Determining Rock Joint Peak Shear Strength Based on GA-BP Neural Network Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Methods
2.2.1. Correlation Analysis
2.2.2. Principle of GA-BP Neural Network
3. Peak Shear Strength Prediction Model
3.1. Correlation Analysis of Shear Factors
3.2. GA-BP Neural Network
3.3. Forecasting Results
4. Error Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Number | σn | JRC | JCS | φ | Size | Vn | τt | Number | σn | JRC | JCS | φ | Size | Vn | τt |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 12.88 | 65.69 | 40.51 | 2500 | 2 | 2.93 | 104 | 3.5 | 1 | 65.69 | 36.8 | 9025 | 1 | 2.9 |
2 | 2 | 12.88 | 65.69 | 40.51 | 3600 | 2 | 3.48 | 105 | 4 | 1 | 65.69 | 36.8 | 9025 | 1 | 3.37 |
3 | 2 | 12.88 | 65.69 | 40.51 | 4900 | 2 | 3.85 | 106 | 2 | 5 | 65.69 | 36.8 | 1225 | 1 | 2.25 |
4 | 2 | 12.88 | 65.69 | 40.51 | 6400 | 2 | 3.73 | 107 | 2.5 | 5 | 65.69 | 36.8 | 1225 | 1 | 2.81 |
5 | 2 | 12.88 | 65.69 | 40.51 | 8100 | 2 | 3.52 | 108 | 3 | 5 | 65.69 | 36.8 | 1225 | 1 | 3.2 |
6 | 2 | 12.88 | 65.69 | 40.51 | 10,000 | 2 | 3.62 | 109 | 3.5 | 5 | 65.69 | 36.8 | 1225 | 1 | 3.71 |
7 | 2.5 | 12.88 | 65.69 | 40.51 | 2500 | 2 | 3.73 | 110 | 4 | 5 | 65.69 | 36.8 | 1225 | 1 | 4.17 |
8 | 2.5 | 12.88 | 65.69 | 40.51 | 3600 | 2 | 4.31 | 111 | 2 | 5 | 65.69 | 36.8 | 2500 | 1 | 2.41 |
9 | 2.5 | 12.88 | 65.69 | 40.51 | 4900 | 2 | 4.81 | 112 | 2.5 | 5 | 65.69 | 36.8 | 2500 | 1 | 2.84 |
10 | 2.5 | 12.88 | 65.69 | 40.51 | 6400 | 2 | 4.62 | 113 | 3 | 5 | 65.69 | 36.8 | 2500 | 1 | 3 |
11 | 2.5 | 12.88 | 65.69 | 40.51 | 8100 | 2 | 4.58 | 114 | 3.5 | 5 | 65.69 | 36.8 | 2500 | 1 | 3.21 |
12 | 2.5 | 12.88 | 65.69 | 40.51 | 10,000 | 2 | 4.21 | 115 | 4 | 5 | 65.69 | 36.8 | 2500 | 1 | 3.76 |
13 | 3 | 12.88 | 65.69 | 40.51 | 2500 | 2 | 4.11 | 116 | 2 | 5 | 65.69 | 36.8 | 4225 | 1 | 2.48 |
14 | 3 | 12.88 | 65.69 | 40.51 | 3600 | 2 | 4.68 | 117 | 2.5 | 5 | 65.69 | 36.8 | 4225 | 1 | 2.69 |
15 | 3 | 12.88 | 65.69 | 40.51 | 4900 | 2 | 5.39 | 118 | 3 | 5 | 65.69 | 36.8 | 4225 | 1 | 2.76 |
16 | 3 | 12.88 | 65.69 | 40.51 | 6400 | 2 | 5.23 | 119 | 3.5 | 5 | 65.69 | 36.8 | 4225 | 1 | 3.16 |
17 | 3 | 12.88 | 65.69 | 40.51 | 8100 | 2 | 5.01 | 120 | 4 | 5 | 65.69 | 36.8 | 4225 | 1 | 3.9 |
18 | 3 | 12.88 | 65.69 | 40.51 | 10,000 | 2 | 4.85 | 121 | 2 | 5 | 65.69 | 36.8 | 6400 | 1 | 2.18 |
19 | 3.5 | 12.88 | 65.69 | 40.51 | 2500 | 2 | 4.58 | 122 | 2.5 | 5 | 65.69 | 36.8 | 6400 | 1 | 2.63 |
20 | 3.5 | 12.88 | 65.69 | 40.51 | 3600 | 2 | 5.18 | 123 | 3 | 5 | 65.69 | 36.8 | 6400 | 1 | 2.99 |
