. Mater. 2020, 389, 121847. [Google Scholar] [CrossRef] [PubMed]
- Akgul, D.; Cella, M.A.; Eskicioglu, C. Influences of Low-Energy Input Microwave and Ultrasonic Pretreatments on Single-Stage and Temperature-Phased Anaerobic Digestion (TPAD) of Municipal Wastewater Sludge. Energy 2017, 123, 271–282. [Google Scholar] [CrossRef]
- Riau, V.; De la Rubia, M.Á.; Pérez, M. Temperature-Phased Anaerobic Digestion (TPAD) to Obtain Class A Biosolids: A Semi-Continuous Study. Bioresour. Technol. 2010, 101, 2706–2712. [Google Scholar] [CrossRef]
- Khanh Nguyen, V.; Kumar Chaudhary, D.; Hari Dahal, R.; Hoang Trinh, N.; Kim, J.; Chang, S.W.; Hong, Y.; Duc La, D.; Nguyen, X.C.; Hao Ngo, H.; et al. Review on Pretreatment Techniques to Improve Anaerobic Digestion of Sewage Sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Rubio, J.A.; Romero, L.I.; Wilkie, A.C.; García-Morales, J.L. Mesophilic Anaerobic Co-Digestion of Olive-Mill Waste with Cattle Manure: Effects of Mixture Ratio. Front. Sustain. Food Syst. 2019, 3, 9. [Google Scholar] [CrossRef]
- Tena, M.; Perez, M.; Solera, R. Benefits in the Valorization of Sewage Sludge and Wine Vinasse via a Two-Stage Acidogenic-Thermophilic and Methanogenic-Mesophilic System Based on the Circular Economy Concept. Fuel 2021, 296, 120654. [Google Scholar] [CrossRef]
- Zhou, P.; Li, D.; Zhang, C.; Ping, Q.; Wang, L.; Li, Y. Comparison of Different Sewage Sludge Pretreatment Technologies for Improving Sludge Solubilization and Anaerobic Digestion Efficiency: A Comprehensive Review. Sci. Total Environ. 2024, 921, 171175. [Google Scholar] [CrossRef]
- Erden, G.; Filibeli, A. Ozone Oxidation of Biological Sludge: Effects on Desintegration, Anaerobic Biodegradability, and Filterability. Environ. Prog. Progress. Sustain. Energy 2014, 33, 676–680. [Google Scholar] [CrossRef]
- Díaz-Domínguez, E.; Romero-martínez, L.; Ib, M.E.; García-morales, L. Evaluation of Ozone Treatment for Bacterial Disinfection of Ballast Water. J. Environ. Chem. Eng. 2024, 12, 111656. [Google Scholar] [CrossRef]
- Erden, G.; Demir, O.; Filibeli, A. Disintegration of Biological Sludge: Effect of Ozone Oxidation and Ultrasonic Treatment on Aerobic Digestibility. Bioresour. Technol. 2010, 101, 8093–8098. [Google Scholar] [CrossRef]
- Pei, J.; Yao, H.; Wang, H.; Ren, J.; Yu, X. Comparison of Ozone and Thermal Hydrolysis Combined with Anaerobic Digestion for Municipal and Pharmaceutical Waste Sludge with Tetracycline Resistance Genes. Water Res. 2016, 99, 122–128. [Google Scholar] [CrossRef]
- Chacana, J.; Alizadeh, S.; Labelle, M.A.; Laporte, A.; Hawari, J.; Barbeau, B.; Comeau, Y. Effect of Ozonation on Anaerobic Digestion Sludge Activity and Viability. Chemosphere 2017, 176, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Romero-Güiza, M.S.; Vila, J.; Mata-Alvarez, J.; Chimenos, J.M.; Astals, S. The Role of Additives on Anaerobic Digestion: A Review. Renew. Sustain. Energy Rev. 2016, 58, 1486–1499. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Xu, R.; Xiang, Y.; Jia, M.; Hu, J.; Zheng, Y.; Xiong, W.P.; Cao, J. Enhanced Mesophilic Anaerobic Digestion of Waste Sludge with the Iron Nanoparticles Addition and Kinetic Analysis. Sci. Total Environ. 2019, 683, 124–133. [Google Scholar] [CrossRef]
