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Abstract: Both NH3 and H2 are considered to be carbon-free fuels, and their mixed combustion has
excellent performance. Considering the laminar burning velocity as a key characteristic of fuels,
accurately predicting the laminar burning velocity of NH3/H2/Air is crucial for its combustion
applications. The study made improvements to the XGBoost model and developed NH3/H2/Air
Laminar Burning Velocity Net (NHLBVNet), which adopts a composite hierarchical structure to
connect the functions of feature extraction, feature combination, and model prediction. The dataset
consists of 487 sets of experimental data after the exclusion of outliers. The correlation coefficient
(R2 > 0.99) of NHLBVNet is higher than that of the XGBoost model (R2 > 0.93). Robustness experiment
results indicate that this model can obtain more accurate prediction results than other models even
under small sample datasets.

Keywords: laminar burning velocity (LBV); deep learning; NH3/H2/Air; XGBoost; predicting method

1. Introduction

In recent years, the increasing world population and rapid economic development
have led to severe energy and environmental security risks, such as fossil fuel depletion
and greenhouse gas emissions. Throughout the world, energy for a wide array of human
and industrial endeavors has predominantly been derived from combustion processes.
However, merely improving the performance level of combustion machinery to achieve
low-emission goals cannot eliminate the current huge energy demand. Consequently,
employing combustion processes with alternative, non-carbon-based fuels is seen as a
high-impact auxiliary strategy for achieving greenhouse gas reduction targets [1,2].

Ammonia emerges as a pivotal energy vector, having promise across various sectors
for carbon-neutral fuel storage, transit, and electricity generation. The carbon-free com-
pound presents several benefits, notably its zero-carbon characteristic, elevated energy
concentration, and the advantage of an existing industrial base for its creation [3]. However,
compared to fossil fuels, ammonia fuel faces challenges, such as lower laminar flame
speed [4], higher ignition energy, and NOx emissions [5]. To overcome these obstacles,
ammonia can be co-fired with hydrogen [6,7]. Qualitatively, the combustion of a mixture
composed of ammonia and hydrogen can enhance the rate of smooth flame propagation and
reduce the minimum ignition energy [8,9]. Ammonia-hydrogen combustion has tremen-
dous development potential and prospects. Figure 1 shows the number of publications on
ammonia-hydrogen combustion in recent years with data sourced from the Web of Science;
thus, this paper’s research on predicting the laminar velocity of ammonia-hydrogen has
significant importance.

The laminar burning velocity (LBV) is a fundamental and crucial characteristic of
fuel combustion, which provides an indication of the overall reactivity of the fuel, plays a
critical role in the estimation of the thermal energy emission rate, and verifies both detailed
and reduced combustion reaction mechanisms. Currently, the main methods for measuring
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LBV include the Spherical Flame (SF), Constant Pressure Combustion Chamber (CPCC),
Particle Tracking Velocimetry (PTV), Cylindrical Bomb (CB), Conical Flame (CF), and Heat
Flux Burner (HFB) methods [10].
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Figure 1. The number of recent publications on ammonia-hydrogen combustion research.

LBV can only be measured experimentally at low pressure and temperature, and the
traditional experimental methods for deriving LBV under different conditions for various
fuels are very cumbersome. Nevertheless, despite their limitations, the experimental
measurements of LBV continue to serve as a primary benchmark for verifying the accuracy
of different fuel combustion mechanisms [11,12].

An alternative approach for determining LBV involves employing computational tools
like Cantera, Chemkin, and OpenSMOKE++, which utilize chemical kinetics mechanisms
to calculate LBV using one-dimensional simulation methods. In the realm of engine
simulation, applying comprehensive combustion models to both zero-dimensional (0D)
and one-dimensional (1D) models presents significant computational challenges and is
often deemed impractical due to the high demand on processing power. Machine learning
approaches can be leveraged to expedite the computation of LBV within both 0D and 1D
engine simulation models, without compromising the accuracy of the results [13].

Machine learning methods have been applied to predict the laminar burning velocity
and to study the dependence of LBV on various factors. Some studies have used Support
Vector Machine (SVM) and Artificial Neural Network (ANN) methods to compare the
prediction of LBV for low-carbon fuels, with results indicating that ANN methods performs
better with single fuels, while the opposite is true for mixed fuels [14]. Zhongyu Wan [15]
selected a squared exponential Gaussian Process Regression (GPR) model for predicting the
laminar burning speed of single hydrocarbons and oxygenated fuels. Cihat Emre Üstün [16],
by comparing different ML models, recommended using GPR and Neural Network (NN)
algorithms to predict the LBV of NH3/H2/Air. Gadi Udaybhanu [17] integrated artificial
neural networks (ANNs) with Genetic Algorithms (GAs), employing a GA-ANN model
to predict the LBV of isooctane blended with various fuels. In addition, Yanqing Cui [18]
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established a BP-GA model for the ignition delay prediction of an n-butane/hydrogen
mixture to obtain better prediction ability.

