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Abstract: Metaheuristic algorithms (MHAs) are widely used in engineering applications in view
of their global optimization capability. Researchers continuously develop new MHAs trying to
improve the computational efficiency of optimization search. However, most of the newly proposed
algorithms rapidly lost their attractiveness right after their release. In the present study, two classical
and powerful MHAs, namely the grey wolf optimizer (GWO) and the JAYA algorithm, which still
attract the attention of optimization experts, were combined into a new hybrid algorithm called
FHGWJA (Fast Hybrid Grey Wolf JAYA). FHGWJA utilized elitist strategies and repairing schemes
to generate high-quality new trial solutions that may always improve the current best record or
at least the old population. The proposed FHGWJA algorithm was successfully tested in seven
engineering optimization problems formulated in the fields of robotics, hydraulics, and mechanical
and civil engineering. Design examples included up to 29 optimization variables and 1200 nonlinear
constraints. The optimization results proved that FHGWJA always was superior or very competitive
with the other state-of-the-art MHAs including other GWO and JAYA variants. In fact, FHGWJA
always converged to the global optimum and very often achieved 0 or nearly 0 standard deviation,
with all optimization runs practically converging to the target design. Furthermore, FHGWJA always
ranked 1st or 2nd in terms of average computational speed, and its fastest optimization runs were
better or highly competitive with those of the best MHA taken for comparison.

Keywords: metaheuristic optimization algorithms; fast hybrid optimization algorithms; GWO; JAYA;
elitist strategies; engineering problems

1. Introduction

Optimization searches for the minimum or the maximum of an NDV–variables func-

tion W(
→
X) subject to a set of NCON inequality/equality constraint functions G(

→
X) or H(

→
X).

Optimization problems may be iteratively solved with gradient based algorithms (GBAs)
or metaheuristic algorithms (MHAs). GBAs formulate and solve a series of approximate
sub-problems until the search process converges to the optimal solution; sub-problems
are built by evaluating first-order and second-order derivatives of cost functions and
constraints at the solution point found in the previous iteration. MHAs do not require
gradients: local information provided by gradients in GBAs are replaced in MHAs by
global information gathered from a population of candidate designs. Trial solutions of
MHAs are randomly generated using a mathematical model inspired by evolutionary
theory/processes, biology, physics, chemistry, mathematics, astronomy, astrophysics, herd
behavior of animals, human behavior and activities, social sciences, etc. MHAs evaluate
the new trial solutions randomly generated and then attempt to improve the design with
respect to the previous iterations.
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Metaheuristic algorithms can inherently deal with highly nonlinear and non-convex
optimization problems. The random search allows MHAs to explore larger portions of
search space than GBAs without being trapped in local optima. This ability together
with their straightforward software implementation made MHAs become the standard
approach to the solution of complex engineering optimization problems. Exploration
and exploitation are the two typical phases carried out in metaheuristic optimization.
Exploration is the leading search mechanism in the early optimization stages where large
perturbations are given to optimization variables to quickly find the best regions of the
search space. Exploitation governs the search process as the optimizer converges toward
the global optimum: local search is carried out in properly selected neighborhoods of the
most promising solutions. Exploration and exploitation must be appropriately combined
in metaheuristic optimization to fully search the design space and find the globally optimal
solution with low computational effort.

MHAs can be categorized in four groups: (i) evolutionary algorithms; (ii) science-based
algorithms; (iii) human-based algorithms; (iv) swarm intelligence-based algorithms. Evolu-
tionary algorithms such as genetic algorithms (GAs) [1,2], differential evolution (DE) [3,4],
evolutionary programming (EP) [5], evolution strategies (ESs) [6], and biogeography-based
optimization (BBO) [7] reproduce evolution theory and evolutionary processes.