- Wei, W.; Cai, Z.; Fu, J.; Xie, G.J.; Li, A.; Zhou, X.; Ni, B.J.; Wang, D.; Wang, Q. Zero Valent Iron Enhances Methane Production from Primary Sludge in Anaerobic Digestion. Chem. Eng. J. 2018, 351, 1159–1165. [Google Scholar] [CrossRef]
- Sillero, L.; Solera, R.; Perez, M. Effect of Temperature on Biohydrogen and Biomethane Production Using a Biochemical Potential Test with Different Mixtures of Sewage Sludge, Vinasse and Poultry Manure. J. Clean. Prod. 2023, 382, 135237. [Google Scholar] [CrossRef]
- Sillero, L.; Perez, M.; Solera, R. Temperature-Phased Enhanced the Single-Stage Anaerobic Co-Digestion of Sewage Sludge, Wine Vinasse and Poultry Manure: Perspetives for the Circular Economy. Fuel 2023, 331, 125761. [Google Scholar] [CrossRef]
- Weemaes, M.; Grootaerd, H.; Simoens, F.; Verstraete, W. Anaerobic Digestion of Ozonized Biosolids. Water Res. 2000, 34, 2330–2336. [Google Scholar] [CrossRef]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; De Wilde, V.; et al. Towards a Standardization of Biomethane Potential Tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef]
- Smallops. Nanoparticles for Sustainability Características de las Nanopartículas de Fe (OPS). Available online: https://smallops.eu/ (accessed on 26 February 2024).
- Díaz-Domínguez, E.; Ibáñez-López, M.E.; Fernández-Morales, F.J.; García-Morales, J.L. Effect of Pre-Treatment with Ozone in a Biorefinery Scenario for the Production of Volatile Fatty Acids. In Proceedings of the 11th IWA International Symposium on Waste Management Problems in Agro-Industry, Gdansk, Poland, 26–28 October 2022; ISBN 9786021018187. [Google Scholar]
- Methods Standard. Standard Methods for the Examination of Water and Wastewater. Water Res. 2012, 16, 1495–1497. [Google Scholar]
- Zahedi, S.; Rivero, M.; Solera, R.; Perez, M. Seeking to Enhance the Bioenergy of Municipal Sludge: Effect of Alkali Pre-Treatment and Soluble Organic Matter Supplementation. Waste Manag. 2017, 68, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.L.; Esposito, G. A Review on Dark Fermentative Biohydrogen Production from Organic Biomass: Process Parameters and Use of by-Products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- Keskin, T.; Arslan, K.; Nalakth Abubackar, H.; Vural, C.; Eroglu, D.; Karaalp, D.; Yanik, J.; Ozdemir, G.; Azbar, N. Determining the Effect of Trace Elements on Biohydrogen Production from Fruit and Vegetable Wastes. Int. J. Hydrogen Energy 2018, 43, 10666–10677. [Google Scholar] [CrossRef]
- Ripoll, V.; Agabo-García, C.; Solera, R.; Perez, M. Modelling of the Anaerobic Semi-Continuous Co-Digestion of Sewage Sludge and Wine Distillery Wastewater. Environ. Sci. Water Res. Technol. 2020. [Google Scholar] [CrossRef]
- R Foundation for Statistical Computing. R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Parthasarathy, P.; Narayanan, K.S. Hydrogen Production from Steam Gasification of Biomass: Influence of Process Parameters on Hydrogen Yield—A Review. Renew. Energy 2014, 66, 570–579. [Google Scholar] [CrossRef]
- Induchoodan, T.G.; Haq, I.; Kalamdhad, A.S. Factors Affecting Anaerobic Digestion for Biogas Production: A Review, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2022; ISBN 9780323857925. [Google Scholar]
