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Abstract: Accurate pedestrian trajectory prediction is crucial in many fields. This requires the full use
and learning of pedestrians’ social interactions, movements, and environmental information. In view
of the current research on pedestrian trajectory prediction, wherein most of the pedestrian interaction
information is explored from the level of overall interaction, this paper proposes the SISGAN model,
which designs a social interaction module from the perspective of the target pedestrian, and takes four
kinds of interaction information as the influencing factors of pedestrian interaction, so as to describe
the influence mechanism of pedestrian—pedestrian interaction. In addition, in terms of environmental
information, the index density of pedestrian historical trajectory in space is taken into account
in the extraction of environmental information, which increases the potential correlation between
environmental information and pedestrians. Finally, we integrate social interaction information and
environmental information and make the final trajectory prediction based on GAN. Experiments on
ETH and UCY datasets demonstrate the effectiveness of the SISGAN model proposed in this paper.

Keywords: pedestrian trajectory prediction; generating confrontation networks; attention mechanisms;
interactive information

1. Introduction

In the realms of intelligent transportation, surveillance, robot navigation, and au-
tonomous driving, pedestrian trajectory prediction is a critical research area. With ad-
vancements in autonomous driving technology, new demands have emerged for accurate
pedestrian trajectory forecasting. This process fundamentally involves predicting future
trajectories based on historical movement data, thus providing essential decision-making
insights for these domains. However, the inherent uncertainty in pedestrian behavior and
environmental dynamics presents significant challenges. Pedestrians are heavily influ-
enced by the movements of those around them; they continuously adapt their trajectories
in response to others, such as avoiding individuals approaching directly or choosing to
follow those moving in the same direction. Additionally, external factors, such as static and
dynamic obstacles and the layout of buildings, further shape a pedestrian’s preferred route.
Researchers have extensively explored pedestrian trajectory prediction through social in-
teractions and environmental influences, employing models like social force frameworks
and statistical approaches. Yet, these methods often rely on manually defined rules for
collision avoidance, limiting their applicability in complex interaction scenarios. This gap
has led subsequent researchers to focus on data-driven methods, which leverage large
trajectory datasets to uncover patterns in pedestrian movement. However, simply inputting
historical trajectory data often fails to meet application needs; models must also account
for interactions and changes from nearby pedestrians and obstacles to accurately forecast a
target pedestrian’s path.

In this paper, we introduce a novel approach termed the SISGAN trajectory prediction
method. This technique learns and integrates pedestrian social interactions via a social
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attention module while incorporating environmental attention through a separate module.
Within the social attention framework, we extract four types of interaction data and employ
a multi-head attention mechanism to characterize the influence of nearby pedestrians. The
environmental attention module begins by calculating trajectory density distributions using
a Gaussian kernel function and then merges the trajectory density map with the scene map
from our dataset. This allows us to learn the impact of various scene regions through an
environmental attention mechanism, ultimately predicting pedestrian trajectories within a
GAN framework. We validate the effectiveness of our approach through experiments on
two public datasets, ETH and UCY, and conduct an ablation study to further assess our
method’s robustness.

2. Related Work
2.1. Social Interactions for Pedestrian Trajectories

Early trajectory prediction is mainly made by manual formulas according to the
attraction and repulsive force of pedestrians, such as the Social Force Model [1], which
simulates the pedestrian’s attractive and repulsive forces to nearby pedestrians, moving
cars, other obstacles, and the pedestrian’s intended destination. Ref. [2] designs a linear
trajectory avoidance (LTA) model to move pedestrians in the best direction by predicting
their expected closest points and using those points as the guiding factor for decision-
making. They take into account that pedestrians are motivated by planned destinations and
collision avoidance. Ref. [3] proposes Social LSTM, this method considers the interactions
between pedestrians and increases the sensory field of the model by designing a new
pooling layer to share information among multiple LSTMs. Ref. [4] designs a repulsive
force on the basis of Social LSTM by investigating how pedestrians adjust their trajectories
pooling layer to superimpose the repulsive force around pedestrians within a certain
range and share it as a hidden state among all LSTMs. Social LSTM only considers the
effects within a fixed-size local neighborhood and does not take into account the global
effects. Thus, Ref. [5] proposes a spatio-temporal graph that explicitly captures the global
interactions of all pedestrians in the scene as well as the local interactions with static
objects, and designed a spatio-temporal attention mechanism to capture the effects of
each pedestrian both spatially and temporally. In order to reason about the interaction
relationship between pedestrians in a more detailed way, ref. [6] reasons about the higher-
order social relationships of individuals from different social scale levels by designing a
graph-based higher-order relationship inference module based on a novel collision-aware
kernel function, specifically by designing a collision point for each pair of interacting
pedestrians and then assigning the impact weights according to the specific different
from the collision point to each pedestrian. The higher-order impacts of the pedestrians
are then modeled by a graph convolutional network. Ref. [7] reflects the distance and
direction relationship between any location in the environment and the target pedestrian
by proposing a polar coordinate-based approach. Afterwards, the basic local features of
each time-step feature map are captured through a local multimodal window and the social
and environmental interaction feature maps are spliced together and trajectory prediction
is performed based on a CNN. Ref. [8] designs a GATraj model to encode past trajectories
and interactions using an encoder—decoder structure, extract the spatio-temporal features
through the attentional mechanism, and design a GCN to simulate the interactions between
pedestrians while achieving a good balance of prediction speed and prediction accuracy.

