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Abstract: The peak shear strength of a rock joint is an important indicator in rock engineering, such
as mining and sloping. Therefore, direct shear tests were conducted using an RDS-200 rock direct
shear apparatus, and the related data such as normal stress, roughness, size, normal loading rate,
basic friction angle, and JCS were collected. A peak shear strength prediction model for rock joints
was established, by which a predicted rock joint peak shear strength can be obtained by inputting the
influencing factors. Firstly, the study used the correlation analysis method to find out the correlation
coefficient between the above factors and rock joint peak shear strength to provide a reference for
factor selection of the peak shear strength prediction model. Then, the JRC-JCS model and four
established GA-BP neural network models were studied to identify the most valuable rock joint peak
shear strength prediction method. The GA-BP neural network models used a genetic algorithm to
optimize the BP neural network with different input factors to predict rock joint peak shear strength,
after dividing the selected data into 80% training set and 20% test set. The results show that the
error of the JRC-JCS model is a little bigger, with a value of 11.2%, while the errors of the established
GA-BP neural network models are smaller than 6%, which indicates that the four established GA-BP
neural network models can well fit the relationship between the peak shear strength and selected
input factors. Additionally, increasing the factor number of the input layer can effectively improve
the prediction accuracy of the GA-BP neural network models, and the prediction accuracy of the
GA-BP neural network models will be higher if factors that have higher correlation with the output
results are used as input factors.

Keywords: rock joint; peak shear strength; JRC-JCS model; genetic algorithm; BP neural network

1. Introduction

There are many joints in natural rock, and the failure of rock formations has a strong
relationship with the strength of rock joints. The shear strength of rock joints is an important
indicator in practical rock engineering such as mining, sloping, tunneling and so on. In
practical engineering, when the shear strength of the rock joint needs to be established, it
must be sampled on-site and is obtained only after a lot of shear tests in the lab or on-site.
This process takes a lot of time and manpower to complete. Therefore, if a rock joint shear
strength prediction model is established by using existing test data, the estimated rock joint
shear strength can be obtained by inputting some related factors, which can save a lot of
resources. The factors related to rock joint strength are mainly divided into two types. On
the one hand, there are the physical factors of the rock specimen itself, such as uniaxial
compressive strength, size, rock joint roughness, basic friction angle, etc. On the other hand,
there are the factors related to the shearing instrument during the shearing process, such as
normal stress, normal loading rate, etc. Some scholars have conducted extensive research
on the relationship between the above factors and rock joint shear strength.
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Through a large number of laboratory experiments and field observations, Barton
first proposed a quantitative description of the joint roughness factor which was the joint
roughness coefficient, or JRC, and a peak shear strength model about incorporating σn,
φ, JRC and JCS was established [1]. Heuze et al. found that the mechanical factors of a
jointed rock mass have a size effect after the test [2]. Zhang Xubin et al. carried out direct
shear tests on artificial rock joints with different morphologies under constant normal load
(CNL) conditions, studied the contribution of different shear components to the total shear
resistance, and proposed a new model to evaluate the peak shear strength of rock joints [3].
Liu et al. analyzed the influence of normal loading rate and other factors on the shear
characteristics of rock joints. The results show that a higher normal loading rate will make
the joints more prone to damage and deterioration, and the peak shear strength of the joints
will deteriorate faster [4]. Rui Yong et al. proposed a new JRC evaluation and comparison
method to overcome the shortcomings of traditional visual comparison methods based on
vector similarity measures (VSMs) [5]. In order to overcome the shortcomings of the existing
two-dimensional roughness factors, Liren Ban et al. proposed two factors that represent
the local characteristics of the joint profile and the overall characteristics to characterize
the roughness of the rock joints [6]. Ma et al. have done experimental research on the
shear properties of rocks under different normal stresses. The results show that the linear
relationship between normal stress and shear strength is universal [7]. Liu et al. proposed
two empirical formulas to predict the peak shear strength of a rock-concrete interface by
conducting direct shear tests on rock-concrete interfaces under different normal stresses [8].
Nick Barton et al. summarized JRC and provided a clear perspective for the concepts,
methods, applications and trends related to its expansion. They introduced the origin
and connotations of JRC, JRC-related roughness measurement, JRC estimation method,
JRC-based roughness characteristics survey, JRC-based rock joint property description,
JRC’s influence on rock mass properties, and JRC-based rock engineering applications [9].
The above experiments show that roughness, normal stress, different roughness of the
two-body interface and normal loading rate will affect the peak shear strength.

In order to predict the peak shear strength, some scholars have established a peak
strength prediction formula. Grasselli et al. carried out more than 50 constant normal
load direct shear tests on seven rock types. The authors also analyzed the joint surface
morphologies before and after shear and developed a method to predict joint damage
during shear [10]. Shen et al. established an empirical formula for evaluating the shear
strength of rock joints by shear tests of regular tooth-shaped rock joints under different
normal stresses [11]. Chen et al. proposed a peak shear strength model considering
anisotropic characteristics by considering the fluctuation angle and fluctuation amplitude
of rock mass rock joints [12]. Yang et al. proposed a new standard for the peak shear
strength of rock joints by using two three-dimensional shape factors, namely, the maximum
apparent inclination angle and the roughness factor [13]. Dong et al. proposed a factor
to characterize the roughness of the joint surface, and proposed an empirical formula for
shear strength based on three-dimensional topography factors [14]. Tian et al. carried out
three-dimensional scanning tests on 39 joint specimens, proposed morphological factors
to describe joint roughness, and established a peak shear strength model [15]. Liu et al.
established a new peak shear strength standard through three-dimensional morphological
scanning and direct shear test, compared with the JRC-JCS model and Grasselli model. The
new model significantly improved the fitting effect [16]. Wang et al. further modified the
three-dimensional shape factor system of the Grasselli rock joint, and obtained a prediction
model that can reflect the shear mechanism of the rock joint, revealed the control effect of
distribution factors on the shear resistance of the rock joint, and proposed a peak shear
strength prediction model [17]. Sheng et al. proposed a new model of joint peak shear
strength in the form of a negative exponent by using normal stress, tensile strength and
joint roughness factors [18]. Based on the relationship between peak dilatancy angle and
normal stress, joint morphology and joint deformation resistance, an empirical formula of
shear strength of irregular rock joints is proposed by Cheng et al. [19]. These scholars have
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established a peak shear strength prediction formula by considering the three-dimensional
morphological factors, anisotropy and other factors of the rock joint. Table 1 shows the
specific formulas of these papers.

Table 1. Peak shear strength models.