21 | 3.5 | 12.88 | 65.69 | 40.51 | 4900 | 2 | 5.63 | 124 | 3.5 | 5 | 65.69 | 36.8 | 6400 | 1 | 3.25 |
22 | 3.5 | 12.88 | 65.69 | 40.51 | 6400 | 2 | 5.41 | 125 | 4 | 5 | 65.69 | 36.8 | 6400 | 1 | 3.82 |
23 | 3.5 | 12.88 | 65.69 | 40.51 | 8100 | 2 | 5.59 | 126 | 2 | 5 | 65.69 | 36.8 | 9025 | 1 | 2.13 |
24 | 3.5 | 12.88 | 65.69 | 40.51 | 10,000 | 2 | 5.37 | 127 | 2.5 | 5 | 65.69 | 36.8 | 9025 | 1 | 2.61 |
25 | 4 | 12.88 | 65.69 | 40.51 | 2500 | 2 | 5.72 | 128 | 3 | 5 | 65.69 | 36.8 | 9025 | 1 | 2.98 |
26 | 4 | 12.88 | 65.69 | 40.51 | 3600 | 2 | 6.11 | 129 | 3.5 | 5 | 65.69 | 36.8 | 9025 | 1 | 3.56 |
27 | 4 | 12.88 | 65.69 | 40.51 | 4900 | 2 | 6.41 | 130 | 4 | 5 | 65.69 | 36.8 | 9025 | 1 | 3.96 |
28 | 4 | 12.88 | 65.69 | 40.51 | 6400 | 2 | 6.17 | 131 | 2 | 9 | 65.69 | 36.8 | 1225 | 1 | 2.75 |
29 | 4 | 12.88 | 65.69 | 40.51 | 8100 | 2 | 6.15 | 132 | 2.5 | 9 | 65.69 | 36.8 | 1225 | 1 | 3.29 |
30 | 4 | 12.88 | 65.69 | 40.51 | 10,000 | 2 | 5.65 | 133 | 3 | 9 | 65.69 | 36.8 | 1225 | 1 | 3.51 |
31 | 2 | 16 | 65.69 | 40.51 | 2500 | 2 | 4.08 | 134 | 3.5 | 9 | 65.69 | 36.8 | 1225 | 1 | 4.03 |
32 | 2.5 | 16 | 65.69 | 40.51 | 2500 | 2 | 4.46 | 135 | 4 | 9 | 65.69 | 36.8 | 1225 | 1 | 4.41 |
33 | 3 | 16 | 65.69 | 40.51 | 2500 | 2 | 5.65 | 136 | 2 | 9 | 65.69 | 36.8 | 2500 | 1 | 2.39 |
34 | 3.5 | 16 | 65.69 | 40.51 | 2500 | 2 | 6.23 | 137 | 2.5 | 9 | 65.69 | 36.8 | 2500 | 1 | 2.96 |
35 | 4 | 16 | 65.69 | 40.51 | 2500 | 2 | 7.12 | 138 | 3 | 9 | 65.69 | 36.8 | 2500 | 1 | 3.33 |
36 | 2 | 12.88 | 65.69 | 40.51 | 2500 | 2 | 3.59 | 139 | 3.5 | 9 | 65.69 | 36.8 | 2500 | 1 | 3.81 |
37 | 2.5 | 12.88 | 65.69 | 40.51 | 2500 | 2 | 4.4 | 140 | 4 | 9 | 65.69 | 36.8 | 2500 | 1 | 4.22 |
38 | 3 | 12.88 | 65.69 | 40.51 | 2500 | 2 | 5.11 | 141 | 2 | 9 | 65.69 | 36.8 | 4225 | 1 | 2.51 |
39 | 3.5 | 12.88 | 65.69 | 40.51 | 2500 | 2 | 6.06 | 142 | 2.5 | 9 | 65.69 | 36.8 | 4225 | 1 | 2.85 |
40 | 4 | 12.88 | 65.69 | 40.51 | 2500 | 2 | 6.86 | 143 | 3 | 9 | 65.69 | 36.8 | 4225 | 1 | 3.34 |
41 | 2 | 9.9 | 65.69 | 40.51 | 2500 | 2 | 3.2 | 144 | 3.5 | 9 | 65.69 | 36.8 | 4225 | 1 | 3.82 |
42 | 2.5 | 9.9 | 65.69 | 40.51 | 2500 | 2 | 3.65 | 145 | 4 | 9 | 65.69 | 36.8 | 4225 | 1 | 4.25 |
43 | 3 | 9.9 | 65.69 | 40.51 | 2500 | 2 | 4.75 | 146 | 2 | 9 | 65.69 | 36.8 | 6400 | 1 | 2.31 |
44 | 3.5 | 9.9 | 65.69 | 40.51 | 2500 | 2 | 5.46 | 147 | 2.5 | 9 | 65.69 | 36.8 | 6400 | 1 | 2.82 |
45 | 4 | 9.9 | 65.69 | 40.51 | 2500 | 2 | 6.22 | 148 | 3 | 9 | 65.69 | 36.8 | 6400 | 1 | 3.19 |