Science-based MHAs mimic laws of physics, chemistry, astronomy and astrophysics,
and mathematics. Simulated annealing (SA) [8,9], charged system search (CSS) [10], mag-
netic charged system search (MCSS) [11], colliding bodies optimization (CBO) [12], water
evaporation optimization (WAO) [13], thermal exchange optimization (TEO) [14], equilib-
rium optimizer (EO) [15], gases Brownian motion optimization (GBMO) [16], and Henry
gas solubility optimization (HGSO) [17] are physics/chemistry-based MHAs that reproduce
equilibrium conditions of mechanical, electro-magnetic, physical/chemical, or thermal
systems subject to external perturbations. Ray optimization (RO) [18] and light spectrum
optimizer (LSO) [19] reproduce optics laws to define search directions containing high-
quality trial solutions. Big bang–big crunch optimization (BB-BC) [20] and the gravitational
search algorithm (GSA) [21] are inspired by astronomy/astrophysics phenomena such
as the expansion (big bang)—contraction (big crunch) cycles leading to the formation of
new star–planetary systems and gravitational interactions between masses. Mathematics
inspired the sine cosine algorithm (SCA) [22], the Runge–Kutta optimizer (RUN) [23], and
the arithmetic optimization algorithm (AOA) [24].

Tabu search (TS) [25], harmony search optimization (HS) [26], teaching–learning-
based optimization (TLBO) [27], JAYA [28], the group teaching optimization algorithm
(GTOA) [29], the mother optimization algorithm (MOA) [30], the preschool education opti-
mization algorithm (PEOA) [31], the learning cooking algorithm (LCA) [32], the imperialist
competitive algorithm (ICA) [33], and the political optimizer (PO) [34] are representative
algorithms reproducing human activities, behaviors, learning/education processes, social
sciences, international strategies, and politics.

Swarm intelligence-based algorithms represent the largest category in metaheuristic
optimization. These algorithms mimic the social/individual behavior of animals (insects,
terrestrial animals, birds and other flying animals, and aquatic animals) in reproduction,
food search, hunting, migration, etc. Particle swarm optimization (PSO) [35], reproducing
interactions between individuals of bird/fish swarms, is the most cited metaheuristic
algorithm according to the Scopus database; in PSO, a population of candidate designs
(the particles) are generated, and their positions and velocities are updated referring to the
position of the leader(s) and the best positions of individual particles in each iteration. Insect
behavior-inspired algorithms, for example, include ant colony optimization (ACO) [36],
artificial bee colony (ABC) [37], the firefly algorithm (FFA) [38], and the ant lion optimizer
(ALO) [39].

The grey wolf optimizer (GWO) [40], coyote optimization algorithm (COA) [41], snake
optimizer (SO) [42], and snow leopard optimization algorithm (SLOA) [43] simulate the
behavior of terrestrial animals. The GWO, reproducing the hunting behavior of grey
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wolves, is the 2nd most cited algorithm in terms of citations/year after PSO. However, the
GWO is preferred to PSO in view of its simpler formulation that does not include internal
parameters except population size and a limit to the number of iterations.

The bat algorithm (BA) [44], cuckoo search (CS) [45], crow search algorithm (CSA) [46],
Harris hawks optimization (HHO) [47], and starling murmuration optimizer (SMO) [48]
are inspired by flying animals like bats and birds. CS (reproducing the parasitic behavior
of some cuckoo species that mix their eggs with those of other birds to guarantee the
survival of their chicks) and HHO (reproducing the cooperative behavior of Harris hawks
in nature, specifically their surprise attacks during the chase) are the most cited MHAs of
this sub-category.

Last, the dolphin echolocation algorithm (DEA) [49], whale optimization algorithm
(WOA) [50], salp swarm algorithm (SSA) [51], marine predators algorithm (MPA) [52], and
giant trevally optimizer (GTO) [53] reproduce social behavior, hunting strategy, swarming,
and foraging of aquatic animals; WOA, SSA, and MPA are the most cited MHAs in this
sub-category.

Hybrid/improved/enhanced methods also were developed in the optimization litera-
ture by adding new equations in the original formulation or merging two or more MHAs.
The goal always was finding the best balance between exploration and exploitation to
minimize computational cost (i.e., the number of structural analyses or function evalua-
tions required by the optimizer), improve robustness, and limit the number of internal
parameters of the metaheuristic formulation. Hybrid metaheuristic algorithms may have
a parallel or a serial architecture [54]. In the former case, the component algorithms are
independently run on parallel computers, while in the latter case, they are sequentially
executed on the same machine.