Transformer-based methods have also been applied to trajectory prediction such as
refs. [9,10]. A transformer is a fully attention-based network that reduces model complexity
and is computationally efficient. Ref. [11] improves the performance of the model by
considering both pedestrian trajectory data and self-motion data, and by designing a
connectivity layer or by using an attentional mechanism to reweight and combine them into
a single representation to fully utilize multimodal data and improve the model performance.
However, the decoder in the transformer is autoregressive, which can lead to problems such
as cumulative errors and delayed inference. To address this problem, ref. [12] proposes
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an approach based on historical trajectories and self-motion of pedestrians, the VOSTN
model, which obtains the intrinsic correlation of pedestrians themselves at different time
steps through a cross-modal attention module, and designs a one-time generator module
responsible for generating the data and merging it with the latent distributions in order to
perform parallel prediction. The cumulative error is reduced and the speed of the model is
optimized by this approach.

Current research in pedestrian interaction has been refined from studying the overall
impact of the crowd to studying the mutual interaction of each pedestrian, whether it is the
overall design of pooling layers, the design of attention mechanisms, or higher-order infer-
ence maps, the results of these studies are getting better. However, we note that few studies
have looked at the pedestrians themselves to depict the impacts of surrounding pedestrians
on themselves. These effects include not only the two factors of distance or speed, but also
the pedestrians’ positions at the time, and the repulsive forces between pedestrians to avoid
collisions. Therefore, in our paper, we choose to model complex social interactions from the
perspective of the target pedestrians by calculating four types of pedestrian interactions
and integrating the interaction information with the input of multiple heads of attention, in
order to obtain the degree of influence of different pedestrians.

2.2. Scene Interaction Modeling Between Pedestrians and Environment

In the pedestrian trajectory task, since the influence of other pedestrians and objects
can change or limit the pedestrian’s activities, it is also necessary to pay attention to these
scene factors, and thus researchers have introduced the attention mechanism into it, such
as the CGNS model and the MRGL model. Among them, the CGNS model uses a soft
attention mechanism to extract the scene context image information and then uses gating
units to capture the historical trajectory and predict the future trajectory. Ref. [10] uses
the attention mechanism and LSTM network to establish the influence of the neighboring
pedestrians in a certain area of the scene and then uses the LSTM network to predict the
trajectory. Ref. [13], using S-GAN, combines social and physical attention mechanisms
to design the Sophie model, which focuses on both the physical environment and the
trajectories of other pedestrians in the vicinity. Ref. [14] loops visual attention forcing
and social forcing to focus on human-scene interactions and social interactions between
pedestrians, respectively, and introduces a variant of the info variant of the GAN structure
to predict trajectories with multimodal behavior.

There are also articles such as [15,16], which extract scene environment information by
using LSTM or through convolutional neural networks. Ref. [17] designed three recurrent
neural networks based on the Social-LSTM model to capture the human, social, and
scene scale information, and improved the prediction of pedestrian trajectories by using
the Social-LSTM model that improved the prediction accuracy of pedestrian trajectories.
Ref. [18] proposes a wavelet transform graph convolution network model by constructing
spatial and temporal graphs and then obtaining the attention score matrix through the
self-attention mechanism in the temporal domain and combining it with scene features.
Finally, the graph is combined with the adjacency matrix by employing graph convolution
in order to obtain spatial and temporal interaction features. Similarly, ref. [19] introduces
GAT to model the social interactions between pedestrians, uses VGG networks to directly
extract scene information, and predicts future trajectories by combining the pedestrian
social interaction information, scene information, and pedestrian motion information.

In pedestrian dynamics research, pedestrians continuously adjust their trajectories
under the influence of external social forces and respond differently to various environmen-
tal conditions. This results in their movement being constrained by certain rules [1]. As
illustrated in Figure 1, pedestrian trajectories are influenced by both physical environmen-
tal information and the movements of other pedestrians. Existing research on pedestrian
interactions primarily focuses on two factors: the distance and speed between pedestrians,
with less attention given to other interaction-related information. Furthermore, nearly all
studies that consider scene information rely on convolutional neural networks to compute
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scene features, often neglecting the analysis of historical pedestrian trajectories. In fact,
historical trajectory information allows for a clearer observation of pedestrians’” preferences
in different areas of the scene. This understanding also helps to reveal the potential corre-
lations between pedestrians and their environment, which is more meaningful than the
standard scene information extracted by convolutional neural networks.

Figure 1. Pedestrian interaction scenario portrayal. Pedestrian 1 observes the surrounding pedestrians
and other physical environments while walking. Whether it is a static crowd, like pedestrians 2
and 3, or pedestrian 4 walking in the opposite direction, these factors will influence pedestrian 1 to
continuously adjust their trajectory.

To address the limitations of existing research, this paper makes the following innova-
tive contributions:

(1) The interaction attention module is designed from the perspective of target pedestri-
ans. It illustrates the influence mechanism of pedestrian interactions through four
types of interaction information: repulsive force, pedestrian direction, motion di-
rection, and speed difference. By utilizing a multi-head attention mechanism, this
module calculates the interaction weights of different pedestrians, providing a more
comprehensive summary of the social interaction information that influences the
target pedestrian’s next decision.

(2) This study establishes a potential connection between pedestrians and their environ-
ment using historical trajectory data. By applying a Gaussian function to calculate
the spatial probability density of the trajectory data, this density value reflects the
pedestrian’s walking preferences and the degree of aggregation in specific areas. The
scene density map is then integrated with the scene convolution map in the spatial
domain, allowing for the extraction of significant spatial information.