46 | 2 | 7.09 | 65.69 | 40.51 | 2500 | 2 | 2.75 | 149 | 3.5 | 9 | 65.69 | 36.8 | 6400 | 1 | 3.55 |
47 | 2.5 | 7.09 | 65.69 | 40.51 | 2500 | 2 | 3.41 | 150 | 4 | 9 | 65.69 | 36.8 | 6400 | 1 | 4.19 |
48 | 3 | 7.09 | 65.69 | 40.51 | 2500 | 2 | 4.04 | 151 | 2 | 9 | 65.69 | 36.8 | 9025 | 1 | 2.18 |
49 | 3.5 | 7.09 | 65.69 | 40.51 | 2500 | 2 | 4.91 | 152 | 2.5 | 9 | 65.69 | 36.8 | 9025 | 1 | 2.6 |
50 | 4 | 7.09 | 65.69 | 40.51 | 2500 | 2 | 5.65 | 153 | 3 | 9 | 65.69 | 36.8 | 9025 | 1 | 3.26 |
51 | 2 | 4.46 | 65.69 | 40.51 | 2500 | 2 | 2.28 | 154 | 3.5 | 9 | 65.69 | 36.8 | 9025 | 1 | 3.48 |
52 | 2.5 | 4.46 | 65.69 | 40.51 | 2500 | 2 | 3.09 | 155 | 4 | 9 | 65.69 | 36.8 | 9025 | 1 | 4.06 |
53 | 3 | 4.46 | 65.69 | 40.51 | 2500 | 2 | 3.59 | 156 | 2 | 13 | 65.69 | 36.8 | 1225 | 1 | 3.45 |
54 | 3.5 | 4.46 | 65.69 | 40.51 | 2500 | 2 | 4.32 | 157 | 2.5 | 13 | 65.69 | 36.8 | 1225 | 1 | 3.84 |
55 | 4 | 4.46 | 65.69 | 40.51 | 2500 | 2 | 4.94 | 158 | 3 | 13 | 65.69 | 36.8 | 1225 | 1 | 4.34 |
56 | 3 | 13.54 | 16.12 | 32.11 | 1962.5 | 1 | 4.15 | 159 | 3.5 | 13 | 65.69 | 36.8 | 1225 | 1 | 4.79 |
57 | 4 | 11.8 | 16.12 | 32.11 | 1962.5 | 1 | 4.56 | 160 | 4 | 13 | 65.69 | 36.8 | 1225 | 1 | 5.22 |
58 | 5 | 14.22 | 16.12 | 32.11 | 1962.5 | 1 | 4.98 | 161 | 2 | 13 | 65.69 | 36.8 | 2500 | 1 | 3.38 |
59 | 6 | 14.52 | 16.12 | 32.11 | 1962.5 | 1 | 5.41 | 162 | 2.5 | 13 | 65.69 | 36.8 | 2500 | 1 | 3.86 |
60 | 7 | 13.12 | 16.12 | 32.11 | 1962.5 | 1 | 6.86 | 163 | 3 | 13 | 65.69 | 36.8 | 2500 | 1 | 4.03 |
61 | 3 | 19 | 31.82 | 36 | 1962.5 | 1 | 3.76 | 164 | 3.5 | 13 | 65.69 | 36.8 | 2500 | 1 | 4.59 |
62 | 4 | 18.4 | 31.82 | 36 | 1962.5 | 1 | 3.94 | 165 | 4 | 13 | 65.69 | 36.8 | 2500 | 1 | 5.04 |
63 | 5 | 17.61 | 31.82 | 36 | 1962.5 | 1 | 5.55 | 166 | 2 | 13 | 65.69 | 36.8 | 4225 | 1 | 3.17 |
64 | 6 | 17.29 | 31.82 | 36 | 1962.5 | 1 | 5.92 | 167 | 2.5 | 13 | 65.69 | 36.8 | 4225 | 1 | 3.72 |
65 | 7 | 18.35 | 31.82 | 36 | 1962.5 | 1 | 6.72 | 168 | 3 | 13 | 65.69 | 36.8 | 4225 | 1 | 4.18 |
66 | 3 | 9.06 | 36.84 | 47.39 | 1962.5 | 1 | 4.04 | 169 | 3.5 | 13 | 65.69 | 36.8 | 4225 | 1 | 4.52 |
67 | 4 | 12.57 | 36.84 | 47.39 | 1962.5 | 1 | 4.74 | 170 | 4 | 13 | 65.69 | 36.8 | 4225 | 1 | 5.3 |
68 | 5 | 11.11 | 36.84 | 47.39 | 1962.5 | 1 | 5.3 | 171 | 2 | 13 | 65.69 | 36.8 | 6400 | 1 | 2.99 |
69 | 6 | 9.19 | 36.84 | 47.39 | 1962.5 | 1 | 7.06 | 172 | 2.5 | 13 | 65.69 | 36.8 | 6400 | 1 | 3.59 |
70 | 7 | 12.33 | 36.84 | 47.39 | 1962.5 | 1 | 8.27 | 173 | 3 | 13 | 65.69 | 36.8 | 6400 | 1 | 4.2 |