Metaheuristic optimization algorithms are widely employed in various engineering
fields such as, for example, the mechanical characterization of materials and structural
identification [55], static and dynamic structural optimization [56,57], damage identifica-
tion [58], vehicle routing optimization [59], 3D printing process optimization [60], cancer
classification [61], and image processing [62]. However, in spite of the large diffusion of
MHAs in engineering practice, some issues remain open in metaheuristic optimization:
(i) no metaheuristic algorithm can always outperform all other MHAs in all optimization
problems; (ii) MHAs may require a very large number of function evaluations (analyses)
for completing optimization process; (iii) sophisticated algorithmic variants and hybrid
MHAs combining multiple methods often increase the computational complexity of the
optimizer also because of the presence of additional internal parameters that are difficult
to be tuned. As a matter of fact, newly developed MHAs often added very little to the
optimization field and stopped attracting potential users even after a rather short time from
their release.

The main objective of this study was to develop an efficient and robust hybrid meta-
heuristic algorithm for engineering optimization. Generally speaking, a hybrid optimizer
should combine high-performance MHAs that complement each other in terms of explo-
ration and exploitation. Furthermore, component algorithms should be versatile so as
to successfully deal with as many different optimization problems as possible. Lastly,
component algorithms should be simple enough in order to simplify the formulation of the
hybrid optimizer and to limit the number of additional internal parameters governing the
switch from one component algorithm to another. In view of this, the grey wolf optimizer
(GWO) and the JAYA algorithms were selected in the present study and combined into the
novel FHGWJA hybrid algorithm (the acronym stands for Fast Hybrid Grey Wolf JAYA)
because they certainly satisfy the above-mentioned requisites.

The GWO mimics the leadership hierarchy and hunting mechanism of grey wolves [40].
The leadership hierarchy is simulated by defining four types of grey wolves (α, β, δ, and ω).
The hunting mechanism is simulated with different algorithmic operators that represent
searching for prey, encircling prey, and attacking prey. The α wolf is the group leader.
The β wolf helps the α in decision-making or other pack activities. The lowest ranking is
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represented by ω wolves. The δ wolves rank between the α-β wolves and the ω wolves.
Alpha, beta, and delta wolves estimate the position of the prey, and other wolves randomly
update their positions around the prey.

As previously mentioned, the GWO is the 2nd most cited metaheuristic algorithm after
PSO according to the Scopus database. It was successfully applied to many fields because of
its simple formulation and computational efficiency (see, for example, the surveys on GWO
applications presented in [63–65]). However, the GWO may suffer from lack of exploitation,
risk of stagnation especially in complex problems, and limited adaptability to variations in
the problem landscape during the optimization process. Enhanced GWO formulations in-
cluding (i) new operators to capture other characteristic behaviors of wolves (i.e., gaze cues
learning [64] and dimension learning-based hunting [66]), (ii) Cauchy-Gaussian mutation
(increasing the search range of leader wolves when they tend to the local optimal solu-
tion) along with greedy selection (to maintain population diversity) and improved search
strategy considering average position of all individuals [67], (iii) chaotic grouping and
dynamic regrouping of individuals to increase population diversity [68], (iv) optimization
of initial population along with a nonlinear control parameter convergence strategy and
nonlinear tuning strategy of parameters [69], and (v) update of wolves’ positions with spiral
movements [70], as well as (vi) hybrid algorithms combining GWO with other powerful
MHAs (i.e., particle swarm optimization, biogeography-based optimization, differential
evolution, Harris hawks optimization, and the whale optimization algorithm [71–75]) were
proposed in order to overcome the above-mentioned limitations.

JAYA [28] utilizes the most straightforward search scheme amongst all MHAs consist-
ing of only one equation to perturb optimization variables: to approach the population’s
best solution and move away from the worst solution, thus achieving a significant conver-
gence capability. JAYA is a very versatile algorithm with a large number of applications
documented in the literature [76,77]. JAYA has an inherently hybrid nature combining basic
features of evolutionary algorithms (the survival of fittest individual) and swarm-based
algorithms where the swarm normally follows the leader in the search of the optimal
solution. These characteristics make JAYA a very good candidate component of new hybrid
metaheuristic algorithms.