Barton [1] τ = σn tan[φ + JRClg( JCS
σn

)] (1)

Liu [8]

τ = σn tan[φ + JRClg( JCSab
σn

)]
JCSab = xJCSa + yJCSb

y = 41.889φ−1.091

x + y = 1

(2)

Grasselli [10] τ = σn tan[φ( θ∗max
c )

1.18 cos β
][1 + exp(− θ∗maxσn

9A0cσt
)] (3)

Shen [11] τ = σn· tan(φ + kβ) + kc·i (4)

Chen [12] τ =
σn tan

{{
10.725 ln[Aα(SRv)

1−α
] + 42.202

}
·lg( JCS

σn
) + φ

} (5)

Yang [13] τ = σn tan(φ + θ∗max
c0.45 e−

σn
JCS c0.75

) (6)

Dong [14] τ = σp tan[φ + arccos(1/Rs)
(σp+1)m ] (7)

Tian [15] τ = σn tan(φ + 160·c′−0.44

σn/σt+2 ) (8)

Liu [16] τ = σn tan[φ + (θ∗/n)0.88·h·e−
σn
σc
· h2

] (9)

Wang [17]
τ =

σn tan
{

φ + 90◦(1−0.00151/c∗ )
2 × [1 + exp(− 90◦(1−0.00151/c∗ )

18 · σn
σt
)]

}
(10)

Sheng [18] τ = σn tan[φ + 8A0θ∗max
c+1 exp(− c−0.351σn

σt
)] (11)

Cheng [19] τ = σn tan[φ + arccos(1/Rs)· 1
σn

µJCS +1 ] (12)

In Formula (1), τ is the peak shear strength predicted value; σn is the normal stress; JRC
is the roughness coefficient of the rock joint; JCS is the compressive strength of the rock joint
wall; φ is the basic friction angle. In Formula (2), x and y are the sharing coefficients of rock
wall and concrete walls. In Formula (3), θ* is the apparent dip; β is the dip angle; σt is the
tensile strength; A0 is the contact area; c is the fitting factor. In Formula (4), Kβ is the correction
coefficient of the comprehensive internal friction angle of the structural plane, and Kc is the
correction coefficient of the comprehensive cohesion of the structural plane. In Formula (5),
α is a constant with a value of 1/3, and A is the average fluctuation amplitude coefficient of
the structural plane. In Formula (7), m is the topothesy. In Formula (8), C′ is the factor of the
distribution. In Formula (9), h is the average joint height; n is the roughness factor; σc is the
uniaxial compressive strength. In Formula (12), µ is the Poisson ratio, Rs is the contour surface.

With the gradual popularization of machine learning, some scholars use neural net-
works and other methods to predict peak shear strength. Wu et al. considered the influence
of joint wall strength in combination with normal stress and joint roughness, and established
a neural network model [20]. Considering the complex mapping relationship between joint
shear strength and influencing factors, Huang et al. proposed a prediction model of rock
joint shear strength based on a back propagation (BP) neural network, which can compre-
hensively consider various influencing factors, including external shear test conditions and
joint factors [21]. Wang et al. collected the shear experimental data of previous scholars
wherein the stable topological structure was obtained by a cross-validation algorithm and
optimized a BP neural network by using MBGD, Adam and RMSprop algorithms. The
effects of initial undulation angle, normal stress and water content on the strength, deforma-
tion characteristics and failure mode of red sandstone joints were analyzed [22]. Shen et al.
used three machine learning (ML) algorithms, support vector machine (SVM), BP neural
network (BPNN) and random forest (RF), to establish regression models for predicting the
peak shear strength of joints [23]. Lin et al. constructed an intelligent prediction model by
optimizing a BP neural network through a genetic algorithm; they realized the construction
of a quantitative mapping relationship between fractal dimension, roughness, normal
pressure, friction coefficient and mechanical properties of jointed rock. They also brought
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to light the formulation of an intelligent prediction method for mechanical properties
of jointed rock by considering joint morphology characteristics [24]. Liu et al. collected
1080 data sets, including SH, p-wave velocity, PLS and UCS. All data sets were divided
into three categories (sedimentary rock, igneous rock and metamorphic rock) according
to lithology. Based on the data sets of three rock types, a combined model combining
random forest and linear regression was used to predict the uniaxial compressive strength
of rock [25]. Wei et al. established an artificial neural network (ANN) method to predict the
uniaxial compressive strength (UCS) of sedimentary rocks by using different input factors,
such as dry density, tensile strength of Brazilian splitting, and wet density [26]. These
studies are listed in Table 2. There are also many machine learning methods applied to the
prediction of rock strength, such as the prediction of rock strength factors by convolutional
neural networks [27–30].

Table 2. Algorithm prediction model.

Reference Method Input Factors Output
Factors R2

Wu [20] BPNN σch/σcs; JRC; σn τi/τs 0.913

Huang [21] BPNN A0; θ∗max; σt; σn τ
9.66%
(error)

Wang [22] BPNN

JRC; JCS; σn; φ

τ

0.995
JRC; JCS/σn; σn; φ 0.993

A0; c; θ∗max; σt; σn; φ 0.99
A0; θ∗max/(c + 1); σn/σt; JCS; σn; φ 0.99

Shen [23]
SVM

σn; φ; σt; θ∗max/(c + 1) τ
0.98

BPNN 0.97
RF 0.98

Lin [24] GA-BPNN D; Rq; µ; σn τ 0.96
Liu [25] RF-LR PLS; vp; SH UCS 0.93
Wei [26] ANN Pd; BTS; Pwet UCS 0.79

In the existing models for predicting the peak shear strength of rock joints, the main
factors considered are joint roughness, uniaxial compressive strength, etc. This paper
collects experimental data related to peak shear strength and uses a BP neural network
optimized by a genetic algorithm to predict rock joint shear strength by considering more
related factors such as specimen size, joint roughness, normal stress, normal loading
rate, JCS and so on, which can give a more accurate prediction method of rock joint
shear strength.

The article is structured into several key sections. The second part provides insight into
the data collection process and the method employed. Following this, the third part outlines
the development of the neural network model. Subsequently, the fourth part evaluates
the predictive capabilities of the established neural network model, while conducting a
comparative analysis with the JRC-JCS model to anticipate the factors influencing prediction
model accuracy. The fifth part critically examines objective factors overlooked in the article
and proposes a potential direction for future research. Lastly, the sixth part summarizes the
primary conclusions drawn from the article.