71 | 3 | 18.13 | 21.15 | 43.5 | 1962.5 | 1 | 3.61 | 174 | 3.5 | 13 | 65.69 | 36.8 | 6400 | 1 | 4.73 |
72 | 4 | 13.57 | 21.15 | 43.5 | 1962.5 | 1 | 5.3 | 175 | 4 | 13 | 65.69 | 36.8 | 6400 | 1 | 5.42 |
73 | 5 | 17.43 | 21.15 | 43.5 | 1962.5 | 1 | 5.58 | 176 | 2 | 13 | 65.69 | 36.8 | 9025 | 1 | 3.15 |
74 | 6 | 14.84 | 21.15 | 43.5 | 1962.5 | 1 | 6.5 | 177 | 2.5 | 13 | 65.69 | 36.8 | 9025 | 1 | 3.42 |
75 | 7 | 20.73 | 21.15 | 43.5 | 1962.5 | 1 | 7.21 | 178 | 3 | 13 | 65.69 | 36.8 | 9025 | 1 | 3.99 |
76 | 3 | 8.21 | 8.52 | 35.89 | 1962.5 | 1 | 2.5 | 179 | 3.5 | 13 | 65.69 | 36.8 | 9025 | 1 | 4.44 |
77 | 4 | 8.21 | 8.52 | 35.89 | 1962.5 | 1 | 3.76 | 180 | 4 | 13 | 65.69 | 36.8 | 9025 | 1 | 4.81 |
78 | 5 | 8.21 | 8.52 | 35.89 | 1962.5 | 1 | 3.48 | 181 | 2 | 17 | 65.69 | 36.8 | 1225 | 1 | 2.93 |
79 | 6 | 8.21 | 8.52 | 35.89 | 1962.5 | 1 | 5.13 | 182 | 2.5 | 17 | 65.69 | 36.8 | 1225 | 1 | 3.8 |
80 | 7 | 8.21 | 8.52 | 35.89 | 1962.5 | 1 | 5.15 | 183 | 3 | 17 | 65.69 | 36.8 | 1225 | 1 | 4.74 |
81 | 2 | 1 | 65.69 | 36.8 | 1225 | 1 | 2.38 | 184 | 3.5 | 17 | 65.69 | 36.8 | 1225 | 1 | 5.36 |
82 | 2.5 | 1 | 65.69 | 36.8 | 1225 | 1 | 2.72 | 185 | 4 | 17 | 65.69 | 36.8 | 1225 | 1 | 5.68 |
83 | 3 | 1 | 65.69 | 36.8 | 1225 | 1 | 3.1 | 186 | 2 | 17 | 65.69 | 36.8 | 2500 | 1 | 3.55 |
84 | 3.5 | 1 | 65.69 | 36.8 | 1225 | 1 | 3.42 | 187 | 2.5 | 17 | 65.69 | 36.8 | 2500 | 1 | 3.94 |
85 | 4 | 1 | 65.69 | 36.8 | 1225 | 1 | 3.86 | 188 | 3 | 17 | 65.69 | 36.8 | 2500 | 1 | 4.12 |
86 | 2 | 1 | 65.69 | 36.8 | 2500 | 1 | 1.73 | 189 | 3.5 | 17 | 65.69 | 36.8 | 2500 | 1 | 4.23 |
87 | 2.5 | 1 | 65.69 | 36.8 | 2500 | 1 | 2.2 | 190 | 4 | 17 | 65.69 | 36.8 | 2500 | 1 | 4.46 |
88 | 3 | 1 | 65.69 | 36.8 | 2500 | 1 | 2.54 | 191 | 2 | 17 | 65.69 | 36.8 | 4225 | 1 | 3.3 |
89 | 3.5 | 1 | 65.69 | 36.8 | 2500 | 1 | 2.94 | 192 | 2.5 | 17 | 65.69 | 36.8 | 4225 | 1 | 3.19 |
90 | 4 | 1 | 65.69 | 36.8 | 2500 | 1 | 3.31 | 193 | 3 | 17 | 65.69 | 36.8 | 4225 | 1 | 3.73 |
91 | 2 | 1 | 65.69 | 36.8 | 4225 | 1 | 1.73 | 194 | 3.5 | 17 | 65.69 | 36.8 | 4225 | 1 | 3.91 |
92 | 2.5 | 1 | 65.69 | 36.8 | 4225 | 1 | 2.04 | 195 | 4 | 17 | 65.69 | 36.8 | 4225 | 1 | 4.74 |
93 | 3 | 1 | 65.69 | 36.8 | 4225 | 1 | 2.45 | 196 | 2 | 17 | 65.69 | 36.8 | 6400 | 1 | 2.89 |
94 | 3.5 | 1 | 65.69 | 36.8 | 4225 | 1 | 2.87 | 197 | 2.5 | 17 | 65.69 | 36.8 | 6400 | 1 | 3.4 |
95 | 4 | 1 | 65.69 | 36.8 | 4225 | 1 | 3.26 | 198 | 3 | 17 | 65.69 | 36.8 | 6400 | 1 | 3.83 |