Similar to the GWO, JAYA may present a rather weak exploitation phase. Furthermore,
JAYA uses only one equation to perturb optimization variables involving only the best
and the worst individuals of the population: this may produce stagnation and also limit
the exploration phase. To overcome these issues, improved JAYA formulations using sub-
populations [78], or involving also the current average solution and the historical solutions
(a population of candidate solutions initially generated besides the standard population
and permuted in the optimization process according to a probabilistic criterion) [79], were
developed. Fuzzy clustering competitive learning, experience learning, and Cauchy muta-
tion mechanisms were also implemented [80] to effectively utilize population information,
speed up the convergence rate, improve the balance between exploiting the previously
visited regions and exploring new regions of search space in the search process, and reduce
the risk of being trapped into local optimum by fine-tuning the quality of the so-far best
solution. The high computational cost is another issue in JAYA optimization. In [81,82], it
was attempted to reduce the number of analyses and increase convergence speed by directly
rejecting heavier designs than population individuals, but this strategy missed the global
optimum in many structural optimization problems. Similarly, in [83], the population was
updated not only if the new trial solutions improve the individuals currently stored in
the population but also if they have the same values for the cost function or penalized
cost function. In [84], generation of trial designs also relied on two randomly selected

individuals
→

Xm and
→
Xn, and the perturbation equation varied if m > n or m < n as well

as if W(
→

Xm) < W(
→
Xn) or W(

→
Xm) > W(

→
Xn). JAYA was also hybridized with other efficient

MHAs such as, for example, harmony search optimization [56], genetic algorithms [85],
crow search [86], the Rao-1 optimizer [87], teaching–learning-based optimization [88], and
differential evolution [89].
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The main features of the novel FHGWJA algorithm developed in this study and the
advancements with respect to the state-of-the-art can be summarized as follows:

(1) GWO and JAYA were simply merged into FHGWJA without complicating the algo-
rithmic structure resulting from the hybridization process: this is a significant step
further with respect to the above-mentioned studies where performance improve-
ments achieved with the GWO and JAYA variants often were problem-sensitive and
entailed complicated optimization formulations that were not easy to reproduce;

(2) FHGWJA utilizes elitist and repair strategies to generate high-quality candidate
solutions that always have a significantly high probability of improving the current
best record. The movements assigned to optimization variables in the perturbation
process may be adjusted according to a rank-proportional variation strategy. This
approach is more effective than those adopted in the GWO/JAYA variants proposed
in the literature that do not guarantee each new trial solution be better than the
current best record. Since elitist/repair strategies are utilized regardless of performing
exploration or exploitation, FHGWJA actually optimizes the balance between these
two phases;

(3) The positions of leading wolves are dynamically updated to avoid stagnation and
convergence to local optima. For that purpose, FHGWJA utilizes a mirroring strategy
based on the concept of descent direction, which is much simpler than the strategies
documented in the literature;

(4) FHGWJA evaluates constraints only after having verified that the new trial design
can effectively improve the current best record in the current or subsequent itera-
tions. Should this not occur, repair strategies are activated. This allows for reduced
computational costs of optimization to a great extent;

(5) FHGWJA does not require any internal parameters aside from population size and
a limit to the number of iterations. The elitist strategies and convergence criterion
implemented via FHGWJA actually make it unnecessary to specify the limit to the
number of iterations.

The proposed FHGWJA algorithm was successfully tested in seven “real world” engi-
neering problems. The selected test cases, including up to 29 optimization variables and
1200 nonlinear constraints, regarded, in particular, the following: (i–ii) 2D path planning
(minimization of trajectory lengths, respectively, with 7 or 10 obstacles); (iii) shape opti-
mization of a concrete gravity dam with additional earthquake load (volume minimization);
(iv–v) calibration of nonlinear hydrologic models (the Muskingum problem solved with 3
or 25 unknown model parameters to be identified); (vi) optimal crashworthiness design of a
vehicle subject to side impact; (vii) weight minimization of a planar 200-bar truss structure
subject to three independent loading conditions. The present algorithm was compared
with the best performing algorithms indicated in the literature for each test problem and
advanced variants of state-of-the-art MHAs.