However, the studies undertaken still have their limitations. Due to the limited exper-
imental values of LBV and the small sample size, the literature reviewed incorporates a
significant amount of data generated by simulation software such as Chemkin 4.1 into the
datasets. The accuracy of these simulated data depends on the values of the reaction rate
constants, reaction orders, and activation energies within different chemical kinetics mech-
anisms, which may still have some discrepancies compared to experimental data. Current
methods are unable to achieve good prediction results from the small-scale experimental
datasets obtained after removing simulated data, which limits the accuracy of the models
under real experimental conditions. The research dataset is solely sourced from publicly
accessible experimental data, thereby enhancing the precision of the study.

This study proposes an innovative model based on XGBoost for predicting the LBV of
ammonia and hydrogen, named NHLBVNet, which demonstrates excellent performance on
small-scale datasets. Additionally, the model introduces a combustion feature module and
a combustion prediction module, further enhancing the model’s interpretability and high-
lighting the superiority of NHLBVNet over other baseline models. The code for the NHLB-
VNet model has been placed on GitHub (https://github.com/master032/NHLBVNet
(accessed on 17 September 2024)).

2. Methods
2.1. The NHLBVNet Model
2.1.1. Model Architecture

The NHLBVNet model is structured to include a combustion feature module and a
separate combustion prediction module, with the model structure illustrated in Figure 2.
In this paper, the combustion feature module operates to extract relevant data and to
formulate characteristics from the vector of the combustion reaction information vector
hi, resulting in a combustion feature vector qi. The combustion feature vector qi is then
input into the feature prediction module to obtain the model’s predicted laminar burning
velocity result vector si.
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Figure 2. Structure of the NHLBVNet Model.

Different from other LBV prediction models, NHLBVNet incorporates a multi-layer
structure in its design, which facilitates the model’s thorough learning of the data distribu-
tion. The model is segmented into multiple modules, enhancing its scalability. Addition-
ally, the adoption of the ResNet architecture effectively mitigates information loss within
the model.

2.1.2. Model Input

This study employs the dataset derived from Section 3.1 for both model training and
prediction. Through the organization of the data, this paper has established datasets that
include a pressure information dataset P, temperature information dataset T, a hydrogen
blending ratio information dataset X, and an equivalence ratio information dataset K.

https://github.com/master032/NHLBVNet
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The combustion reaction information dataset H is used as the input for the model, wherein
combustion reaction information vectors hi are employed to represent the specific data from
combustion experiments, where hi ∈ R|H|×5 and |H| denote the number of entries in the
combustion reaction information dataset H. Each combustion reaction information vector
hi is composed of the aforementioned four types of information, where hi = pi, ti, xi, ki
and pi ∈ P, ti ∈ T, xi ∈ X, ki ∈ K.

2.1.3. Combustion Feature Module

The task of the combustion feature module is to thoroughly extract features from the
input data, thereby providing support for the combustion prediction module to output pre-
cise results. The combustion feature module initially employs XGBoost [19] for preliminary
feature extraction.

XGBoost is an algorithm based on gradient boosting decision trees [20,21]. Gradient
boosting involves predicting the residuals or errors from previous models and then sum-
ming these to form the final prediction. It is referred to as gradient boosting because it
employs the gradient descent algorithm [22,23] to minimize the loss when introducing new
models into the ensemble. XGBoost also enhances the interpretability of the model [24].
Compared to random forests, XGBoost is faster and more accurate, offering superior model
performance. A significant amount of work has utilized XGBoost for tasks of feature
selection and feature combination [25–27].

Within the combustion feature module, the formula used for XGBoost is represented
as Equation (1).

yi =
M

∑
k=1

fk(hi) (1)

where hi represents the combustion reaction information obtained from the ith experiment;
XGBoost learns a base learner fk for each feature, and then sums the outputs of all base
learners as the predicted laminar burning velocity of the ammonia-hydrogen mixture,
thereby conducting gradient boosting training.

To further extract features, the combustion feature module employs a multi-layer
perceptron [28] for preliminary feature learning of the data. As a classic machine learning
method, the multi-layer perceptron is capable of fitting tasks while minimizing the loss of
information [29]. Through the multi-layer perceptron, the model can obtain the combustion
feature embedding vectors. The formula used in this stage is shown as Equation (2).

ei = Whi + b (2)

where ei represents the combustion feature embedding vector obtained from the ith experi-
ment; W represents the weight matrix; and b denotes the bias term.

Subsequently, the combustion feature module employs a structure akin to residual neu-
ral networks [30] for information integration. Given the value of the data within the dataset,
to enhance the model’s capacity for learning the distribution of the original data, this re-
search adds the outputs from the various base learners fk(hi) in XGBoost to the combustion
reaction information hi obtained from the ith experiment. This approach strengthens the
model’s learning of the raw data. The formula used is shown as Equation (3).

qi = α ◦ fk(hi) + (1 − α) ◦ hi (3)

where α is a hyperparameter used to control the proportion of various data within the
ResNet structure; fk represents the decision tree obtained from the kth training iteration,
with each fk(hi) corresponding to an independent tree structure, where each fk(hi) scores
the sample hi. These scores are collected; the obtained scores are multiplied by the hyperpa-
rameter α and added to the combustion reaction information to obtain the ith combustion
feature vector qi.
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After processing through the combustion feature module, the model conducts com-
prehensive feature learning and integration of the combustion reaction information hi.
The resulting combustion feature vector qi will then be passed as the output of the combus-
tion feature module to the subsequent module.