2. Materials and Methods
2.1. Data Sources

The direct shear test was carried out by using the RDS-200 rock direct shear instrument
developed by GCTS company (New York, NY, USA) in the in United States, as shown in
Figure 1. The normal actuator and the shear actuator are controlled by the electro-hydraulic
servo control system. The maximum normal and shear loads are 50 KN and 100 KN
respectively, and the accuracy is 0.01 KN. The maximum shear stroke and the maximum
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normal stroke are 25 mm and 24 mm, respectively, and the accuracy is 0.001 mm. A total of
205 sets of data on JRC, normal stress and size were collected. The rock types used include
silty-grained marble, granite, fine-grained sandstone, coarse-grained marble and concrete.
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Figure 1. Schematic diagram of test device: (a) RDS-200 rock direct shear system, (b) three views of
shear box.

All data are shown in Appendix A, in which the JCS is obtained by uniaxial compres-
sion test, the basic friction angle was obtained by self-tilting test, the peak shear strength τt
is obtained from the direct shear test, the normal stress is expressed by σn, the basic friction
angle is expressed by φ, and the normal loading rate is represented by vn.

For the first 55 sets of data, cubic regular tooth-shaped rock-like joint specimens were
used with different undulating angles and sizes prepared by high-strength sulfoaluminate
cement with a water-cement ratio of 0.25. The side lengths of the square cross section of the
first 30 specimens were 50 mm, 60 mm, 70 mm, 80 mm, 90 mm and 100 mm. The width
of the single tooth base was 10 mm, and the fluctuation angle was 25◦. The side length
of the square cross-section of the next 25 specimens was 50 mm, the width of the single
tooth base was 10 mm and the undulating angles were 10◦, 15◦, 20◦, 25◦ and 30◦. Under
the condition of normal stress, the normal stresses of rock-like joint specimens were set to
2 MPa, 2.5 MPa, 3 MPa, 3.5 MPa and 4 MPa. Normal loading adopted the stress control
mode, and the normal loading rate was 2 MPa/min. The shear loading was controlled by
displacement, and the shear rate was 1 mm/min. The shear test process was as follows:
firstly, the normal stress was applied up to the predetermined value at a loading rate of
2 MPa/min, and then the shear loading was carried out at a shear rate of 1 mm/min under
the condition of keeping the normal stress constant until the shear displacement was 8 mm.

The first 55 sets of data are regular joints, as shown in Figure 2. According to the joint
fractal model proposed by Xie Heping [31], the fluctuation angle of the regular rock joint is
converted into JRC. The conversion formula is as follows:

i = arctan
(

2h
L

)
(13)

D = log 4/ log[2(1 + cos i)] (14)

JRC = 85.267(D − 1)0.5679 (15)

where h is the average fluctuation difference; L is the average baseline length; i is the
undulating angle; D is the fractal dimension of the rock joint, and JRC is the joint rough-
ness coefficient.
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Figure 2. The first 55 sets of data: (a) specimens, (b) specimen-preparing molds.

Cylindrical rock-concrete interface specimens with a diameter of 50 mm were used to
obtain the 56th to 80th sets of data. The concrete cement–sand ratio was 3.5 and the water–
cement ratio was 0.32, and the samples comprised silty-grained marble-concrete interface,
granite-concrete interface, fine-grained sandstone-concrete interface and coarse-grained
marble-concrete interface. Direct shear tests with normal stress of 3 MPa, 4 MPa, 5 MPa,
6 MPa and 7 MPa were carried out on concrete joints and rock-concrete interfaces by using
the normal stress control method with a normal loading rate of 1 MPa/min. The normal
stress was then applied up to the predetermined value at a loading rate of 1 MPa/min. The
shear load was applied by displacement control with a shear rate of 1 mm/min. The test
was stopped when the shear displacement reached 5 mm. The joint compressive strength
(JCS) of the two-body rock joint was calculated using Formula (2).

From the 56th set to the 80th set of data, the rock joint surface was scanned by a
Tianyuan OKIO-400 three-dimensional scanner to obtain the joint surface morphology and
extract the three-dimensional coordinate data of the profile line; the JRC was calculated by
Formulas (16) and (17). The test specimens are shown in Figure 3.

Z2j = [
1

(m − 1)△ x2

m−1

∑
i=1

(Zi+1 − Zi)
2]

1
2 (16)

JRCj = 32.69 + 32.98lgZ2j (17)

where Zi is the height coordinate (mm) of the i-th sampling point on the profile line; i is the
sampling point serial number, a natural number; m is the total number of sampling points;
∆x is the sampling interval (mm).

From set 81 to set 205, cubic rock-like joint specimens with different JRC and sizes
were prepared using high-strength sulfoaluminate cement with a water–cement ratio of
0.25. The side lengths of the five square cross-sections were 35 mm, 50 mm, 65 mm, 80 mm
and 95 mm, and the JRCs were 1, 5, 9, 13, and 17. The normal stress was set to 2 MPa,
2.5 MPa, 3 MPa, 3.5 MPa, and 4 MPa. The constant normal stress control method was used
to apply the normal stress up to the predetermined value at a constant rate of 1 MPa/min.
The shear load was applied in the shear direction by the displacement control method, and
the shear load was cut at 8 mm displacement at a constant shear rate of 1 mm/min. In the
process of direct shear, the normal stress was controlled constantly by the servo system.
Factors such as normal stress, normal displacement, shear stress and shear displacement
were recorded during the test.
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Specimen sets 81 to 205 were quantified using Barton’s standard JRC profile [32]. The
test specimens are shown in Figure 4.
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2.2. Methods
2.2.1. Correlation Analysis

The Pearson correlation coefficient was used to measure the correlation between vari-
ables. The Pearson correlation coefficient was obtained by calculating the quotient of the
covariance and the standard deviation between two variables, where the covariance indi-
cates whether the changing trend of the two variables was consistent. Standard deviation
is a measure of the degree of dispersion of the variables [33]. Let two independent random
variables be X and Y, and their covariances be recorded as Cov(X, Y), then:

COV(X, Y) = E{[X − E(X)][Y − E(X)]} (18)

After obtaining the covariance between two random variables X and Y, their Pearson
correlation coefficients can be expressed as follows:

rXY =
n

∑
i=1

cov(X, Y)√
n
∑

k=1
(Xk − X)

2 n
∑

i=1

(
Yk − Y

)2
(19)

The value of the correlation coefficient r was between −1 and 1. The greater the
absolute value, the higher the correlation. The positive sign represents a positive correlation,
and the negative sign represents a negative correlation.



Appl. Sci. 2024, 14, 9566 8 of 22

2.2.2. Principle of GA-BP Neural Network

The BP neural network method optimized by genetic algorithm was used to predict the
peak shear strength. BP neural network is a multi-layer feed-forward neural network, which
is characterized by signal-forward propagation, error-back propagation, and has excellent
nonlinear fitting ability and generalization ability [34]. Genetic algorithms can make it
infinitely close to the global optimal solution by iteratively optimizing the calculation
results [35]. Therefore, the genetic algorithm is used to optimize the initial weights and
thresholds of the BP neural network model to improve the calculation efficiency and
prediction accuracy of the model. The synergistic mechanism of the genetic algorithm and
the BP neural network model was then constructed [36].