3. Methods

In this paper, we propose a generative adversarial network model, SISGAN, which
combines interaction information and environmental information based on pedestrian
interaction dynamics and physical environment data. The aim of this study is to portray
the mechanisms influencing pedestrian interactions through the information exchanged
between pedestrians. We utilize a multi-head attention mechanism to obtain the social
interaction information of target pedestrians. Subsequently, we calculate the probability
density of different areas within each scene using a Gaussian kernel function. We then
extract environmental information by integrating the probability density with a scene
information extraction map. Finally, we input the historical trajectory data, social inter-
action information, and environmental information into the GAN framework to predict
pedestrian trajectories.

3.1. Pedestrian Trajectory Prediction Problem Definition

The problem of pedestrian trajectory prediction is inherently a time-series issue. To
address this, we extract video data that capture pedestrian trajectories, segmenting it as
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necessary to obtain the two-dimensional coordinates of pedestrians at various time points.
Thus, the pedestrian trajectory prediction problem can be defined as follows.
The pedestrian’s previous trajectory state is represented by the following equation:

Xi={(x,yl), t=1,2.. tos}, Vie {1,2,...,N},

where (x!,y!) is the coordinate of the pedestrian i at time t, t,,; is past trajectory observation
time, N is the number of pedestrians in this scenario. Consequently, the formula is written
as follows:

Y; = { (x}, 1), £ = tops + 1, fops +2,...,tp,ed}, Vie {1,2,...,N}.

3.2. Overall Network Architecture

The network architecture of this thesis consists of three parts.

Social Attention Module: This module focuses on pedestrian interaction information
and calculates the influence weights of different pedestrians using an attention mechanism.
As illustrated in the orange dashed box in Figure 2, this section is used to extract social
interaction information of pedestrians. First, four types of interaction information are
extracted from the pedestrian trajectories. Then, this interaction information is input into a
multi-head attention mechanism to compute the influence weights of different pedestrians
and output the comprehensive social interaction information of pedestrians.
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Figure 2. Network structure of SIS-GAN model. The upper blue dashed section represents the
environmental information module, and the middle orange dashed section represents the interaction
attention module. The bottom is a GAN-based trajectory prediction framework, where the historical
trajectory information of pedestrians and the auxiliary information from the previous two sections
are input into the decoder to predict pedestrian trajectories. The discriminator scores the generated
trajectories, and the loss derived from these scores is returned to the generator, incentivizing it to

continuously generate more realistic trajectories.
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Environmental Attention Module: As depicted in the blue dashed box in Figure 2,
this module first computes the historical trajectory data of pedestrians using a Gaussian
kernel function to obtain the probability density values of different regions. Next, the
dataset is transformed into image format, from which feature maps are extracted using
a convolutional neural network. The environmental information is then computed from
these two types of data within the scene attention module.

Pedestrian Trajectory Prediction Module: As shown in the pink and blue sections of
Figure 2, this module predicts pedestrian trajectories using a GAN framework. The GAN
consists of two components: the generator and the discriminator. The generator produces
future pedestrian trajectory data, while the discriminator evaluates whether the generated
trajectories are authentic. The overall model structure is depicted in Figure 2.

3.3. Social Attention Module

From a pedestrian perspective, the target pedestrian’s future trajectory is affected
not only by its location (x!,y!) and the last states Hit_l, but also is significantly affected
by the surrounding pedestrians. The target pedestrian is influenced in varying ways by
the locations and motion states of nearby pedestrians. If the interactions between each
pedestrian and others are not clarified, the trajectory predictions often lack interpretability.
Therefore, it is essential to fully extract and utilize the interaction information among
pedestrians. We first extract four types of interaction information to characterize the inter-
action mechanisms among pedestrians. Subsequently, we apply an attention mechanism
to calculate the influence weights of nearby pedestrians, allowing the model to focus on
information that is more critical for the target pedestrian while minimizing attention to
redundant data.

3.3.1. Information Extraction for Pedestrian Interaction Features

The mutual influence of pedestrian interactions is first reconstructed. As illustrated in
Figure 3, the future trajectory of the target pedestrian is influenced by the repulsive force,
azimuth angle, motion direction angle, and velocity differences of surrounding pedestrians.
This research extracts these four interaction features from the ETH and UCY datasets to
effectively model pedestrian interactions, thereby fully utilizing the available information.

i P

@i, j)

Figure 3. Description of pedestrian interaction. To characterize the interactive effects between
pedestrians, this paper first extracts information related to pedestrian movement based on pedestrian
kinematics: the position, speed, direction of movement, and repulsive forces of pedestrians. The
position information of pedestrians is taken with the bottom left corner of each scene as the origin of
the coordinate system. Then, based on the pedestrian’s position information and their position in the
next second, the speed, direction of movement, and repulsive force of the pedestrian are calculated.

(1) The repulsive force: According to the pedestrian repulsive force experiment in [20],
it represents the maximum measurement value of the skin conductance reaction experiment
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during pedestrian interaction, which is used to measure the human body pressure. The
smaller the reaction time, the greater the pedestrian’s repulsive force.

_ SCRyax B bt 2 t_ ot 21/
Fug = 1—|—e_k0(rij—Lij—50)’Ll] B [(xi xj) + (3/1‘ yf) M

where i represents the target pedestrian, j represents the target pedestrian. Their two-
dimensional coordinates are (x!,y!) and (x;, y]t) SCRmax = 0.283 s, kg = 95.069 m~1,
and s9 = 0.007 m. r;; represents the shoulder width of the pedestrian (unit: m), usually 0.35
to 0.45, and the value in this article is 0.4.