2.1.4. Combustion Prediction Module

The combustion prediction module is utilized for predicting the laminar burning
velocity, and this module consists of an attention layer and an output layer. The attention
mechanism directs focused attention to key information, thereby conserving computational
resources and rapidly acquiring the most pertinent information [31,32].

In order to screen the obtained combustion feature embedding vector ei, the com-
bustion feature vectors qi from the previous module are collected to form the dataset of
combustion feature vectors Q f , which is then placed into an attention module. The com-
bustion prediction module employs an attention mechanism to score the features that
affect the laminar burning velocity of ammonia-hydrogen mixtures, thereby highlighting
the impact of significant features on the model’s predictive outcomes. This utilizes the
attention mechanism to assign weights that further emphasize the core combustion data.
The attention function formula used within the module is presented as Equation (4).

Q = WQQ f

K = WKQ f

V = WV Q f

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V

(4)

where ai ∈ A represents the attention score of the combustion feature vector; WQ, WK, and
WV denote the matrix of parameters required for computing the attention scores; dk is the
length of the combustion feature vector; the attention score ai for the combustion feature
vector qi is assigned by calculating the similarity between the combustion feature vector qi
obtained from the ith experiment and the combustion feature vector qj obtained from the
jth experiment.

The softmax function is frequently used as an activation function to achieve the effect
of reducing model linearization and normalizing model results. In this paper, the softmax
function is used with the computational formula (5) as follows:

yk =
exp(ak)

∑n
i=1 exp(ai)

(5)

where exp refers to the exponential function, and ai is the input to the function.
Finally, the combustion prediction module employs a linear layer as the output layer

to adjust the final predicted LBV for ammonia-hydrogen mixtures. The formula used is as
shown in Equation (6).

xi = ai ∗ qi

si = so f tmax(W5xi + b3) + b4)
(6)

where softmax is the activation function; W5 is the matrix of parameters required for the
calculation; b3 and b4 are the bias parameters needed for the output layer computation. This
module multiplies the attention scores ai obtained from the combustion feature module for
the combustion feature embedding vectors qi to derive the combustion reaction vectors xi.
The combustion reaction vectors xi are then input into the linear layer to yield the model’s
predicted result vector si.



Appl. Sci. 2024, 14, 9603 6 of 16

2.2. Model Training

The task of this paper is a prediction task, leveraging the NHLBVNet model to forecast
the LBV of ammonia-hydrogen mixtures based on provided datasets of the pressure infor-
mation dataset P, temperature information dataset T, hydrogen blending ratio information
dataset X, and equivalence ratio information dataset K. In this paper, to comprehensively
consider the model’s predictive accuracy under single conditions and the distribution gap
of the model’s overall output, the model employs a composite loss function of the Root
Mean Square Error (RMSE) and the Mean Absolute Error (MAE) to measure the prediction
accuracy [33] of the model.

• Root Mean Square Error
The root mean square error (RMSE) is calculated based on the Mean Squared Error
(MSE) by taking the square root of its output. It measures the prediction gap by
computing the sample standard deviation of the differences (referred to as residuals)
between the predicted values and the observed values, with the RMSE indicating the
degree of dispersion of the samples. In regression tasks, a smaller RMSE indicates
that the distribution of the prediction results is closer to the distribution of the actual
data. The formula for RMSE used in this paper is shown as Equation (7).

RMSE(X, h) =

√
1
m

m

∑
i=1

(h(xi)− yi)
2 (7)

• Mean Absolute Error
The mean absolute error (MAE) measures the prediction gap by calculating the mean
of the absolute discrepancies between the forecasted and actual values. MAE is a linear
score where all individual discrepancies have equal weight in the average, and com-
pared to the root mean square error (RMS0.E), it imposes less penalty on higher
discrepancies. The formula for MAE used in this paper is shown as Equation (8).

MAE(X, h) =
1
m

m

∑
i=1

|h(xi)− yi| (8)

• Loss Function
In the NHLBVNet model, a composite formula using both the mean absolute error
(MAE) and the root mean square error (RMSE) is employed to simultaneously measure
the absolute error and the distribution gap of the predicted values, thereby enhancing
the model training effectiveness. A threshold value, denoted as λ, is set to limit the
impact of the MAE and RMSE on the overall loss. The loss function utilized in this
study is presented in Equation (9).

L = λMAE + (1 − λ)RMSE (9)

3. Results and Discussion
3.1. Dataset

This study involved the collection of experimental data on ammonia-hydrogen com-
bustion from multiple papers and organized it into a unified dataset format for model
training and prediction. A comprehensive collection of 553 datasets pertaining to the
stratified combustion of NH3/H2/Air mixtures was gathered under a wide range of exper-
imental settings (hydrogen content XH2 , temperature T, pressure P, and equivalence ratio
φ). Table 1 presents the sources of the collected data and the details of the dataset used in
this paper.
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Table 1. Experimental data on LBV from academic sources.