The BP neural network model is composed of input layer, hidden layer and output
layer. Each layer contains one or more neuron nodes. Based on the multi-layer feed-forward
neural network trained by the error-back propagation algorithm, the mapping relationship
between the input value and the output value is established through continuous training
and learning of the data [37]. The number of hidden layers is determined by Formula (20).

l =
√

m + n + a (20)

where m is the number of neurons in the output layer; n is the number of neurons in the
input layer; a is a constant between 1 and 12; l is the number of neurons in the hidden layer,
l ∈ [4, 15].

The constructed GA-BP neural network model is evaluated by determining coef-
ficient (R2), mean absolute error (MAE), mean bias error (MBE) and root mean square
error (RMSE).

R2 = 1 −

n
∑

i=1
(xsim − xi)

2

n
∑

i=1
(x − xi)

2
(21)

MAE =
1
n

n

∑
i=1

|ai − bi| (22)

MBE =
1
n

n

∑
i=1

(ai − bi) (23)

RMSE =

√
1
n

n

∑
i=1

(ai − bi)
2 (24)

where xi is the experimental value; x is the average value of the test; xsim is the predicted
value; ai and bi represent the predicted value and the actual value; n represents the number
of specimens.

By calculating R2, the correlation between the predicted value and the real value can
be observed. The higher the correlation is, the better the prediction accuracy is. The smaller
the average absolute error is, the smaller the gap between the predicted value and the real
value is. The closer the average deviation is to 0, the better the model fitting effect is. The
trained model is used to predict the test data, and the error between the predicted value
and the actual test result is observed. The accuracy of the training model is tested by the
size of the error.

3. Peak Shear Strength Prediction Model
3.1. Correlation Analysis of Shear Factors

Using SPSS software (PASW Statistics 18), through the correlation analysis of various
factors, the correlation between various factors and peak shear strength was discovered.
Using the SPSS bivariate correlation analysis method, Pearson was used to represent the
correlation coefficient, and a bilateral significance test was performed. The factors of the test
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are σn, JRC, JCS, φ, size, vn, and peak shear strength. The test results are shown in Table 3.
The null hypothesis (H0) of the Pearson correlation hypothesis test is that there is no linear
relationship between the factors and the peak shear strength, and the alternative hypothesis
(H1) is that there is a linear relationship between the factors and the peak shear strength.
The p-value can represent the significance level of each factor. The p-value is compared
with 0.05 and 0.01. If p > 0.05, this indicates that the null hypothesis is established: there is
no linear relationship between the selected factors and the peak shear strength. If p ≤ 0.05,
it shows that the p-value is in the rejection domain, the null hypothesis is not valid, and
there is a linear relationship between the selected factors and the peak shear strength. In
the range 0.01 ≤ p ≤ 0.05, the significance level is higher, and “*” is used to indicate that. If
p ≤ 0.01, the significance level is very high, and “**” is used to indicate that.

Table 3. Correlation analysis between various factors and peak shear strength.

σ JRC JCS φ Size vn

p-value <0.01 <0.01 <0.01 <0.01 0.015 <0.01
rxy 0.711 ** 0.568 ** −0.309 ** 0.420 ** −0.17 * 0.359 **

rxy represents the relationship between the factors and the peak shear strength. It can
be seen from Table 4 that the correlation coefficient between σn and peak shear strength is
the highest, and the rest are JRC, φ, vn, JCS, and size, in order of absolute value. JCS and size
are negatively correlated with the peak shear strength. The influence of JCS on the peak
shear strength is not independent, while the correlation analysis method only considers the
influence of JCS itself on the peak shear strength, without considering the normal stress, so
there is a negative correlation. According to the JRC-JCS model, the correlation analysis of
τt/σn and JCS/σn was carried out, and at p < 0.01, the correlation coefficient was 0.357 **.

Table 4. Evaluation of prediction results of JRC-JCS model.

R2 MAE MBE RMSE

0.713497 0.458708 0.077069 0.661966

The JRC-JCS model is widely used to predict peak shear strength. The four factors
contained in the model are strongly correlated with the peak shear. The calculation formula
of the JRC-JCS model is given, as shown in Formula (1). The peak shear strength of
rough/undulating joints such as tension surfaces can now be predicted with acceptable
accuracy from a knowledge of only one factor, namely the effective joint wall compressive
strength or JCS value [1].

Using the JRC-JCS model to predict 205 sets of data, the prediction results of the
JRC-JCS model were obtained, and the R2, MAE, MBE and RMSE predicted by the JRC-JCS
model were calculated, as shown in Table 4. The results calculated by the JRC-JCS model
were compared with the experimental values, and the figures are shown in Figure 5.

3.2. GA-BP Neural Network

The genetic algorithm was used to optimize the BP neural network, and the GA-
BP neural network peak shear strength prediction model was established. The neural
network algorithm was realized by using MATLAB code. The process is shown in Figure 6.
Of the 205 sets of data, 80% were used as the training set and 20% as the test set. The
ratio of the training set to the test set was 4:1. The maximum number of iterations of the
genetic algorithm was set to 1000, the learning rate was 0.01, the genetic generation was 50,
and the population size was five. The weights and thresholds of the BP neural network
can be regarded as the gene sequence in the genetic algorithm. The selection, crossover
and mutation operations of the genetic algorithm were used to optimize the weights and
thresholds of the neural network to achieve the effect of optimizing the neural network.
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algorithm after iteration are added to the network, so that the connection between the input
layer, the hidden layer and the output layer is completed. The training set data and the test
set data are then used to train and test the network, so as to complete the establishment of
the neural network model. Using this model, the rock joint shear strength can be predicted,
and the operation can be repeated until the error requirements are met.

By observing the peak shear strength predicted by the JRC-JCS model, it can be seen
that σn, φ, JRC, and JCS have a good mapping relationship with peak shear strength. The
four factors (σn, φ, JRC, JCS) contained in the JRC-JCS model are used as the input layer to
establish a four-factor GA-BP neural network model. The structure of the neural network is
shown in Figure 7a. The input layer contains σn, φ, JRC, JCS, there are seven hidden layers,
and the output layer is the peak shear strength.
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Table 3 shows that in addition to the four factors of σn, φ, JRC and JCS, the influence
of size and vn on the peak shear strength is also significant. To improve the accuracy of the
GA-BP neural network in predicting the peak shear strength, the factors of size and vn are
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also added to the input layer of the GA-BP neural network, and two neural network models
with 5-7-1 structure are established. To distinguish these two five-factor models, the model
with size was named as the five-factor-1 model, and its structure is shown in Figure 7b. The
model with vn was named as five-factor-2 model, and its structure is shown in Figure 7c.
Comparing the prediction results of the two models would be essential in order to observe
whether there are factors that have a more significant impact on peak shear strength.