(2) Angle of azimuth: Specifically, the angle created by the velocity vector of the target
pedestrian i and the displacement vector between pedestrians i and ;.

LysV; (xf = byt =) x (x =2 yh =y ).
cos(Lj, Vi) = = 73 7 2)
| Lig| < Vil P2 t_ o h)2 P t-1)? P t-1)2
(xj_xi) + (vt — i) X (xi_xi ) +(yi_yi )
(3) Angle of pedestrian movement direction. Specifically, the angle between the target
pedestrian 7 and the pedestrian j’s motion directions.
VeV, (xf == =) < (=2 v o)
cos(V;, Vj) = = 12 1/2 (3)
Vil x | V] 1) P 1)? P t-1) f_ 1)
(=) + =) (=) + (-7

(4) Velocity difference: According to the speed difference, we can judge whether the
target pedestrian and the surrounding pedestrians walk together, follow, or surpass.

Vi=V~V, @

(5) The four interactions are spliced together to obtain the interaction vector of pedes-
trian i and pedestrian j at this time t. The interaction information of all the surrounding
pedestrians with pedestrian i is aggregated to obtain the social vector 6!. The expression of
the social vector is shown in Equation (5).

914 = [Gflf 9er 953/ SRR efN] (5)

where i represents the target pedestrian, j represents the target pedestrian. Their two-
dimensional coordinates are (x!,y!) and (x;,y;). Ljj represents the Euclidean distance

between pedestrian i and pedestrian j, which is used to calculate the influence of repulsive
force on the current motion state of target pedestrian, cos (Lij, V;) represents the azimuth
relationship between two pedestrians, cos(V;, V;) represents the motion direction relation-
ship between two pedestrians, and Vj; represents the difference between the pedestrian i
and the pedestrian j on velocity. 6! represents the social vector of pedestrian i.

3.3.2. Pedestrian Weight Calculation Based on Multiple Attention Mechanism

The attention mechanism, which was developed from research on human vision,
significantly enhances performance on tasks requiring the prediction of sequences by iden-
tifying relationships between specific sequence components [21]. The attention mechanism
can focus on the pedestrian features that are most relevant to the current task, ignoring ir-
relevant information, and assigning weights to the surrounding pedestrians. This enhances
the model’s feature extraction capability and interpretability. This work uses a multi-head
attention mechanism [22] to determine the weight of other pedestrians in the context, which
is the influence on the target pedestrian i, in order to obtain the influence of surrounding
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pedestrians on the target pedestrian i. The structure of the attention calculation structure
is illustrated in Figure 4 (Figure 4 shows only one of the ‘heads’ of the multi-attention
mechanism, and the multi-attention mechanism in this paper has 8 ‘heads’).

s N , N\
=)
: wv
— [Z -
- = v o
o'B " = t
=i fa = Ch
B B “ o
M 2 ><
-1 ]
.01 |8 — —
—J

-

Figure 4. Schematic diagram of attention mechanism. To calculate the influence weights between

pedestrians, this paper first computes the similarity between the target pedestrian’s historical states
Hf and the social vectors Gf with other pedestrians, deriving the influence weights for different
pedestrians. All interaction information is then consolidated into the target pedestrian’s social
information C%O. In the figure, the blue squares and pink squares represent the information after H f
and 6! are processed linearly, respectively.

As compared to a single-head attention mechanism, a multi-head attention mech-
anism may learn the dependency of different interaction information more thoroughly
through various “heads”, and can subsequently calculate more thoroughly about the
influence weight.

Figure 4 depicts the multi-head attention mechanism’s computation procedure. The
central idea of the multi-head attention mechanism is to compute the similarity of Q and
(K)T. At time ¢, our objective is to determine the correlation between the target pedestrian’s
state vector H! and social vector 6!. After using the attention mechanism to score every
single neighbor vector, the influence weight of various neighbor vectors on the trajectory of
the target pedestrian is calculated. The calculation formulas of the multi-head attention
mechanism are as follows:

0! = [0l 00, Ol =1,2,3,4 ©)
T

fai O3y Hi) = (6))" WaH] @)

ajo = a(fﬂi(efh/ Hzt)) (8)

Clto fd ZaiOHit (9)

Cl = WOcon{Cl, Cl,Ch, ..., CL} (10)

This paper designs eight “attention heads” (h = 8), H! represents the target pedes-
trian’s state feature vector at the current time, f, represents the scoring function. We then
insert the target pedestrian’s state vector H! and the transformed neighbor vector 6, into
the attention module, and 0 represents the softmax function, which is used to normalize
the scoring results.

3.4. Environment Attention Module

The traditional approach to utilizing environmental information involves extracting
scene data through convolutional neural networks. However, this method struggles to
effectively demonstrate the potential impact of the environment on individual pedestrians.
The presence of obstacles cannot be overlooked; indeed, a large number of pedestrian
trajectories reveal certain path preferences. For instance, pedestrians tend to avoid street
lamps or uneven road surfaces. Thus, analyzing the distribution of historical trajectory
points can provide insights into how the environment influences pedestrian behavior.
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In this section, we first employ a Gaussian kernel function to calculate the spatial
probability density of different scenes. Next, we utilize the VGG19 model to obtain feature
maps of these scenes. Finally, we integrate these two sources of information through an
attention mechanism to summarize the environmental factors that warrant greater focus.