Author(s) Year XH2 φ T (K) P (MPa) LBV (cm/s)

Han et al. [34] 2019 0.025–0.4 0.7–1.6 298 0.1–0.5 6.0–33.90
Wang et al. [35] 2020 0.4–0.6 0.6–1.6 298–493 0.05–0.2 8.85–64.98
Lhuillier et al. [36] 2020 0.05–0.6 0.8–1.4 298 0.1–0.7 4.81–140.21
Shrestsha et al. [37] 2021 0.05–0.3 0.8–1.4 298–423 0.05–0.15 7.38–50.01
Gotama et al. [38] 2022 0.1–0.4 0.8–1.8 298–443 0.1 9.44–38.75
Zhou et al. [39] 2022 0.1–0.7 0.7–1.4 298–423 0.1 5.56–30.28

To illustrate the differences between these datasets, we conducted a significance
analysis on the dataset used in this article. The Kolmogorov–Smirnov test was used to
calculate the correlation between the same variable in different datasets. The significance
scores of all variables between the two tables were averaged to obtain a significance matrix.
The significance test results are shown in Figure 3.

Figure 3. Significance testing between different datasets.

When the p-value is less than 0.05, the two tables reach 95% significance. From the ma-
trix, it can be seen that most of the datasets used in the article have significant correlations.
This also indicates that using experimental data from different authors for model training
is feasible, with errors within an acceptable range.

3.2. Data Analysis and Processing

During combustion experiments, the dataset may encounter outliers due to experi-
mental apparatus inaccuracies or human operational errors. Such data points deviate from
the general distribution pattern of the dataset.

Experimental data that include outliers can impact the model training; therefore, this
research processed the aforementioned data and conducted outlier removal. Since the four
factors cannot be considered simultaneously, the dataset is grouped by different T, P, XH2 ,
and φ, and outliers are screened out for each group.

Our screening method involves fixing three conditions to obtain a scatter plot of
a specific condition versus LBV and calculating the 95% confidence interval, as shown
in Figure 4, which shows the relationship between φ and LBV at P = 1 atm, T = 298 K,
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XH2 = 0.3. Samples that fall outside this confidence interval are considered outliers and
are removed. The blue area represents the 95% confidence interval for the dataset in this
group, and the red data points are the excluded outliers.

Figure 4. Outlier screening in the group with P = 1 atm, T = 298 K, XH2 = 0.3.

Using this method, 67 sets of outlier data were eliminated, leaving 486 sets of data.
The excluded outliers will not appear in the dataset of the model and will not participate
in the training, evaluation, and analysis of the model. Table 2 delineates the spectrum of
collected experimental observations and enumerates the remaining datasets following the
exclusion of outliers.

The structured dataset was partitioned into segments for training, testing, and valida-
tion purposes, with a distribution ratio of 7:1.5:1.5, as shown in Table 3. We use training and
testing sets for model training and parameter selection, and validation sets for model result
validation. By using this dataset partitioning method, it is possible to avoid overfitting of
the model due to incomplete evaluation of the model.

Table 2. The ranges of the dataset parameters used by NHLBVNet.

Parameters Values

Pressure 1–7 bar
Temperature 298–493 K
Hydrogen fuel fraction 0.025–0.6
Equivalence ratio 0.6–1.8
LBV 4.81–140.21 cm/s
No. of exp. points 486

This study meticulously examines the relationship between four key factors (hydrogen
content XH2 , temperature T, pressure P, and equivalence ratio φ) to uncover the underlying
characteristics of the dataset involved. The findings, as depicted in Figure 5, reveal that
XH2 has a substantial impact on LBV, indicating its importance as a primary driver in
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the experimental data. Temperature’s impact ranks as the second most substantial factor,
suggesting that thermal conditions must be closely monitored to maintain optimal LBV.

Table 3. Details of data partitioning.

Dataset Proportion

Train Dataset 70%
Test Dataset 15%
Verification Dataset 15%

In Figure 5, we also conducted a significance analysis, where the more asterisks present
indicate a more significant correlation between the feature variables. From the analysis
results, it can be observed that a majority of the variables in the dataset exhibit significance,
while a minority show strong significance.

While the pressure and equivalence ratio also play a role, their effects are less pro-
nounced compared to XH2 and temperature. This suggests that, although they should not
be disregarded, they may not require the same level of meticulous control as the other two
factors. Moreover, the correlations among these factors are found to be weak, indicating a
degree of independence that can be exploited for individual optimization without causing
significant disruptions to the other variables. This nuanced understanding of the factors at
play provides a solid foundation for further research and practical applications aimed at
enhancing LBV.

Figure 5. Correlation heatmap of the dataset.

3.3. Results Analysis

The NHLBVNet model proposed in this study is based on an improvement of XGBoost,
achieving R2 > 0.99. A comparison of its prediction results with those of XGBoost is shown
in Figure 6. It is evident that the XGBoost predictions of LBV have a significant error in
the range of 20–60 cm/s, even exceeding 25% error. In contrast, NHLBVNet addresses this
issue, providing accurate predictions within the 20–60 cm/s range, with errors generally
less than 10% .
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Figure 6. (a) XGBoost and (b) NHLBVNet prediction results.