It can be seen from Table 3 that all these six factors have a significant effect on peak
shear strength, thus a 6-7-1 structure model was established using these six factors as input
factors as shown in Figure 7d. The prediction results of the six-factor model are compared
with the prediction results of the model containing four factors and five factors to observe
whether increasing the number of input factors can improve the prediction accuracy of the
GA-BP neural network.

The constructed neural network model can be expressed in the form of functions.
After training, the connection weights and thresholds of the hidden layer and output layer
of the model are obtained as shown in Appendix B.

3.3. Forecasting Results

After determining the structure, the GA-BP neural network is trained under the
optimization of a genetic algorithm. The R2, MAE, MBE, and RMSE of the training results
of each neural network model are shown in Table 5. At the same time, Table 5 also shows the
prediction results of the BP neural network without genetic algorithm optimization. It can
be seen that the neural network model optimized by genetic algorithm is better. It can be
seen from Table 5 that the R2 of each GA-BP neural network model is above 0.93, and the R2

of the six-factor training set reaches 0.96, indicating that the trained model with more input
factors has a better prediction accuracy. Using Tables 4 and 5 for comparison, the indicators
of each GA-BP neural network model are basically better than the JRC-JCS model.

Table 5. Training results of neural network models.

Factors
GA-BP

four-factor
model

GA-BP
five-factor-1

model

GA-BP
five-factor-2

model

GA-BP
six-factor

model

Training set

R2 0.94 0.95 0.95 0.96
MAE 0.21 0.20 0.21 0.17
MBE 0.04 0.01 0.00 0.01

RMSE 0.31 0.28 0.28 0.24

Test set

R2 0.93 0.93 0.95 0.93
MAE 0.22 0.23 0.17 0.23
MBE 0.14 0.04 −0.02 0.06

RMSE 0.31 0.33 0.24 0.37

Factors BP four-factor
model

BP five-factor-1
model

BP five-factor-2
model

BP six-factor
model

Training set

R2 0.92 0.92 0.94 0.94
MAE 0.24 0.26 0.24 0.22
MBE −0.01 −0.09 0.03 −0.01

RMSE 0.33 0.34 0.31 0.27

Test set

R2 0.90 0.92 0.93 0.94
MAE 0.36 0.25 0.25 0.29
MBE −0.04 0.34 0.11 −0.05

RMSE 0.47 0.33 0.32 0.36

In addition to observing MAE, MBE, RMSE, the prediction accuracy of the GA-BP
neural network can be observed by linear fitting of real value and predicted value. As
shown in Figure 8, the linear fitting plots of real value and predicted value of training set
and test set in each model are drawn. It can be seen from Figure 8 that the fitting lines of
the real value and the predicted value are very close to y = x, and R2 is above 0.9. As the
number of input factors increases, the R2 of the training set also increases.
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Figure 8. Linear fitting of real value and predicted value: (a) four-factor model training set;
(b) four-factor model test set; (c) five-factor-1 model training set; (d) five-factor-1 model test set;
(e) five-factor-2 model training set; (f) five-factor-2 model test set; (g) six-factor model training set;
(h) six-factor model test set.



Appl. Sci. 2024, 14, 9566 14 of 22

4. Error Analysis

The JRC-JCS model and four GA-BP neural network models were used to predict
205 sets of data. The prediction results are shown in Figure 9.
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Figure 9. Comparison diagram of peak shear strength prediction of each factor.

In datasets 0 to 30, the prediction trend of the JRC-JCS model, GA-BP four-factor model
and GA-BP five-factor-2 model is very similar, which shows that the JRC-JCS model can
well predict the relationship between σn, φ, JRC, JCS and peak shear strength. The trend of
peak shear strength predicted by each model is roughly the same as that of the experimental
value. However, the JRC-JCS model has obvious over-predicted values between datasets
60 to 80 and between datasets 180 to 205. Compared with other GA-BP neural networks,
the prediction results of the four-factor model between datasets 60 and 80 are also slightly
higher than other models. The normal stress range between datasets 60~80 is 3~7 MPa, and
the normal stress range of the remaining datasets is 2~4 MPa. The normal stress value of
datasets 60~80 is higher. The roughness coefficient of rock joints in datasets 180~205 is 17,
and the roughness coefficient of other datasets is generally less than 17. Because the neural
network model contains many factors, the sensitivity of the JRC-JCS model to the joint
surface roughness and the applied normal stress is more obvious than other models, so the
predicted value is higher when the normal stress and roughness are larger. Formula (25) is
used to calculate the error of the prediction results of these five models, and the calculation
results are shown in Table 6.

error =
1
n

n

∑
i=1

∣∣∣∣τt − τp

τt

∣∣∣∣× 100% (25)

where n is the number of prediction data; τt is the experimental value; τp is predicted value.

Table 6. Errors of each model.

Model JRC-JCS
Model

GA-BP
Four-Factor

Model

GA-BP
Five-Factor-1

Model

GA-BP
Five-Factor-2

Model

GA-BP
Six-Factor

Model

error 11.2% 5.7% 5.4% 5.4% 4.6%

The error of each set of data is shown in Figure 10. It can be seen from Table 5 and
Figure 8 that the error of the JRC-JCS model fluctuates greatly, up to nearly 50%, and the
average absolute error is 11.21%. The error of the GA-BP neural network model is relatively
small. In the four GA-BP neural network models, with the increase of model factors, the
average absolute error shows a significant downward trend. In the model with two input
layers of five factors, the average absolute error of the model with vn is less than the average
absolute error of the model with size. Combined with the correlation analysis in Table 6, the
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correlation coefficient between the vn and the peak shear strength is higher than the size and
the peak shear strength; the higher the correlation between the input factors and the output
results of the GA-BP neural network, the better the prediction accuracy of the model.
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Figure 10. The error diagram of prediction results of each model: (a) JRC-JCS model error; (b) GA-BP
four-factor model error; (c) GA-BP five-factor-1 model error; (d) GA-BP five-factor-2 model error;
(e) GA-BP six-factor model error.