3.4.1. Trajectory Density Map

A large amount of pedestrian trajectory data explains the degree of “preference” that
pedestrians have for different areas, indicating that the model needs to pay more attention
to these areas. This way, we can address the issue that previous work, which only extracts
environmental information, cannot establish a connection with pedestrians. In order to
obtain the trajectory density values for each spatial location, this paper divides the trajectory
data using a Gaussian kernel function based on historical trajectory data, resulting in a
trajectory density map for spatial locations in each scene. This trajectory density map
illustrates the areas of the congregation for pedestrians within the scene and their certain
walking preferences. The Formula (11) for the Gaussian kernel density. Figure 5 shows the
spatial probability density feature map of the dataset in this paper.

- Fo2
K(x,yl) =e 7% —vill (11)

where 7 is the hyperparameter of the Gaussian kernel function. Coordinates data (x!,y!) is
the coordinates of the target pedestrian i.

18
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Figure 5. Spatial probability density map, where (a) is the scenario from the ETH dataset, (b) the
scenario from the hotel dataset, (c) the scenario from the zaral dataset, and (d) the scenario from the
zara2 dataset. The thermal bar scale on the right side of the figure represents the density of trajectories
in different regions of the scenario. The coordinate origin of these four images is at the bottom left

corner. The different density values reflect the density of pedestrian historical trajectories in various
areas of the scene and indicate the level of “preference” pedestrians have for different regions. When
the density value of a particular area is high, the model needs to focus on the pedestrian density and
trajectory distribution within that area to avoid predicting trajectories that result in “collisions”.
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3.4.2. Scene Semantic Module

As shown in Figure 6, to obtain environmental information, we first extract the scene
information using VGG19. Then, we determine the attention levels of pedestrians towards
different areas of the scene through spatial probability density values. Finally, we sum-
marize the environmental information that the target pedestrian is focused on using an
attention module. We employ pre-trained VGG19 (a network of convolutional neural
networks) to extract the features of the scene image so that we may fully utilize the scene
information. The pre-trained VGG19 serves as our backbone network, while Cf represents
the retrieved characteristics. The scene feature map C! is shown by Formula (12).

Cf = VGG19(Iscne, Wvggw) (12

where Iscpe is the processed image data in the dataset, and Wyg,19 is the network parameters
of VGGI19.

FC

»| Softmax
T MLP X —| Output
FC

Figure 6. Scene attention module structure. First, the spatial probability density map and the scene
feature map are aligned through the FC layer, then input into the attention mechanism to compute
the influence weights of different regions, and output the scene information for that particular scene.

In order to make full use of the scene information, we calculate the scene attention
SCf at each moment t € {1, 2, 3, ..., Tobs} according to the scene feature map Cf and the
pedestrian trajectory density map K!. The environment information vector SC! calculated
by scene attention is shown by Formula (13).

SC! = ScneAtt(C!, K!, Way) (13)

where K! is the spatial probability density feature map, and W s is the network parameters
of scene attention.
Figure 6 shows the scene attention module structure.

3.5. Pedestrian Trajectory Prediction

In this paper, pedestrian trajectory prediction is based on a Generative Adversarial
Network (GAN) model, which consists of two components: a generator and a discriminator.
The generator is responsible for producing the trajectory, while the discriminator’s role
is to determine whether the generated trajectory is real or not. The discriminator then
provides feedback to the generator through a loss function. The generator encodes and
decodes pedestrian trajectories using LSTM. The discriminator classifies the trajectories
using LSTM.
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3.5.1. The Generator

The generator includes an encoder and a decoder. The encoder takes pedestrian
trajectories (x!,y!) as input to obtain the hidden status layer for each pedestrian H!. The
decoder takes Hf , the interaction vector Cf, and the Gaussian noise as input to generate the
future trajectory of the target pedestrian.

The generator uses the LSTM as the structure of the encoder and the decoder to learn
the neighbor vector of the historical trajectory, encode the historical trajectory, decode the
neighbor vector, and, finally, obtain the predicted future trajectory.

The calculation formula of the encoder can be expressed as

St = F,(C!,SC!, Wr,) (14)
7 = fi(x,vwp,) (15)
H! = LSTM (Hf_l,'ri;wgl) (16)

where S! represents the unification of pedestrian interaction information and environmental
information in the embedding layer. (x!,y!) is the position for pedestrians i at the moment
t, f1 is a fully connected network, wy, is the parameter of the fully connected network,
7; is the pedestrian track feature vector at the current time, H! is the pedestrian track
feature vector at the current time, and wy, is the weight parameter in the LSTM neural
network layer.

The neighbor vector of the pedestrian at this moment and the state vector of the last
moment of the trajectory data are spliced and input into the decoder to predict the trajectory
of the pedestrian at the next moment.

The calculation formula of the decoder can be expressed as

Con!™ = [f,(S, H; Wp,), 2] 17)
Hl.tJrl = LSTM(COTlf, Hf?wgz) (18)
(a1 ) = s (1) "

where z is Gaussian noise, f, and f3 are the fully connected networks, Wy, and Wy, are,
respectively, the weight parameters of the fully connected networks, Wy, is the weight
parameter of the LSTM network, M is a fully connected network, W), is the parameter
of the fully connected network, H! is the hidden state of the target pedestrian, H! and
the Con! are input into the LSTM to obtain the next state Hl.t+1 of the target pedestrian.
Then, the HitJrl is input into the fully connected network to obtain the predicted trajectory

coordinates (xl’:u“l, yf“) .