This paper also selects MLP (Multi-Layer Perceptron), LR (Logistic Regression), XG-
Boost, and XGBoost+MLP as baseline models for comparison, with the results shown
in Table 4. The multi-layer perceptron (MLP) is characterized as a feedforward type of
artificial neural network, which encompasses an input layer, an output layer, and a series
of intermediary layers known as hidden layers. The MLP compared in this paper is a basic
three-layer perceptron. Due to its limited model capacity, it did not achieve good results
across the three metrics. Logistic regression stands out as a prevalent linear statistical
model that is often employed for a variety of tasks, and its results are better than those of
MLP. XGBoost is an optimization and improvement of the Gradient Boosting Decision Tree
(GBDT) algorithm and has achieved excellent results in regression tasks.

Table 4. The best performance comparison on dataset.

Model R2 MAE RMSE

MLP 0.766 19.326 7.934
LR 0.783 18.151 7.011
XGBoost 0.931 6.013 2.812
XGBoost + MLP 0.956 3.838 1.959
NHLBVNet 0.993 1.892 1.225

In the experiments, XGBoost was the best-performing model among all the baseline
models, achieving good results. XGBoost + MLP adds a multi-layer perceptron layer after
the output of XGBoost to further learn the data distribution, and its performance is further
enhanced based on XGBoost.

In summary, the NHLBVNet model results in multi-layer improvements to XGBoost and
enhances the prediction accuracy of LBV of NH3/H2/Air. It outperforms current mainstream
methods in both R2 and MSE as well as MAE metrics. The results indicate that the NHLBVNet
model provides more accurate predictions of the LBV for ammonia-hydrogen mixtures.

3.4. Ablation Study

To ascertain the contribution of individual elements within the NHLBVNet architecture
introduced herein, the following ablation experiments were designed:

• NHLBVNet—ResNet
In the NHLBVNet model, the ResNet structure is eliminated, which means that in the
combustion feature extraction module, the output of the linear layer is directly used
as the output of the combustion feature extraction module.

• NHLBVNet—FCL
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The feature combination layer in the NHLBVNet model is eliminated, no longer
performing the collection and combination of features, and instead, the output from the
feature extractor layer serves directly as the output for the combustion feature module.

• NHLBVNet—Attention Layer (Att)
The attention structure in the NHLBVNet model is eliminated, and attention weights
are no longer assigned and calculated for features; all features are considered equally
important for model learning.

The results of the ablation experiments for the corresponding modules are listed in
Table 5. When the respective structures are removed, the model performance is affected to
varying degrees, which validates the necessity of each module for NHLBVNet.

Table 5. Comparison of ablation experiment results.

Model R2 MAE RMSE

NHLBVNet-ResNet 0.979 2.603 1.711
NHLBVNet-FCL 0.988 2.167 1.509
NHLBVNet-Att 0.983 2.214 1.568
NHLBVNet 0.993 1.892 1.225

3.5. Parameter Analysis

To investigate the influence of model parameters on the NHLBVNet model’s perfor-
mance, this section describes parameter experiments on XGBoost, XGBoost + MLP, and the
NHLBVNet model.

In the NHLBVNet model, both the feature combination layer and the output layer
utilize a multi-layer perceptron (MLP) for prediction, where the neuron count in each layer
is also a pivotal model parameter. This section first investigates the neuron count within
the feature combination layer and the output layer in the NHLBVNet. The experimental
findings are presented in Figure 7.

Figure 7. Results of the number of neurons experiment.

In this experiment, the performance of the model is evaluated by monitoring the R2

similarity coefficient. It can be noted that when there is a smaller neuron count across
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each layer, the model exhibits a larger error, indicating a poorer fit and a more significant
deviation in the distribution of the output data. On the other hand, increasing the number
of neurons to a greater extent leads to overfitting, which is characterized by a sudden
drop in the R2 similarity coefficient. This suggests that there is an optimal range for the
number of neurons that balances between underfitting (larger error due to poor model
complexity) and overfitting (reduced performance due to excessive complexity). Based
on the parameter experimentation, this paper sets the neuron count in the output layer to
20 and in the feature combination layer to 15, which yields the most precise outcomes for
the model.

This section then explores the effect of training epochs on the model, with the perfor-
mance of the models at different training epochs shown in Figure 8.

Figure 8. Training epochs experiment results (a) R2; (b) MAE; (c) RMSE.

From Figure 8, it can be observed that XGBoost reaches stability with fewer training
iterations. When the quantity of training epochs is insufficient, both the overall distribution
and accuracy of the NHLBVNet model and XGBoost + MLP are inferior to XGBoost.
With an escalating count of training iterations, the performance of the NHLBVNet model
and XGBoost + MLP gradually surpasses that of XGBoost, with the NHLBVNet model
showing the best performance. The results of the parameter experiments indicate that when
the training epochs exceed 4000, the performance of the NHLBVNet model surpasses all
baseline models. Furthermore, when the training epochs are around 5000, the NHLBVNet
model can perform optimally and become stable.

3.6. Robustness Analysis

The results analysis of this paper found that the NHLBVNet model outperforms the
baseline models on the small-scale dataset. To substantiate the NHLBVNet model’s reliabil-
ity and sturdiness concerning various datasets, this paper reports robustness experiments
on XGBoost, XGBoost+MLP, and the NHLBVNet model.