5. Discussion

The peak shear strength of rock joints has an important influence on the safety and
stability of rock mass engineering. Accurate prediction of the peak shear strength of rock
joints plays an important role in the stability evaluation of rock mass. Higher predicted
shear strength than its true value is dangerous. Lower predicted shear strength than its true
value will cause waste of resources. Therefore, this paper establishes some neural network
models to predict the peak shear strength of rock joints accurately. Because the geometric
characteristics of the joint itself have certain randomness, and the contact relationship at the
joint is more complex, sometimes there will be a local embedding phenomenon, resulting
in differences in shear strength, so it is inevitable that there will be some differences in
the individual prediction results. There are deviations in the accurate definition of some
factors, and the results obtained by using different methods to process some factors will
be different. At the same time, there are some factors of the material itself that have an
objective effect on the peak shear strength, such as temperature, water content, rock type,
etc., which can also be used as input factors to improve the accuracy of the neural network
model in future work.

6. Conclusions

This paper collects data from three different direct shear tests. When roughness is
processed, three experiments use three methods to estimate the roughness. When the joint
compressive strength is processed, the test of the two-body interface is included, and the
JCSa and JCSb of the two-body interface are converted into JCSab according to the sharing
coefficient. A GA-BP four-factor model was established by using σn, JRC, JCS, φ; the GA-BP
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five-factor-1 model was established by using σn, JRC, JCS, φ, size; the GA-BP five-factor-2
model was established by using σn, JRC, JCS, φ, vn; and a GA-BP six-factor model was
established by using σn, JRC, JCS, φ, size, vn. According to the number of different factors
or the type of factors, the model with the best prediction effect was determined. The main
conclusions are the following:

(1) The peak shear strength of the rock joint is highly correlated with normal stress
and roughness of the rock joint. The peak shear strength of rock joints can be improved by
enhancing normal stress or increasing roughness.

(2) A BP neural network optimized by genetic algorithm can effectively predict the
shear mechanical properties of jointed rock. The average error of multi-factor prediction
was controlled at 4.5%. The quantitative mapping relationship between rock factors and
peak shear strength was constructed, and an intelligent prediction method of peak shear
strength of rock was formed.

(3) The higher the correlation between the input factors and the output results of the
GA-BP neural network, the greater the relevance of the input factors, and the better the
prediction accuracy of the model.

In this paper, a GA-BP neural network is applied to the prediction of joint shear
strength, and this idea is novel. Compared with the JRC-JCS model, the GA-BP neural
network model has better prediction accuracy in all aspects. Among the four GA-BP neural
network models, the six-factor model is better. Due to the limitations of the data, no factors
such as shear rate were added to the input layer, and no more rock types were input.
Adding more influencing factors to the GA-BP neural network model and increasing the
range of data can improve the accuracy of prediction to a greater extent, which will be the
goal of future work.
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Appendix A

Table A1. Data of σn, JRC, JCS, size, vn and τt.

Number σn JRC JCS φ Size Vn τt Number σn JRC JCS φ Size Vn τt

1 2 12.88 65.69 40.51 2500 2 2.93 104 3.5 1 65.69 36.8 9025 1 2.9
2 2 12.88 65.69 40.51 3600 2 3.48 105 4 1 65.69 36.8 9025 1 3.37
3 2 12.88 65.69 40.51 4900 2 3.85 106 2 5 65.69 36.8 1225 1 2.25
4 2 12.88 65.69 40.51 6400 2 3.73 107 2.5 5 65.69 36.8 1225 1 2.81
5 2 12.88 65.69 40.51 8100 2 3.52 108 3 5 65.69 36.8 1225 1 3.2
6 2 12.88 65.69 40.51 10,000 2 3.62 109 3.5 5 65.69 36.8 1225 1 3.71
7 2.5 12.88 65.69 40.51 2500 2 3.73 110 4 5 65.69 36.8 1225 1 4.17
8 2.5 12.88 65.69 40.51 3600 2 4.31 111 2 5 65.69 36.8 2500 1 2.41
9 2.5 12.88 65.69 40.51 4900 2 4.81 112 2.5 5 65.69 36.8 2500 1 2.84
10 2.5 12.88 65.69 40.51 6400 2 4.62 113 3 5 65.69 36.8 2500 1 3
11 2.5 12.88 65.69 40.51 8100 2 4.58 114 3.5 5 65.69 36.8 2500 1 3.21
12 2.5 12.88 65.69 40.51 10,000 2 4.21 115 4 5 65.69 36.8 2500 1 3.76
13 3 12.88 65.69 40.51 2500 2 4.11 116 2 5 65.69 36.8 4225 1 2.48
14 3 12.88 65.69 40.51 3600 2 4.68 117 2.5 5 65.69 36.8 4225 1 2.69
15 3 12.88 65.69 40.51 4900 2 5.39 118 3 5 65.69 36.8 4225 1 2.76
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Table A1. Cont.