96 | 2 | 1 | 65.69 | 36.8 | 6400 | 1 | 1.68 | 199 | 3.5 | 17 | 65.69 | 36.8 | 6400 | 1 | 4.6 |
97 | 2.5 | 1 | 65.69 | 36.8 | 6400 | 1 | 1.99 | 200 | 4 | 17 | 65.69 | 36.8 | 6400 | 1 | 4.98 |
98 | 3 | 1 | 65.69 | 36.8 | 6400 | 1 | 2.44 | 201 | 2 | 17 | 65.69 | 36.8 | 9025 | 1 | 2.81 |
99 | 3.5 | 1 | 65.69 | 36.8 | 6400 | 1 | 2.89 | 202 | 2.5 | 17 | 65.69 | 36.8 | 9025 | 1 | 3.45 |
100 | 4 | 1 | 65.69 | 36.8 | 6400 | 1 | 3.27 | 203 | 3 | 17 | 65.69 | 36.8 | 9025 | 1 | 4.11 |
101 | 2 | 1 | 65.69 | 36.8 | 9025 | 1 | 1.71 | 204 | 3.5 | 17 | 65.69 | 36.8 | 9025 | 1 | 4.33 |
102 | 2.5 | 1 | 65.69 | 36.8 | 9025 | 1 | 2.16 | 205 | 4 | 17 | 65.69 | 36.8 | 9025 | 1 | 5.15 |
103 | 3 | 1 | 65.69 | 36.8 | 9025 | 1 | 2.5 |
Appendix B
References
- Barton, N. Review of a new shear-strength criterion for rock joints. Eng. Geol. 1973, 7, 287–332. [Google Scholar] [CrossRef]
- Heuze, F.E. Scale effects in the determination of rock mass strength and deformability. Rock Mech. 1980, 12, 167–192. [Google Scholar] [CrossRef]
- Zhang, X.B.; Yi, B.; Jiang, Q.H.; Feng, X.X.; Chen, N. Evaluation Models for the Peak Shear-Strength and Shear-Resistance Components of Rough Rock Joints. ASTM Int. J. Test. Eval. 2017, 45, 2128–2138. [Google Scholar] [CrossRef]
- Liu, X.; Deng, Z.; Liu, Y.; Liu, S.; Lu, Y.; Han, Y. An experimental study on the cumulative damage and shear properties of rock joints under pre-peak cyclic shear loading. Chin. J. Rock Mech. Eng. 2018, 37, 2664–2675. [Google Scholar] [CrossRef]
- Yong, R.; Ye, J.; Liang, Q.F.; Huang, M.; Du, S.G. Estimation of the joint roughness coefficient (JRC) of rock joints by vector similarity measures. Bull. Eng. Geol. Environ. 2018, 77, 735–749. [Google Scholar] [CrossRef]
- Ban, L.; Du, W.; Qi, C.; Zhu, C. Modified 2D roughness parameters for rock joints at two different scales and their correlation with JRC. Int. J. Rock Mech. Min. Sci. 2021, 137, 104549. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J.; Wang, F. Experimental study on shear behavior of rock under uniform distribute normal stress. In Proceedings of the 2022 Industrial Architecture Academic Exchange Conference, Beijing, China, 14 October 2022; Available online: https://kns.cnki.net/kcms2/article/abstract?v=ZoyQtr8ALTd4yt00o7lckRNHvq-GdAyXnIvoEkU8bi_XIEHgxpFkgk9JNivPP_em0I8Zw5lE_CY-TdRsG74LbiqL3ewZXLX2NT2GNU6tRmXk7vT89fQreJDsOEGRlbhVniHyF4KwBX1ZqqJYdFAQatsQDfvymYsqFj8XPN3oZiCb_xaQ9SvC0xa1QnmGRN7qWcpXzRqUdkyC5BrftgfJGqVJnHAxQtk2&uniplatform=NZKPT (accessed on 17 October 2024).