The experimental setup was devised to incrementally diminish the training set’s
volume, all the while keeping the training parameters unchanged, thereby investigating
the dependency of each model on the data. The size of the training set was controlled by
adjusting the proportion it represents within the entire dataset, with models being tested
at training set proportions of 70%, 60%, 50%, and 40%, while the test set remained fixed.
The R2 similarity coefficient was utilized as the evaluation metric to assess the overall
accuracy of each model’s output. The robustness experiment’s findings are illustrated
in Figure 9.
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Figure 9. Results of the robustness analysis.

As the size of the training set decreased, the performance of all models showed a
significant decline. Notably, the combined model of XGBoost + MLP experienced the most
substantial decrease, while the NHLBVNet model exhibited the least reduction in overall
accuracy. This indicates that compared to other baseline models, the NHLBVNet model is
capable of delivering superior performance even with small-scale datasets. The NHLBVNet
model outperformed the baseline models across various datasets, once again demonstrating
the superiority and effectiveness of the NHLBVNet model.

3.7. Error Analysis

To explore the circumstances under which the model makes mistakes, this section
conducts an error analysis. Specifically, this section tallies the mean residual errors predicted
by the model, and the distribution is shown in Table 6.

Table 6. Residuals of the model across various intervals.

LBV Intervals 0–20 20–40 40–60 60–80 80–100 100–120 120–140

Avg Residuals 1.948 1.808 3.930 2.951 4.330 9.019 39.726

It can be observed that as LBV increases, the loss output by the model also gradually
increases. To investigate this issue, we conducted further statistical analysis on the data,
obtaining the proportion of data in each segment, as shown in Figure 10.

We found that when LBV is high, the amount of data is smaller, leading to a decline in
the model’s predictive performance. This is consistent with the characteristics of combus-
tion experiments; when under high temperature and high pressure conditions, LBV is larger,
but this also places more stringent demands on the experimental equipment, resulting in
less available data, which, in turn, leads to a decrease in the model’s predictive capability.
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Figure 10. Data proportions by LBV segmentation.

4. Conclusions

This work has developed a new machine learning (ML) model to estimate the LBV
of NH3/H2/Air, applicable across diverse conditions. Experimental data from various
conditions were sourced from existing scholarly works and cleaned of outliers to form a
dataset for ML training. The study concludes the following:

• In terms of prediction accuracy for the LBV of NH3/H2/Air, the NHLBVNet model
proposed in this paper performs better (R2 > 99%) than the improved XGBoost model
(R2 > 93%).

• The ablation experiment results of NHLBVNet are all higher than the XGBoost model,
proving the effectiveness and necessity of each component of the NHLBVNet model.

• Robustness experiment results indicate that the NHLBVNet model outperforms other
baseline models on small-scale datasets, showing better generalization capabilities.

Given these conclusions, the NHLBVNet model developed in this paper still maintains
its superiority on small-sample datasets. It holds promise to replace the laborious experi-
mental data acquisition or numerical simulation calculations for LBV, providing support
for the exploration of NH3/H2/Air combustion mechanisms.

Author Contributions: Conceptualization, W.Y. and B.Z.; methodology, W.Y.; software, W.Y. and
B.Z.; validation, W.Y., S.Z. and B.W.; formal analysis, W.Y. and B.W.; data curation, W.Y.; writing—
original draft preparation, W.Y.; writing—review and editing, W.Y.; visualization, B.W.; supervision,
Y.X.; project administration, Z.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by the National Key Research and Development Program of China
[Grant No. 2023YFB4301700], and the National Natural Science Foundation of China [Grant No. 51306026].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.



Appl. Sci. 2024, 14, 9603 15 of 16

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kobayashi, H.; Hayakawa, A.; Somarathne, K.K.A.; Okafor, E.C. Science and technology of ammonia combustion. Proc. Combust.

Inst. 2019, 37, 109–133. [CrossRef]
2. Masoumi, S.; Ashjaee, M.; Houshfar, E. Laminar flame stability analysis of ammonia-methane and ammonia-hydrogen dual-fuel

combustion. Fuel 2024, 363, 131041. [CrossRef]
3. Morlanés, N.; Katikaneni, S.P.; Paglieri, S.N.; Harale, A.; Solami, B.; Sarathy, S.M.; Gascon, J. A technological roadmap to the

ammonia energy economy: Current state and missing technologies. Chem. Eng. J. 2021, 408, 127310. [CrossRef]
4. Lesmana, H.; Zhu, M.; Zhang, Z.; Gao, J.; Wu, J.; Zhang, D. Experimental and kinetic modelling studies of laminar flame speed in

mixtures of partially dissociated NH3 in air. Fuel 2020, 278, 118428. [CrossRef]
5. Hayakawa, A.; Arakawa, Y.; Mimoto, R.; Somarathne, K.K.A.; Kudo, T.; Kobayashi, H. Experimental investigation of stabilization

and emission characteristics of ammonia/air premixed flames in a swirl combustor. Int. J. Hydrogen Energy 2017, 42, 14010–14018.
[CrossRef]

6. Li, J.; Huang, H.; Kobayashi, N.; He, Z.; Nagai, Y. Study on using hydrogen and ammonia as fuels: Combustion characteristics
and NOx formation. Int. J. Energy Res. 2014, 38, 1214–1223. [CrossRef]

7. Xiao, H.; Valera-Medina, A.; Bowen, P.J. Modeling combustion of ammonia/hydrogen fuel blends under gas turbine conditions.
Energy Fuels 2017, 31, 8631–8642. [CrossRef]