Number σn JRC JCS φ Size Vn τt Number σn JRC JCS φ Size Vn τt

16 3 12.88 65.69 40.51 6400 2 5.23 119 3.5 5 65.69 36.8 4225 1 3.16
17 3 12.88 65.69 40.51 8100 2 5.01 120 4 5 65.69 36.8 4225 1 3.9
18 3 12.88 65.69 40.51 10,000 2 4.85 121 2 5 65.69 36.8 6400 1 2.18
19 3.5 12.88 65.69 40.51 2500 2 4.58 122 2.5 5 65.69 36.8 6400 1 2.63
20 3.5 12.88 65.69 40.51 3600 2 5.18 123 3 5 65.69 36.8 6400 1 2.99
21 3.5 12.88 65.69 40.51 4900 2 5.63 124 3.5 5 65.69 36.8 6400 1 3.25
22 3.5 12.88 65.69 40.51 6400 2 5.41 125 4 5 65.69 36.8 6400 1 3.82
23 3.5 12.88 65.69 40.51 8100 2 5.59 126 2 5 65.69 36.8 9025 1 2.13
24 3.5 12.88 65.69 40.51 10,000 2 5.37 127 2.5 5 65.69 36.8 9025 1 2.61
25 4 12.88 65.69 40.51 2500 2 5.72 128 3 5 65.69 36.8 9025 1 2.98
26 4 12.88 65.69 40.51 3600 2 6.11 129 3.5 5 65.69 36.8 9025 1 3.56
27 4 12.88 65.69 40.51 4900 2 6.41 130 4 5 65.69 36.8 9025 1 3.96
28 4 12.88 65.69 40.51 6400 2 6.17 131 2 9 65.69 36.8 1225 1 2.75
29 4 12.88 65.69 40.51 8100 2 6.15 132 2.5 9 65.69 36.8 1225 1 3.29
30 4 12.88 65.69 40.51 10,000 2 5.65 133 3 9 65.69 36.8 1225 1 3.51
31 2 16 65.69 40.51 2500 2 4.08 134 3.5 9 65.69 36.8 1225 1 4.03
32 2.5 16 65.69 40.51 2500 2 4.46 135 4 9 65.69 36.8 1225 1 4.41
33 3 16 65.69 40.51 2500 2 5.65 136 2 9 65.69 36.8 2500 1 2.39
34 3.5 16 65.69 40.51 2500 2 6.23 137 2.5 9 65.69 36.8 2500 1 2.96
35 4 16 65.69 40.51 2500 2 7.12 138 3 9 65.69 36.8 2500 1 3.33
36 2 12.88 65.69 40.51 2500 2 3.59 139 3.5 9 65.69 36.8 2500 1 3.81
37 2.5 12.88 65.69 40.51 2500 2 4.4 140 4 9 65.69 36.8 2500 1 4.22
38 3 12.88 65.69 40.51 2500 2 5.11 141 2 9 65.69 36.8 4225 1 2.51
39 3.5 12.88 65.69 40.51 2500 2 6.06 142 2.5 9 65.69 36.8 4225 1 2.85
40 4 12.88 65.69 40.51 2500 2 6.86 143 3 9 65.69 36.8 4225 1 3.34
41 2 9.9 65.69 40.51 2500 2 3.2 144 3.5 9 65.69 36.8 4225 1 3.82
42 2.5 9.9 65.69 40.51 2500 2 3.65 145 4 9 65.69 36.8 4225 1 4.25
43 3 9.9 65.69 40.51 2500 2 4.75 146 2 9 65.69 36.8 6400 1 2.31
44 3.5 9.9 65.69 40.51 2500 2 5.46 147 2.5 9 65.69 36.8 6400 1 2.82
45 4 9.9 65.69 40.51 2500 2 6.22 148 3 9 65.69 36.8 6400 1 3.19
46 2 7.09 65.69 40.51 2500 2 2.75 149 3.5 9 65.69 36.8 6400 1 3.55
47 2.5 7.09 65.69 40.51 2500 2 3.41 150 4 9 65.69 36.8 6400 1 4.19
48 3 7.09 65.69 40.51 2500 2 4.04 151 2 9 65.69 36.8 9025 1 2.18
49 3.5 7.09 65.69 40.51 2500 2 4.91 152 2.5 9 65.69 36.8 9025 1 2.6
50 4 7.09 65.69 40.51 2500 2 5.65 153 3 9 65.69 36.8 9025 1 3.26
51 2 4.46 65.69 40.51 2500 2 2.28 154 3.5 9 65.69 36.8 9025 1 3.48
52 2.5 4.46 65.69 40.51 2500 2 3.09 155 4 9 65.69 36.8 9025 1 4.06
53 3 4.46 65.69 40.51 2500 2 3.59 156 2 13 65.69 36.8 1225 1 3.45
54 3.5 4.46 65.69 40.51 2500 2 4.32 157 2.5 13 65.69 36.8 1225 1 3.84
55 4 4.46 65.69 40.51 2500 2 4.94 158 3 13 65.69 36.8 1225 1 4.34
56 3 13.54 16.12 32.11 1962.5 1 4.15 159 3.5 13 65.69 36.8 1225 1 4.79
57 4 11.8 16.12 32.11 1962.5 1 4.56 160 4 13 65.69 36.8 1225 1 5.22
58 5 14.22 16.12 32.11 1962.5 1 4.98 161 2 13 65.69 36.8 2500 1 3.38
59 6 14.52 16.12 32.11 1962.5 1 5.41 162 2.5 13 65.69 36.8 2500 1 3.86
60 7 13.12 16.12 32.11 1962.5 1 6.86 163 3 13 65.69 36.8 2500 1 4.03
61 3 19 31.82 36 1962.5 1 3.76 164 3.5 13 65.69 36.8 2500 1 4.59
62 4 18.4 31.82 36 1962.5 1 3.94 165 4 13 65.69 36.8 2500 1 5.04
63 5 17.61 31.82 36 1962.5 1 5.55 166 2 13 65.69 36.8 4225 1 3.17
64 6 17.29 31.82 36 1962.5 1 5.92 167 2.5 13 65.69 36.8 4225 1 3.72

65 7 18.35 31.82 36 1962.5 1 6.72 168 3 13 65.69 36.8 4225 1 4.18
66 3 9.06 36.84 47.39 1962.5 1 4.04 169 3.5 13 65.69 36.8 4225 1 4.52
67 4 12.57 36.84 47.39 1962.5 1 4.74 170 4 13 65.69 36.8 4225 1 5.3
68 5 11.11 36.84 47.39 1962.5 1 5.3 171 2 13 65.69 36.8 6400 1 2.99
69 6 9.19 36.84 47.39 1962.5 1 7.06 172 2.5 13 65.69 36.8 6400 1 3.59
70 7 12.33 36.84 47.39 1962.5 1 8.27 173 3 13 65.69 36.8 6400 1 4.2
71 3 18.13 21.15 43.5 1962.5 1 3.61 174 3.5 13 65.69 36.8 6400 1 4.73
72 4 13.57 21.15 43.5 1962.5 1 5.3 175 4 13 65.69 36.8 6400 1 5.42
73 5 17.43 21.15 43.5 1962.5 1 5.58 176 2 13 65.69 36.8 9025 1 3.15
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Table A1. Cont.