- Rueter, J.; Johnson, R. The Use of Ozone to Improve Solids Removal during Disinfection. Aquac. Eng. 1995, 14, 123–141. [Google Scholar] [CrossRef]
- Sillero, L.; Solera, R.; Perez, M. Biochemical Assays of Potential Methane to Test Biogas Production from Dark Fermentation of Sewage Sludge and Agricultural Residues. Int. J. Hydrogen Energy 2022, 47, 13289–13299. [Google Scholar] [CrossRef]
- Stuckey, D.C. Recent Developments in Anaerobic Membrane Reactors. Bioresour. Technol. 2012, 122, 137–148. [Google Scholar] [CrossRef]
- Kosowski, P.; Szostek, M.; Pieniazek, R.; Antos, P.; Skrobacz, K.; Piechowiak, T.; Zaczek, A.; Józefczyk, R.; Balawejder, M. New Approach for Sewage Sludge Stabilization with Ozone. Sustainability 2020, 12, 886. [Google Scholar] [CrossRef]
- Hu, A.Y.; Stuckey, D.C. Activated Carbon Addition to a Submerged Anaerobic Membrane Bioreactor: Effect on Performance, Transmembrane Pressure, and Flux. J. Environ. Eng. 2007, 133, 73–80. [Google Scholar] [CrossRef]
- Tsintavi, E.; Pontillo, N.; Dareioti, M.A.; Kornaros, M. Ozone Pretreatment of Olive Mill Wastewaters (OMW) and Its Effect on OMW Biochemical Methane Potential (BMP). Water Sci. Technol. 2013, 68, 2712–2717. [Google Scholar] [CrossRef] [PubMed]
- Kianmehr, P.; Kfoury, F. Prediction of Methane Generation of Ozone-Treated Sludge from a Wastewater Treatment Plant. Ozone Sci. Eng. 2016, 38, 465–471. [Google Scholar] [CrossRef]
- Dai, X.; Li, X.; Zhang, D.; Chen, Y.; Dai, L. Simultaneous Enhancement of Methane Production and Methane Content in Biogas from Waste Activated Sludge and Perennial Ryegrass Anaerobic Co-Digestion: The Effects of PH and C/N Ratio. Bioresour. Technol. 2016, 216, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.A.; Raposo, F.; Borja, R.; Martín, A. Kinetic Study of the Anaerobic Digestion of Vinasse Pretreated with Ozone, Ozone plus Ultraviolet Light, and Ozone plus Ultraviolet Light in the Presence of Titanium Dioxide. Process Biochem. 2002, 37, 699–706. [Google Scholar] [CrossRef]
- Yadvika; Santosh; Sreekrishnan, T.R.; Kohli, S.; Rana, V. Enhancement of Biogas Production from Solid Substrates Using Different Techniques—A Review. Bioresour. Technol. 2004, 95, 1–10. [Google Scholar]
- Yañez Palma, R.; Córdova-Lizama, A.J.; Zepeda Pedreguera, A.; Ruiz Espinoza, J.E. Influence of Zero-Valent Iron Nanoparticles on Anaerobic Digestion of Swine Manure: Effects on Methane Yield. Environ. Technol. 2024, 9593330. [Google Scholar] [CrossRef]
Parameter | I Mean (SD 1 %) | C Mean (SD 1 %) | N Mean (SD 1 %) | NO Mean (SD 1 %) |
---|---|---|---|---|
pH | 8.33 (0.22) | 5.12 (0.78) | 5.12 (0.97) | 5.07 (1.18) |
TS (g/kg) | 24.05 (0.27) | 19.50 (11.98) | 26.50 (12.72) | 22.16 (5.62) |
VS (g/kg) | 15.41 (0.39) | 14.52 (14.49) | 18.51 (0.74) | 17.30 (6.77) |
TCOD (mgO2/L) | 32,263.65 (4.12) | 51,980.32 (2.99) | 51,183.69 (5.70) | 46,045.10 (2.10) |
SCOD (mgO2/L) | 19,119.20 (12.55) | 32,661.97 (15.13) | 35,569.68(6.53) | 36,047.66 (3.93) |
DOC (mg/L) | 1062.00 (0.90) | 7575.03 (1.65) | 9140.98 (2.66) | 7457.73 (1.06) |
TN (mg/L) | 2332.67 (2.99) | 869.00 (0.57) | 1054.75 (1.71) | 899.75 (0.59) |