- Liu, J.; Guo, B.; Cheng, T.; Sun, J.; Tian, S.; Chen, Y. Experimental study on empirical formula of peak shear strength for rock-concrete interface. Chin. J. Rock Mech. Eng. 2023, 42, 2552–2565. [Google Scholar] [CrossRef]
- Barton, N.; Wang, C.; Yong, R. Advances in joint roughness coefficient (JRC) and its engineering applications. J. Rock Mech. Geotech. Eng. 2023, 15, 3352–3379. [Google Scholar] [CrossRef]
- Grasselli, G.; Egger, P.; Wirth, J.; Hopkins, D. Characterization of the parameters that govern the peak shear strength rock joints. In Proceedings of the 38th U.S. Symposium on Rock Mechanics (USRMS), Washington, DC, USA, 7–10 July 2001; ARMA: Richardson, TX, USA, 2001; pp. 1–817. [Google Scholar]
- Shen, M.R.; Zhang, Q.Z. Experimental Study of Shear Deformation Characteristics of Rock Mass Discontinuities. Chin. J. Rock Mech. Eng. 2010, 29, 713–719. [Google Scholar]
- Chen, S.; Zhu, W.; Wang, C.; Wang, C.; Guo, L. Peak Shear Strength of 3D Rock Discontinuities Based on Anisotropic Properties. Chin. J. Rock Mech. Eng. 2016, 35, 2013–2021. [Google Scholar] [CrossRef]
- Yang, J.; Rong, G.; Hou, D.; Peng, J.; Zhou, C. Experimental Study on Peak Shear Strength Criterion for Rock Joints. Rock Mech. Rock Eng. 2016, 49, 821–835. [Google Scholar] [CrossRef]
- Dong, Y. Experimental Study on Mechanical Shear Properties of Irregular Rock Fractures. Master’s Thesis, Henan Polytechnic University, Jiaozuo, China, 2017. [Google Scholar]
- Tian, Y.; Liu, Q.; Liu, D.; Kang, Y.; Deng, P.; He, F. Updates to Grasselli’s Peak Shear Strength Model. Rock Mech. Rock Eng. 2018, 51, 2115–2133. [Google Scholar] [CrossRef]
- Liu, Q.; Tian, Y.; Ji, P.; Ma, H. Experimental Investigation of the Peak Shear Strength Criterion Based on Three-Dimensional Surface Description. Rock Mech. Rock Eng. 2018, 51, 1005–1025. [Google Scholar] [CrossRef]
- Wang, S.; Yin, H.; Zhang, Z.; Wei, W. A new prediction model for peak shear strength of rock joints considering the 3d morphology parameters. J. Northeast. Univ. (Nat. Sci.) 2021, 42, 1609. [Google Scholar] [CrossRef]
- Sheng, J.; Xu, L.; Zhou, X.; Peng, Z. Research on Peak Shear Strength Model of Rock Joints Based on Three-Dimensional Shape Parameters. Metal Mine 2022, 6, 9–16. [Google Scholar] [CrossRef]
- Cheng, T.; Guo, B.; Sun, J. A strength empirical formula of irregular rock joints based on peak shear test. Chin. J. Rock Mech. Eng. 2022, 41, 93–105. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, Y.; Tang, H.; Fang, K.; Jiang, Y.; Liu, C.; Wang, X. Peak Shear Strength Prediction for Discontinuities Between Two Different Rock Types Using a Neural Network Approach. Bull. Eng. Geol. Environ. 2019, 78, 2315–2329. [Google Scholar] [CrossRef]
- Huang, M.; Hong, C.; Chen, J.; Ma, C.; Li, C.; Huang, Y. Prediction of Peak Shear Strength of Rock Joints Based on Back-Propagation Neural Network. Int. J. Geomech. 2021, 21, 4021085. [Google Scholar] [CrossRef]
- Wang, W. Study on Prediction of Shear Mechanics Characteristics of Rock Joints Based on BP Neural Network. Master’s Thesis, Dalian University of Technology, Dalian, China, 2021. [Google Scholar] [CrossRef]
- Shen, H.; Liu, Y.; Li, H.; Xia, X.; Liu, B.; Yu, C. Prediction of Peak Shear Strength of Joints Based on Machine Learning Algorithms. In Proceedings of the 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA), Changchun, China, 20–22 May 2022; pp. 821–824. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, H.; Wei, L.; Xu, J.; Ma, H. Analysis of Mechanical Properties of Fractured Rock Mechanics and Intelligent Prediction Method Considering Joint Morphology Characteristics. Yangtze River. 2023. Available online: https://kns.cnki.net/kcms2/article/abstract?v=ZoyQtr8ALTdMPmtskJnKr-ycn8nAzLcYc5HISwVFm7Wa9JR9HwpXOOpdDpHG6CXgzgKUP48_o9AmHYFQDcKyk3jec-B1Jj1NygOETUHsInsNaIfTaqlBvrQBS8CqiOCe0AwNphEOZT8RyTtJijolcrf3V-3zueaECg49DSA6Vsw_hMt33mAvAfU5wV3qTLPC&uniplatform=NZKPT&language=CHS (accessed on 17 October 2024).