3.5.2. The Discriminator

The purpose of the discriminator is to determine whether the input data is real data
from the database or generated data from the generator, and both types of data are rep-
resented by Traj;. The discriminator first transforms the two types of trajectories from
coordinate space to feature space to obtain U/, then uses LSTM to keep updating the final
state H%, , and, finally, scores the final moment state by multiple perceptron and softmax
classifier to tell if the trajectory is true or false, and passes it to the generator by back
propagation to promote the generator to generate more accurate trajectories.

ut = fy(Traj; Wy,) (20)

Hji;} = LSTM(H}Z.”, Uj; Wrin) (21)
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Stini = fi D(hchnl; W) (22)

where f; is the fully connected network, H}in is the movement state of the target pedes-
trian at the last moment, and Wy;, is the network parameter of LSTM, fp is the multiple
perceptron, Wy, is the parameter of the multiple perceptron, and S;;; is the final score of
the trajectory.

3.5.3. The Loss Function

The loss function in this paper consists of two parts, including Lgan and L, the
specific formulas are as follows:

L = Lgan(,p) +JL12(0) (23)

Lean(c,p) = ming maxpEr, ~ Paate(x,:]) 108 D)l + Ezop(z) [105% (1 - D(G(Jq,z)))] (24)
2

LL2(G) = mink‘ Yi — G(xi,z) (k)’ (25)

where L is the loss function of the model, Lg sy g,p) is the loss function of the Generative
Adpversarial Network, Lj5c) is used to calculate the difference between the generated
trajectory and the true trajectory, and encourage the generator to generate more realistic
and socially conforming trajectory samples as much as possible, maxp represents updating
the arguments of the discriminator by maximizing the L, with the generator fixed, ming
represents that the generator minimizes L;, when the discriminator maximizes Lj, which
is essentially a cross entropy, and ¢ is the hyperparameter. E is the expected value calculated
for the model. The ultimate purpose of the discriminator is to keep Dy, approaching 1 and
D (G(x,z)) approaching 0.

4. Experiment and Analysis
4.1. Datasets

Experiments were conducted on two public pedestrian trajectory prediction
datasets—ETH [1] and UCY [23]—which include five social scenarios. The ETH dataset
comprises two scenarios, ETH and hotel, while the UCY dataset includes three scenarios,
Univ, zaral, and zara2. Both datasets provide a wealth of pedestrian trajectory information
and diverse scenarios, encompassing approximately 1536 pedestrians in total. The ETH
dataset primarily captures the walking patterns of pedestrians in relatively busy public
spaces, such as squares and sidewalks. In contrast, the UCY dataset covers a broader range
of environments, including shopping malls and city streets, and features various types of
pedestrian interactions, such as avoidance, following, and group walking.

Together, these datasets offer extensive data on pedestrian interactions and encompass
rich scenarios, including densely populated shopping areas and transit stations with
high pedestrian flow. This makes them particularly suitable for studying both pedestrian
interactions and pedestrian—environment interactions, as explored in this paper. The scenes
contained in the ETH and UCY datasets are summarized in Table 1. In the ETH dataset,
Site 1 refers to the ETH dataset scene, where pedestrian density is low, but there are
frequent interactions between pedestrians and static obstacles. Site 2 refers to the hotel
dataset scene, where pedestrians primarily walk in a straight line. In the UCY dataset,
Site 1 corresponds to the Zara dataset scene, characterized by a high pedestrian density, the
presence of stationary crowds, and numerous pedestrian interactions. Site 2 refers to the
Univ dataset scene, which features a high pedestrian density, slow-moving crowds, and
obstacles such as streetlights and flower beds.
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Table 1. ETH and UCY scenes.

Datasets

ETH

ucy

4.2. Experimental Details

The experiment was conducted using the Windows 10 operating system, with the
deep learning framework Pytorch 1.8.1, CUDA 10.2, and cuDNN 7.6.5 installed, as well
as an Intel Core i7-10700K CPU and an NVIDIA Quadro RTX5000 GPU. The learning rate
of the trajectory generator is 0.0005, and the learning rate of the trajectory discriminator
is 0.001, using the Adam algorithm optimizer, t,,s = 8, ;.4 = 12. This model uses the
cross-validation method for its training and testing processes. We select four of these
datasets as the training set and the remaining dataset as the test dataset.

Figure 7 illustrates the training process of the model using the training dataset. It
is evident that the model’s loss function decreases as the number of epochs increases,
eventually leveling off. Throughout this process, both the Average Displacement Error
(ADE) and Final Displacement Error (FDE) metrics also stabilize alongside the loss value.
This indicates that the model is learning and adjusting its parameters to make its predictions
closer to the true values to gradually reduce the prediction error of the trajectory.

101 — Lloss

—— ADE
—— FDE

Value

25 5.0 7.5 10.0 125 15.0 17.5 200
Epoch
Figure 7. The results of the SISGAN model on the training datasets in terms of loss, ADE, and FDE
metrics during the training process. The x-axis represents the number of epochs of training, and the
y-axis represents the loss value during model training increases.
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4.3. Metrics

We use the Average Displacement Error (ADE) and the Final Displacement Error (FDE)
as evaluation metrics.
(1) Average Displacement Error (ADE) refers to the mean square error of all predicted
trajectory points and real trajectory points. ADE was defined as
1T A2 n2]Y? T
ADE(i) = %) [(xf - xi) + (yzt - yi)

1
,ADE = —Y_ ADE(i 26
)» Nt; i) (6

(2) Final Displacement Error (FDE) refers to the distance between the predicted trajec-
tory of the endpoint and the actual trajectory of the endpoint. FDE was defined as

FDE(i) - [(x?—ﬁ)ﬁ (y?—?fﬂ

4.4. Analysis of Results
4.4.1. Quantitative Results

1/2 1 N
FDE = —) FDE(i 27
FDE= ) FDEG) (27

In this study, classical trajectory prediction models including SGC-LSTM [24], S-
LSTM [3], Sophie [13], and S-GAN are selected and compared with the SISGAN model.
Table 2 presents the comparative findings of the Average Displacement Error (ADE) and
Final Displacement Error (FDE) for each method, with measurements expressed in meters.
Each row details the prediction error of each model across various dataset scenarios.
Notably, the accuracy of the model’s predictions is inversely correlated with the magnitude
of the prediction error reflected in the table.