Number σn JRC JCS φ Size Vn τt Number σn JRC JCS φ Size Vn τt

74 6 14.84 21.15 43.5 1962.5 1 6.5 177 2.5 13 65.69 36.8 9025 1 3.42
75 7 20.73 21.15 43.5 1962.5 1 7.21 178 3 13 65.69 36.8 9025 1 3.99
76 3 8.21 8.52 35.89 1962.5 1 2.5 179 3.5 13 65.69 36.8 9025 1 4.44
77 4 8.21 8.52 35.89 1962.5 1 3.76 180 4 13 65.69 36.8 9025 1 4.81
78 5 8.21 8.52 35.89 1962.5 1 3.48 181 2 17 65.69 36.8 1225 1 2.93
79 6 8.21 8.52 35.89 1962.5 1 5.13 182 2.5 17 65.69 36.8 1225 1 3.8
80 7 8.21 8.52 35.89 1962.5 1 5.15 183 3 17 65.69 36.8 1225 1 4.74
81 2 1 65.69 36.8 1225 1 2.38 184 3.5 17 65.69 36.8 1225 1 5.36
82 2.5 1 65.69 36.8 1225 1 2.72 185 4 17 65.69 36.8 1225 1 5.68
83 3 1 65.69 36.8 1225 1 3.1 186 2 17 65.69 36.8 2500 1 3.55
84 3.5 1 65.69 36.8 1225 1 3.42 187 2.5 17 65.69 36.8 2500 1 3.94
85 4 1 65.69 36.8 1225 1 3.86 188 3 17 65.69 36.8 2500 1 4.12
86 2 1 65.69 36.8 2500 1 1.73 189 3.5 17 65.69 36.8 2500 1 4.23
87 2.5 1 65.69 36.8 2500 1 2.2 190 4 17 65.69 36.8 2500 1 4.46
88 3 1 65.69 36.8 2500 1 2.54 191 2 17 65.69 36.8 4225 1 3.3
89 3.5 1 65.69 36.8 2500 1 2.94 192 2.5 17 65.69 36.8 4225 1 3.19
90 4 1 65.69 36.8 2500 1 3.31 193 3 17 65.69 36.8 4225 1 3.73
91 2 1 65.69 36.8 4225 1 1.73 194 3.5 17 65.69 36.8 4225 1 3.91
92 2.5 1 65.69 36.8 4225 1 2.04 195 4 17 65.69 36.8 4225 1 4.74
93 3 1 65.69 36.8 4225 1 2.45 196 2 17 65.69 36.8 6400 1 2.89
94 3.5 1 65.69 36.8 4225 1 2.87 197 2.5 17 65.69 36.8 6400 1 3.4
95 4 1 65.69 36.8 4225 1 3.26 198 3 17 65.69 36.8 6400 1 3.83
96 2 1 65.69 36.8 6400 1 1.68 199 3.5 17 65.69 36.8 6400 1 4.6
97 2.5 1 65.69 36.8 6400 1 1.99 200 4 17 65.69 36.8 6400 1 4.98
98 3 1 65.69 36.8 6400 1 2.44 201 2 17 65.69 36.8 9025 1 2.81
99 3.5 1 65.69 36.8 6400 1 2.89 202 2.5 17 65.69 36.8 9025 1 3.45

100 4 1 65.69 36.8 6400 1 3.27 203 3 17 65.69 36.8 9025 1 4.11
101 2 1 65.69 36.8 9025 1 1.71 204 3.5 17 65.69 36.8 9025 1 4.33
102 2.5 1 65.69 36.8 9025 1 2.16 205 4 17 65.69 36.8 9025 1 5.15
103 3 1 65.69 36.8 9025 1 2.5

Appendix B

The specific expression of the four-factor model is as follows:

τp = fGA−BP(σn, JRC, JCS, φ) (A1)

Input to the hidden layer weights w7×4 =

0.78238797 0.006151265 0.559252414 −0.022988896
0.12224167 0.699814191 0.145962199 0.110511176

−0.444862767 0.038327763 −0.64180243 −0.659542444
0.281185003 −0.965904934 −0.614938516 0.585583209
0.86086054 0.155272565 0.297204638 0.980305703

−0.725286337 0.217959521 0.177400843 0.916072863
−0.153793465 −0.568055925 0.770665435 0.496058452


Hidden layer threshold bT

7×1 =[
0.823406449 −0.421283472 −0.495875986 −0.168409719 0.542302059 0.53883313 0.180495919

]
Weight from hidden layer to output layer w1×7 =[

0.594569848 −0.304958592 −0.738011295 −0.96820142 −0.314689617 0.403932703 0.673183979
]
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Output layer threshold b1×1 = [
0.26553184

]
The specific expression of the five-factor-1 model is as follows:

τp = fGA−BP(σn, JRC, JCS, φ, Size) (A2)

Input to the hidden layer weights w7×5 =

0.667155213 −0.655870612 0.248106939 −0.189063966 −0.063270789
0.482987934 −0.088293321 0.441802043 0.314950534 −0.602822908
0.481731069 0.506868286 −0.014792291 0.259463730 −0.497285292
−0.428939292 0.686079351 0.108863950 0.552253051 −0.893309452
−0.431134193 0.856826414 0.201418130 −0.304624571 −0.459542985
−0.619490698 −0.203589947 −0.448510158 0.311206112 0.427356204
0.282766515 0.313212628 −0.264193033 −0.348119603 0.061254327


Hidden layer threshold bT

7×1 =[
−0.217903171 0.333022423 −0.159279128 0.82777986 −0.165355843 −0.639250519 −0.108405099

]
Weight from hidden layer to output layer w1×7 =[

0.551944259 0.04486292 0.096930339 0.207360829 0.583442549 −0.42827962 −0.237057586
]

Output layer threshold b1×1 = [
0.786505588

]
The specific expression of the five-factor-2 model is as follows:

τp = fGA−BP(σn, JRC, JCS, φ, vn) (A3)

Input to the hidden layer weights w7×5 =

0.273047256 0.305717466 −0.599473941 −0.557541506 0.070028479
0.540056814 −0.631012617 0.271568874 −0.522003598 −0.105043307
0.25716471 0.276752509 0.551193534 0.193336208 −0.678159167

0.220523739 0.028366 0.482615828 0.86886645 0.317527661
−0.250524856 0.530794807 0.812125895 −0.402229147 −0.506802879
−0.451378505 −0.226523067 0.223087738 0.536325541 0.220742544
0.013291297 −0.247780736 −0.299314983 0.041163144 0.573582139


Hidden layer threshold bT

7×1 =[
−0.142483411 0.033067931 0.434268109 0.529580502 −0.11789349 0.271972823 −0.6347275

]
Weight from hidden layer to output layer w1×7 =[

0.277483091 0.000535253 −0.363035577 −0.471799881 −0.465165465 −0.394055314 0.658825554
]

Output layer threshold b1×1 = [
0.217788332

]
The specific expression of the six-factor model is as follows:

τp = fGA−BP(σn, JRC, JCS, φ, Size, vn) (A4)
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Input to the hidden layer weights w7×6 =

−0.433322223 0.429946865 0.424252082 0.703113658 0.660662443 0.287477619
0.574445196 0.051094972 0.455487299 −0.149100734 0.352446035 0.212017079
−0.359464603 0.111925361 −0.207397903 0.266439922 0.415585492 0.40214093
−0.169409187 −0.120843582 −0.015508303 −0.005962941 0.023787119 −0.557586803
−0.127837976 −0.072352899 0.408400737 −0.016568927 0.080544553 0.272602714
−0.202478508 0.048918596 0.223988037 −0.178112945 −0.137026824 −0.649940369

0.07514333 0.363434317 −0.398613355 0.782172748 −0.001317362 0.142845959


Hidden layer threshold bT

7×1 =[
0.31812295 −0.653098785 0.192202639 −0.190265294 −0.055570417 0.725822551 0.184984033

]
Weight from hidden layer to output layer w1×7 =[

−0.036943679 −0.304669461 −0.001007669 0.461609068 −0.329812939 0.467953947 0.270241955
]

Output layer threshold b1×1 = [
0.181067327

]
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