VFA (g equiv acetic/L) | 0.34 (10.92) | 5.54 (0.56) | 5.84 (0.14) | 5.62 (3.42) |
Acetic acid (mg/L) | 181.87 (40.88) | 1333.47 (2.06) | 2540.29 (1.04) | 2317.66 (15.42) |
Propionic acid (mg/L) | 101.94 (53.56) | 796.61 (3.89) | 1069.07 (1.86) | 844.48 (12.75) |
Butyric acid (mg/L) | 103.80 (31.68) | 4763.22 (1.98) | 3159.08 (2.46) | 3407.94 (12.33) |
Parameter | MC Mean (SD 1 %) | MN Mean (SD 1 %) | MNO Mean (SD 1 %) |
---|---|---|---|
pH | 7.25 (0.80) | 7.30 (0.90) | 6.87 (1.25) |
TS (g/kg) | 23.30 (11.98) | 24.72 (12.72) | 23.88 (5.62) |
VS (g/kg) | 16.11 (0.86) | 17.32 (0.33) | 17.03 (0.45) |
TCOD (mgO2/L) | 39,074.87 (5.90) | 45,288.61 (2.79) | 45,129.28 (4.51) |
SCOD (mgO2/L) | 26,169.41 (8.99) | 31,666.18(8.78) | 23,779.51 (2.80) |
DOC (mg/L) | 4191.50 (1.84) | 4144.50 (2.48) | 4354.17 (1.04) |
TN (mg/L) | 1513.33 (1.84) | 1486.67 (2.48) | 1499.50 (1.04) |
Parameter | MC Mean (SD 1 %) | MN Mean (SD 1 %) | MNO Mean (SD 1 %) |
---|---|---|---|
pH | 8.26 (0.73) | 8.20 (0.92) | 8.25 (1.23) |
TS (g/kg) | 18.85 (0.22) | 19.88 (0.30) | 18.21 (0.16) |
VS (g/kg) | 11.55 (0.18) | 12.56 (0.61) | 11.36 (0.62) |
TCOD (mgO2/L) | 22,584.56 (14.97) | 23,381.19 (1.18) | 22,823.55 (0.52) |
SCOD (mgO2/L) | 8882.46 (7.77) | 9599.43 (8.29) | 8762.97 (9.08) |
DOC (mg/L) | 595.93 (6.24) | 1516.87 (2.70) | 838.00 (1.39) |
TN (mg/L) | 1977.75 (5.23) | 1726.00 (2.68) | 1552.25 (1.30) |
Model | Parameter | MC | MN | MNO |
---|---|---|---|---|
P (mL) | 293.0600 | 277.8353 | 402.4725 | |
Difference (%) | 4.8740 | 7.7165 | 1.2018 | |
Modified | Rm (mL/h) | 1.2500 | 1.9060 | 1.9691 |
Gompertz | ʎ (h) | 168.0000 | 247.6787 | 69.9502 |
R2 | 0.7000 | 0.9897 | 0.9977 | |
RMSE | 30.48190 | 12.1915 | 7.3175 | |
P (mL) | 291.7044 | 276.3757 | 411.5291 | |
Difference (%) | 5.4830 | 8.2551 | 2.3411 | |
Khyd (1/h) | 0.0031 | 0.0031 | 0.0058 | |
Cone | n | 8.6779 | 8.7669 | 3.2656 |
R2 | 0.9910 | 0.9918 | 0.9962 | |
RMSE | 11.9357 | 10.8882 | 9.15775 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz Domínguez, E.; Ibañez López, M.E.; Mąkinia, J.; Fernández-Morales, F.J.; García Morales, J.L. Impact of Nanoparticle Addition and Ozone Pre-Treatment on Mesophilic Methanogenesis in Temperature-Phased Anaerobic Digestion. Appl. Sci. 2024, 14, 9504. https://doi.org/10.3390/app14209504
Díaz Domínguez E, Ibañez López ME, Mąkinia J, Fernández-Morales FJ, García Morales JL. Impact of Nanoparticle Addition and Ozone Pre-Treatment on Mesophilic Methanogenesis in Temperature-Phased Anaerobic Digestion. Applied Sciences. 2024; 14(20):9504. https://doi.org/10.3390/app14209504
Chicago/Turabian StyleDíaz Domínguez, Encarnación, María Eugenia Ibañez López, Jacek Mąkinia, Francisco Jesús Fernández-Morales, and José Luis García Morales. 2024. "Impact of Nanoparticle Addition and Ozone Pre-Treatment on Mesophilic Methanogenesis in Temperature-Phased Anaerobic Digestion" Applied Sciences 14, no. 20: 9504. https://doi.org/10.3390/app14209504
APA StyleDíaz Domínguez, E., Ibañez López, M. E., Mąkinia, J., Fernández-Morales, F. J., & García Morales, J. L. (2024). Impact of Nanoparticle Addition and Ozone Pre-Treatment on Mesophilic Methanogenesis in Temperature-Phased Anaerobic Digestion. Applied Sciences, 14(20), 9504. https://doi.org/10.3390/app14209504