8. Han, X.; Wang, Z.; He, Y.; Zhu, Y.; Cen, K. Experimental and kinetic modeling study of laminar burning velocities of
NH3/syngas/air premixed flames. Combust. Flame 2020, 213, 1–13. [CrossRef]

9. Li, H.; Xiao, H.; Sun, J. Laminar burning velocity, Markstein length, and cellular instability of spherically propagating
NH3/H2/Air premixed flames at moderate pressures. Combust. Flame 2022, 241, 112079. [CrossRef]

10. Konnov, A.A.; Mohammad, A.; Kishore, V.R.; Kim, N.I.; Prathap, C.; Kumar, S. A comprehensive review of measurements and
data analysis of laminar burning velocities for various fuel+ air mixtures. Prog. Energy Combust. Sci. 2018, 68, 197–267. [CrossRef]

11. Pichler, C.; Nilsson, E.J. Reduced kinetic mechanism for methanol combustion in spark-ignition engines. Energy Fuels 2018,
32, 12805–12813. [CrossRef]

12. Otomo, J.; Koshi, M.; Mitsumori, T.; Iwasaki, H.; Yamada, K. Chemical kinetic modeling of ammonia oxidation with improved
reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion. Int. J. Hydrogen Energy 2018, 43, 3004–3014.
[CrossRef]

13. Pulga, L.; Bianchi, G.; Falfari, S.; Forte, C. A machine learning methodology for improving the accuracy of laminar flame
simulations with reduced chemical kinetics mechanisms. Combust. Flame 2020, 216, 72–81. [CrossRef]

14. Shahpouri, S.; Norouzi, A.; Hayduk, C.; Fandakov, A.; Rezaei, R.; Koch, C.R.; Shahbakhti, M. Laminar flame speed modeling for
low carbon fuels using methods of machine learning. Fuel 2023, 333, 126187. [CrossRef]

15. Wan, Z.; Wang, Q.D.; Wang, B.Y.; Liang, J. Development of machine learning models for the prediction of laminar flame speeds of
hydrocarbon and oxygenated fuels. Fuel Commun. 2022, 12, 100071. [CrossRef]

16. Üstün, C.E.; Herfatmanesh, M.R.; Valera-Medina, A.; Paykani, A. Applying machine learning techniques to predict laminar
burning velocity for ammonia/hydrogen/air mixtures. Energy AI 2023, 13, 100270. [CrossRef]

17. Udaybhanu, G.; Reddy, V.M. A hybrid GA-ANN and correlation approach to developing a laminar burning velocity prediction
model for isooctane/blends-air mixtures. Fuel 2024, 360, 130594. [CrossRef]

18. Cui, Y.; Wang, Q.; Liu, H.; Zheng, Z.; Wang, H.; Yue, Z.; Yao, M. Development of the ignition delay prediction model of
n-butane/hydrogen mixtures based on artificial neural network. Energy AI 2020, 2, 100033. [CrossRef]

19. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

20. Lee, J.H.; Shin, J.; Realff, M.J. Machine learning: Overview of the recent progresses and implications for the process systems
engineering field. Comput. Chem. Eng. 2018, 114, 111–121. [CrossRef]

21. Yuan, X.; Chen, F.; Xia, Z.; Zhuang, L.; Jiao, K.; Peng, Z.; Wang, B.; Bucknall, R.; Yearwood, K.; Hou, Z. A novel feature
susceptibility approach for a PEMFC control system based on an improved XGBoost-Boruta algorithm. Energy AI 2023, 12, 100229.
[CrossRef]

22. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
23. Yang, B.; Liu, Y.; Liu, Z.; Zhu, Q.; Li, D. Classification of Rock Mass Quality in Underground Rock Engineering with Incomplete

Data Using XGBoost Model and Zebra Optimization Algorithm. Appl. Sci. 2024, 14, 7074. [CrossRef]
24. Song, Z.; Cao, S.; Yang, H. An interpretable framework for modeling global Solar radiation using tree-based ensemble machine

learning and Shapley additive explanations methods. Appl. Energy 2024, 364, 123238. [CrossRef]
25. Jiang, Z.; Che, J.; He, M.; Yuan, F. A CGRU multi-step wind speed forecasting model based on multi-label specific XGBoost

feature selection and secondary decomposition. Renew. Energy 2023, 25, 802–827. [CrossRef]
26. Wang, W.; Xiong, W.; Wang, J.; Tao, L.; Li, S.; Yi, Y.; Zou, X.; Li, C. A user purchase behavior prediction method based on XGBoost.

Electronics 2023, 12, 2047. [CrossRef]
27. Yao, S.; Kronenburg, A.; Stein, O. Efficient modeling of the filtered density function in turbulent sprays using ensemble learning.