- Liu, Z.; Li, D.; Liu, Y.; Yang, B.; Zhang, Z. Prediction of Uniaxial Compressive Strength of Rock Based on Lithology Using Stacking Models. Rock Mech. Bull. 2023, 2, 100081. [Google Scholar] [CrossRef]
- Wei, X.; Shahani, N.M.; Zheng, X. Predictive Modeling of the Uniaxial Compressive Strength of Rocks Using an Artificial Neural Network Approach. Mathematics 2023, 11, 1650. [Google Scholar] [CrossRef]
- He, M.; Zhang, Z.; Ren, J.; Huan, J.; Li, G.; Chen, Y.; Li, N. Deep convolutional neural network for fast determination of the rock strength parameters using drilling data. Int. J. Rock Mech. Min. Sci. 2019, 123, 104084. [Google Scholar] [CrossRef]
- Feng, Z.; Hu, X.; Tian, Z.; Jiang, B.; Zhang, H.; Zhang, W. Bi-LSTM-Based Dynamic Prediction Model for Pulling Speed of Czochralski Single-Crystal Furnace. J. Comput. Inf. Sci. Eng. 2023, 23, 041010. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Z.; Zhang, J. Predicting peak shear strength of rock fractures using tree-based models and convolutional neural network. Comput. Geotech. 2024, 166, 105965. [Google Scholar] [CrossRef]
- Ma, Z.; Ou, X.; Zhang, B. Development of a convolutional neural network based geomechanical upscaling technique for heterogeneous geological reservoir. J. Rock Mech. Geotech. Eng. 2024, 16, 2111–2125. [Google Scholar] [CrossRef]
- Xie, H. Fractal Description of Rock Joints. Chin. J. Rock Mech. Eng. 1995, 17, 18–23. [Google Scholar]
- Barton, N.; Choubey, V. The shear strength of rock joints in theory and practice. Sci. Rock Mech. 1977, 10, 1–54. [Google Scholar] [CrossRef]
- Wang, X.; Yao, Y.; Tao, C.; Chu, D.; Xu, B. Correlation Analysis of Dam Deformation Monitoring Data for Concrete Gravity Dam. China Rural. Water Hydropower. 2024, 8, 180-187+193. [Google Scholar]
- Zhang, Y.; Xu, P.; Lin, J.; Wu, X.; Liu, J.; Xiang, C.; He, Y.; Yang, C.; Xu, C. Earthquake-Triggered Landslide Susceptibility Prediction in Jiuzhaigou Based on BP Neural Network. J. Eng. Geol. 2024, 32, 133–145. [Google Scholar] [CrossRef]
- Han, B.; Ji, K.; Hu, Y.F.; Yao, S. Application of ANN-PSO-GA Model in UCS Prediction and Mix Proportion Optimization of Wet Shotcrete. J. Min. Saf. Eng. 2021, 38, 584–591. [Google Scholar] [CrossRef]
- Yan, J.; Zheng, S.; Guo, P.; Zhang, B.; Mao, Z. Prediction of heat transfer characteristics for supercritical co2 based on ga-bp neural network. CIESC J. 2021, 72, 4649–4657. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Chen, X.; Yang, H.; Yu, D.; Song, Y. Strength evolution prediction of concrete structures during long-term service life based on GA-BP neural network. J. Cent. South Univ. (Sci. Technol.) 2024, 55, 836–850. [Google Scholar] [CrossRef]
Barton [1] | (1) | |
Liu [8] | (2) | |
Grasselli [10] | (3) | |
Shen [11] | (4) | |
Chen [12] | (5) | |
Yang [13] | (6) | |
Dong [14] | (7) | |
Tian [15] | (8) | |
Liu [16] | (9) | |
Wang [17] | (10) | |