Table 2. The Average Displacement Error (ADE) and Final Displacement Error (FDE) of different
methods on ETH and UCY.

ADE/FDE (Meter)

Dataset  gGc1sTM  SLSTM Sophie SGAN SISGAN
ETH 0.82/1.72 1.09/2.35 0.70/1.43 0.67/1.13 0.63/0.95
hotel 0.45/0.65 0.79/1.76 0.76/1.67 0.72/1.61 0.58/1.62
Univ 0.53/1.10 0.67/1.40 0.54/1.24 0.61/1.28 0.50/1.10
zaral 0.40/0.92 0.47/1.00 0.30/0.63 0.34/0.71 0.31/0.68
zara2 0.36/0.78 0.56/1.17 0.38/0.78 0.42/0.84 0.30/0.73

Average 0.51/1.03 0.72/1.54 0.54/1.15 0.58/1.19 0.46/1.01

Note: the bold data in the table are the best results predicted by the model.

To provide a clearer representation of the variability among the different results, we
have converted the prediction errors from Table 2 into a bar chart, as shown in Figure 8,
and will analyze them in detail.

As illustrated in Figure 8, pedestrian trajectory prediction models based on Genera-
tive Adversarial Networks (GANs) generally outperform those based on Long Short-term
Memory (LSTM) networks. This superior performance is primarily due to the adversar-
ial training between the discriminator and generator in GAN-based approaches, which
continuously enhances prediction capabilities.

A comparison of the prediction performance among the SGAN, Sophie, and SISGAN
models reveals that those who effectively learn both pedestrian interactions and envi-
ronmental data yield more accurate predictions. In the case of the hotel dataset, which
predominantly features linear pedestrian trajectories, the SGC-LSTM model surpasses the
SISGAN model proposed in this thesis. The SISGAN model, with its social attention and
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0
SGC-LSTM

SLSTM

environmental information modules, possesses a more complex network structure, which
can lead to decreased accuracy in simpler scenarios.

Conversely, for datasets such as ETH, Univ, and Zara, which include intricate pedes-
trian interactions and numerous static obstacles, the SISGAN model demonstrates superior
predictive performance. This highlights the effectiveness of the SISGAN model in empha-
sizing pedestrian interactions and assimilating scene information.

25¢

BNETH BETH
[ Hotel [ |Hotel
B Univ 25 Bl Univ
[Zaral o [Zaral
Il Zara2| Bl Zara2

=1.5¢

g

a

= 1

7 I I I I IHI I
0
Sophie SGAN SISGAN SGC-LSTM  SLSTM Sophie SGAN SISGAN

(a) (b)

Figure 8. Experimental results of different methods. We present the results of different models on
all datasets from ETH and UCY in the form of a bar chart. The X-axis represents different trajectory
prediction methods, while the Y-axis shows the prediction error of each method across all datasets,
with the unit in meters. (a) The Average Displacement Error (ADE) of different methods on ETH and
UCY. (b) The Final Displacement Error (FDE) of different methods on ETH and UCY.

4.4.2. Qualitative Results

We selected and visualized the prediction data for six scenarios, as illustrated in
Figure 9. To provide a more intuitive representation of the model’s predictive perfor-
mance, we simultaneously visualized the prediction data for real trajectories alongside
those generated by SGC-LSTM, S-LSTM, Sophie, and S-GAN. In our experiments, the
historical trajectory data step was set to 8, while the prediction step encompassed 12 time
steps, with each time step representing 0.4 s. In scenarios featuring sparse individual
flows, panels (a) and (b) demonstrate the model’s predictive capabilities. In this context,
the predictions generated by the SISGAN model prove to be quite accurate. Notably, in
panel (a), the SISGAN'’s attention module effectively captures interactive data concerning
the target pedestrian’s left side and the tree on their right, resulting in prediction outputs
that closely align with the real trajectory. Panel (c) depicts the target pedestrians walking
along the edge of the snow, where only the SISGAN model predicts a trajectory that
successfully avoids the snow. This outcome is attributed to the SISGAN scenario module,
which employs CNN to map spatial probability density to the semantic information
within the region. In panel (d), the pedestrian navigates around a car before continuing
along the path. Although some errors occur, the SISGAN model effectively captures the
pedestrian’s walking intentions. Panels (e) and (f) illustrate scenarios involving dense
crowds. In panel (e), while predictions from all models exhibit deviations, the SISGAN
model’s predictions successfully navigate around pedestrians on both sides, making them
the closest to the ground truth.
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GT =
—+—SGC-LSTM

(e) ()

Figure 9. Comparison of trajectory prediction of different models, where (a,b) are from the hotel
dataset, (c) is from the ETH dataset, (d) is from the zaral dataset, and (e f) are from the zara2 dataset.
(a) shows pedestrians avoiding obstacles on both sides; (b) shows pedestrians’ trajectories in a sparse
scene; (c) shows pedestrians avoiding snow; (d) shows pedestrians walking along the edges of a
car; (e) shows pedestrians adjusting their paths in the face of a stationary, dense crowd to avoid a
collision; and (f) shows pedestrians avoiding oncoming pedestrians.
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4.4.3. Results of Ablation Experiments

To validate the effectiveness of the social attention module and the scene information
module, we conducted experiments by removing both modules from the original model.
Table 3 presents the comparative results of Average Displacement Error (ADE) and Fi-
nal Displacement Error (FDE) for models with different configurations, while Figure 10
visualizes the results of the ablation experiment.