Combust. Flame 2022, 237, 111722. [CrossRef]

http://doi.org/10.1016/j.proci.2018.09.029
http://dx.doi.org/10.1016/j.fuel.2024.131041
http://dx.doi.org/10.1016/j.cej.2020.127310
http://dx.doi.org/10.1016/j.fuel.2020.118428
http://dx.doi.org/10.1016/j.ijhydene.2017.01.046
http://dx.doi.org/10.1002/er.3141
http://dx.doi.org/10.1021/acs.energyfuels.7b00709
http://dx.doi.org/10.1016/j.combustflame.2019.11.032
http://dx.doi.org/10.1016/j.combustflame.2022.112079
http://dx.doi.org/10.1016/j.pecs.2018.05.003
http://dx.doi.org/10.1021/acs.energyfuels.8b02136
http://dx.doi.org/10.1016/j.ijhydene.2017.12.066
http://dx.doi.org/10.1016/j.combustflame.2020.02.021
http://dx.doi.org/10.1016/j.fuel.2022.126187
http://dx.doi.org/10.1016/j.jfueco.2022.100071
http://dx.doi.org/10.1016/j.egyai.2023.100270
http://dx.doi.org/10.1016/j.fuel.2023.130594
http://dx.doi.org/10.1016/j.egyai.2020.100033
http://dx.doi.org/10.1016/j.compchemeng.2017.10.008
http://dx.doi.org/10.1016/j.egyai.2023.100229
http://dx.doi.org/10.3390/app14167074
http://dx.doi.org/10.1016/j.apenergy.2024.123238
http://dx.doi.org/10.1016/j.renene.2022.12.124
http://dx.doi.org/10.3390/electronics12092047
http://dx.doi.org/10.1016/j.combustflame.2021.111722


Appl. Sci. 2024, 14, 9603 16 of 16

28. Alzubi, J.; Nayyar, A.; Kumar, A. Machine learning from theory to algorithms: An overview. J. Physics Conf. Ser. 2018, 1142, 012012.
[CrossRef]

29. Hou, J.; Pan, H.; Guo, T.; Lee, I.; Kong, X.; Xia, F. Prediction methods and applications in the science of science: A survey. Comput.
Sci. Rev. 2019, 34, 100197. [CrossRef]

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

31. Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [CrossRef]
32. Nie, T.; Yao, S.; Wang, D.; Wang, C.; Zhao, Y. MAPPNet: A Multi-Scale Attention Pyramid Pooling Network for Dental Calculus

Segmentation. Appl. Sci. 2024, 14,7273. [CrossRef]
33. Wang, Q.; Ma, Y.; Zhao, K.; Tian, Y. A comprehensive survey of loss functions in machine learning. Ann. Data Sci. 2020, 9,

187–212. [CrossRef]
34. Han, X.; Wang, Z.; Costa, M.; Sun, Z.; He, Y.; Cen, K. Experimental and kinetic modeling study of laminar burning velocities of

NH3/air, NH3/H2/air,NH3/CO/air and NH3/CH4/air premixed flames. Combust. Flame 2019, 206, 214–226. [CrossRef]
35. Wang, S.; Wang, Z.; Elbaz, A.M.; Han, X.; He, Y.; Costa, M.; Konnov, A.A.; Roberts, W.L. Experimental study and kinetic analysis

of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures.
Combust. Flame 2020, 221, 270–287. [CrossRef]

36. Lhuillier, C.; Brequigny, P.; Lamoureux, N.; Contino, F.; Mounaïm-Rousselle, C. Experimental investigation on laminar burning
velocities of ammonia/hydrogen/air mixtures at elevated temperatures. Fuel 2020, 263, 116653. [CrossRef]

37. Shrestha, K.P.; Lhuillier, C.; Barbosa, A.A.; Brequigny, P.; Contino, F.; Mounaïm-Rousselle, C.; Seidel, L.; Mauss, F. An experimental
and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure
and temperature. Proc. Combust. Inst. 2021, 38, 2163–2174. [CrossRef]

38. Gotama, G.J.; Hayakawa, A.; Okafor, E.C.; Kanoshima, R.; Hayashi, M.; Kudo, T.; Kobayashi, H. Measurement of the laminar
burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed
flames. Combust. Flame 2022, 236, 111753. [CrossRef]

39. Zhou, S.; Cui, B.; Yang, W.; Tan, H.; Wang, J.; Dai, H.; Li, L.; ur Rahman, Z.; Wang, X.; Deng, S.; et al. An experimental and kinetic
modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature.
Combust. Flame 2023, 248, 112536. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1742-6596/1142/1/012012
http://dx.doi.org/10.1016/j.cosrev.2019.100197
http://dx.doi.org/10.1016/j.neucom.2021.03.091
http://dx.doi.org/10.3390/app14167273
http://dx.doi.org/10.1007/s40745-020-00253-5
http://dx.doi.org/10.1016/j.combustflame.2019.05.003
http://dx.doi.org/10.1016/j.combustflame.2020.08.004
http://dx.doi.org/10.1016/j.fuel.2019.116653
http://dx.doi.org/10.1016/j.proci.2020.06.197
http://dx.doi.org/10.1016/j.combustflame.2021.111753
http://dx.doi.org/10.1016/j.combustflame.2022.112536

	Introduction
	Methods
	The NHLBVNet Model
	Model Architecture
	Model Input
	Combustion Feature Module
	Combustion Prediction Module

	Model Training

	Results and Discussion
	Dataset
	Data Analysis and Processing
	Results Analysis
	Ablation Study
	Parameter Analysis
	Robustness Analysis
	Error Analysis

	Conclusions
	References