Sheng [18] | (11) | |
Cheng [19] | (12) |
Reference | Method | Input Factors | Output Factors | R2 |
---|---|---|---|---|
Wu [20] | BPNN | σch/σcs; JRC; σn | τi/τs | 0.913 |
Huang [21] | BPNN | A0; ; σt; σn | τ | 9.66% (error) |
Wang [22] | BPNN | JRC; JCS; σn; φ | τ | 0.995 |
JRC; JCS/σn; σn; φ | 0.993 | |||
A0; c; ; σt; σn; φ | 0.99 | |||
A0; /(c + 1); σn/σt; JCS; σn; φ | 0.99 | |||
Shen [23] | SVM | σn; φ; σt; /(c + 1) | τ | 0.98 |
BPNN | 0.97 | |||
RF | 0.98 | |||
Lin [24] | GA-BPNN | D; Rq; μ; σn | τ | 0.96 |
Liu [25] | RF-LR | PLS; vp; SH | UCS | 0.93 |
Wei [26] | ANN | Ρd; BTS; Ρwet | UCS | 0.79 |
σ | JRC | JCS | φ | Size | vn | |
---|---|---|---|---|---|---|
p-value | <0.01 | <0.01 | <0.01 | <0.01 | 0.015 | <0.01 |
rxy | 0.711 ** | 0.568 ** | −0.309 ** | 0.420 ** | −0.17 * | 0.359 ** |
R2 | MAE | MBE | RMSE |
---|---|---|---|
0.713497 | 0.458708 | 0.077069 | 0.661966 |
Factors | GA-BP four-factor model | GA-BP five-factor-1 model | GA-BP five-factor-2 model | GA-BP six-factor model | |
Training set | R2 | 0.94 | 0.95 | 0.95 | 0.96 |
MAE | 0.21 | 0.20 | 0.21 | 0.17 | |
MBE | 0.04 | 0.01 | 0.00 | 0.01 | |
RMSE | 0.31 | 0.28 | 0.28 | 0.24 | |
Test set | R2 | 0.93 | 0.93 | 0.95 | 0.93 |
MAE | 0.22 | 0.23 | 0.17 | 0.23 | |
MBE | 0.14 | 0.04 | −0.02 | 0.06 | |
RMSE | 0.31 | 0.33 | 0.24 | 0.37 | |
Factors | BP four-factor model | BP five-factor-1 model | BP five-factor-2 model | BP six-factor model | |
Training set | R2 | 0.92 | 0.92 | 0.94 | 0.94 |
MAE | 0.24 | 0.26 | 0.24 | 0.22 | |
MBE | −0.01 | −0.09 | 0.03 | −0.01 | |
RMSE | 0.33 | 0.34 | 0.31 | 0.27 | |
Test set | R2 | 0.90 | 0.92 | 0.93 | 0.94 |
MAE | 0.36 | 0.25 | 0.25 | 0.29 | |
MBE | −0.04 | 0.34 | 0.11 | −0.05 | |
RMSE | 0.47 | 0.33 | 0.32 | 0.36 |
Model | JRC-JCS Model | GA-BP Four-Factor Model | GA-BP Five-Factor-1 Model | GA-BP Five-Factor-2 Model | GA-BP Six-Factor Model |
---|---|---|---|---|---|
error | 11.2% | 5.7% | 5.4% | 5.4% | 4.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Guo, B.; Zhang, Z.; Zhong, P.; Lu, H.; Sigama, A. Determining Rock Joint Peak Shear Strength Based on GA-BP Neural Network Method. Appl. Sci. 2024, 14, 9566. https://doi.org/10.3390/app14209566
Zhu C, Guo B, Zhang Z, Zhong P, Lu H, Sigama A. Determining Rock Joint Peak Shear Strength Based on GA-BP Neural Network Method. Applied Sciences. 2024; 14(20):9566. https://doi.org/10.3390/app14209566
Chicago/Turabian StyleZhu, Chuangwei, Baohua Guo, Zhezhe Zhang, Pengbo Zhong, He Lu, and Anthony Sigama. 2024. "Determining Rock Joint Peak Shear Strength Based on GA-BP Neural Network Method" Applied Sciences 14, no. 20: 9566. https://doi.org/10.3390/app14209566
APA StyleZhu, C., Guo, B., Zhang, Z., Zhong, P., Lu, H., & Sigama, A. (2024). Determining Rock Joint Peak Shear Strength Based on GA-BP Neural Network Method. Applied Sciences, 14(20), 9566. https://doi.org/10.3390/app14209566