Table 3. The Average Displacement Error (ADE) and Final Displacement Error (FDE) of models with
different modules on ETH and UCY.

ADE/FDE (Meter)

Dataset SGAN SIGAN SISGAN
ETH 0.67/1.13 0.79/1.43 0.63/0.95
hotel 0.72/1.61 0.58/1.21 0.58/1.62
Univ 0.61/1.28 0.65/1.41 0.50/1.10
zaral 0.34/0.71 0.32/0.80 0.31/0.68
zara2 0.42/0.84 0.42/0.78 0.30/0.73

Average 0.58/1.19 0.51/1.10 0.46/1.01

Note: the bold data in the table are the best results predicted by the model.

Figure 10. Comparison of trajectory prediction of ablation study, where (a,b) are from the hotel
dataset, (c) from the zaral dataset, (d) from the Univ dataset, (e) from the ETH dataset, and (f) from
the zara2 dataset. (a) shows pedestrians avoiding stationary pedestrians; (b) shows pedestrians
avoiding pedestrians on both sides; (c) shows pedestrians walking in pairs; (d) shows pedestrians
walking around stationary obstacles; (e) shows pedestrians adjusting their paths in the face of a dense
crowd to avoid a collision; and (f) shows pedestrians walking along the edges of a car.

In this paper, we selected the following three models for comparison: the SGAN model,
which does not utilize pedestrian interaction information for predictions; the SIGAN
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model, which employs only the interaction attention module; and the SISGAN model,
which simultaneously uses both the interaction attention module and the environmental
information module. This comparison is intended to validate the effectiveness of the
proposed interaction attention module and environmental information module. The results
of the ablation experiments are presented in Table 3.

From Table 3, it is evident that the overall prediction performance of the SIGAN model
is better than that of the SGAN model. However, the prediction results of the SIGAN
model on the ETH dataset are inferior to those of the SGAN model. This discrepancy
can be attributed to the complexity introduced by the extensive calculations of pedestrian
interactions within the SIGAN model. The ETH dataset contains a significant number of
static obstacles but a relatively low pedestrian density, which leads to the complex network
model actually degrading trajectory prediction performance. Additionally, we observe that
the SISGAN model demonstrates improved prediction results compared to the SIGAN
model, particularly in the Univ and zara2 datasets, which feature a greater presence of
static and dynamic obstacles. These results confirm the effectiveness of the interaction
attention module and environmental information module designed in this paper.

As illustrated in Figure 10, panel (a) shows the movement of pedestrians avoiding
those in front of them. It is evident that the SIGAN model presented in this paper demon-
strates a more pronounced ability to avoid pedestrians compared to the SGAN model.
Panel (b) indicates that the trajectory predictions from both the SGAN and SIGAN models
are largely similar in sparse scenarios. In panel (c), we observe that the SIGAN model
yields relatively smaller errors in companion situations. Panel (d) highlights that, while
there are no significantly large errors in the final predicted positions, the prediction process
itself does not achieve the desired accuracy. Panels (e) and (f) illustrate that the SISGAN
model, which incorporates the environmental information module, provides superior tra-
jectory data for obstacle avoidance compared to the SIGAN model does not emphasize
environmental context, particularly in situations where obstacles need to be navigated or
when pedestrians are walking alongside them.

We believe that the ablation experiments validate the effectiveness of both the social
interaction module and the environmental information module in this study. However,
due to the independence of individual pedestrians, even though the model can predict
the final locations of pedestrians more accurately, there is still a need for the model to
better understand pedestrians” walking intentions. This understanding would enhance the
accuracy of trajectory predictions.

5. Conclusions

In this work, we propose a pedestrian trajectory prediction method that effectively
integrates social interactions and environmental information. Our approach extracts four
types of interaction data and calculates influence weights for different pedestrians from
their perspectives. This addresses the limitations of previous studies that primarily focused
on pedestrian interactions based on distance or velocity. Furthermore, we establish poten-
tial correlations between desired pedestrian scenes by utilizing historical trajectory density
distributions, enabling a more targeted extraction of scene information. We conduct experi-
ments on the ETH and UCY datasets to demonstrate the effectiveness of each component of
our approach. However, the pedestrian trajectory prediction method proposed in this paper
uses an attention mechanism to calculate the impact weights of interaction features and
environmental information features. The computation process of the attention mechanism
generates a large number of matrix operations and fully connected layer calculations, which
increases the computation time and cost. In the future, we aim to design a sliding window
to extract regional information surrounding the pedestrian, including a controllable scene
information range and a manageable number of surrounding pedestrians. For example, in
densely populated areas, a smaller window can be chosen to capture details, while in open
areas, a larger window can be used to obtain more contextual information. This dynamic
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control approach reduces redundant calculations of other information and improves the
computational efficiency of the model.
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