The rest of this manuscript is structured as follows. Section 2 describes the new hybrid
optimization algorithm FHGWJA developed in this study. Test problems and optimization
results are presented and discussed in Section 3. Section 4 summarizes the main findings of
this study and outlines directions of future research.

2. The FHGWJA Algorithm

The new hybrid metaheuristic algorithm FHGWJA developed in this study is now
described in detail. The algorithm is composed of seven steps: (i) initialization; (ii) pre-
liminary definition of trial solutions with the classical GWO; (iii) rank-based refinement
of preliminary trial solutions defined with the classical GWO; (iv) evaluation/repair of
trial solutions with elitist strategies and JAYA-based schemes; (v) population reordering to
define the new best and worst individuals and update of the α-β-δ wolves trying to avoid
stagnation; (vi) convergence check; (vii) end of optimization search and output.

Step 1. Initialization
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FHGWJA randomly generates a population of NPOP candidate designs (i.e., wolves) as:

xi
j = xL

j + ρj
i (xU

j − xL
j )

{
j = 1, . . . , NDV
i = 1, . . . , NPOP

(1)

where NDV is the number of optimization variables; xL
j and xU

j , respectively, are the

lower and upper bounds of the jth optimization variable; ρj
i is a random number in the

(0,1) interval.

In the minimization problem of the W(
→
X) function (depending on NDV variables

stored in the solution vector (
→
X) subjected to NCON inequality constraint functions

Gk(
→
X) ≤ 0, the penalized cost function Wp(

→
X) is defined as follows:

Wp(
→
X) = W(

→
X) + p·ψ (2)

where p is a penalty coefficient. The penalty function ψ is defined as follows:

ψ =
Ncon

∑
k=1

(
max

(
0, gj

))2 (3)

The Wp(
→
X) penalized cost function coincides with the W(

→
X) cost function if the trial

solution
→
X satisfies optimization constraints. No penalty function is defined in the case

of unconstrained optimization problems. Any equality constraint H(
→
X) = 0 included in

the optimization problem is transformed into two inequality constraints G(
→
X) ≤ 0 and

−Gk(
→
X) ≤ 0. Candidate solutions are sorted in terms of penalized cost function: the current

best solution
→

Xbest and the worst solution
→

Xworst, respectively, correspond to the lowest and
highest values of ψ.

Step 2. GWO phase: preliminary generation of new trial designs

FHGWJA utilizes the classical GWO scheme to preliminarily generate the new trial
designs. The best three individuals stored in the population are ranked as wolves α, β, and
δ. The other individuals of the population are ranked as wolves ω. Wolves encircle the
prey during the hunt. Such a behavior is mathematically described as follows:

→
D =

∣∣∣∣→C ·
→
Xp

∣∣∣∣− →
Xit (4)

→
Xit+1 =

→
Xp −

→
A·

→
D (5)

In Equations (4) and (5), it denotes the current iteration,
→
A and

→
C are coefficient

vectors,
→
Xp is the position vector of the prey, and

→
Xit is the generic grey wolf (i.e., search

agent) of the population updated in the current iteration to the new solution
→

Xit+1. The “·”
notation denotes the term-by-term multiplication between vectors that leads to defining
another vector.

Vectors
→
A and

→
C are defined as follows:

→
A = 2

→
a ·→r1 −

→
a (6)

→
C = 2

→
r2 (7)

In Equations (6) and (7), the components of the
→
a vector decrease linearly from 2 to 0

as the optimization progresses;
→
r1 and

→
r2 are random vectors in the [0,1] interval.
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While grey wolves actually recognize the prey’s location in the hunting phase, the
optimum position (prey) usually is not known a priori in the optimization search. In
order to reproduce wolves’ behavior in the GWO algorithm, it is assumed that the three
best solutions of the population (i.e., α, β, and δ wolves) have a better knowledge of the
potential prey’s location (i.e., the target optimal solution). The rest of population must be

updated using the
→
Xα,

→
Xβ, and

→
Xδ positions of the best three search agents. The generic

solution
→
Xi of population is updated to

→
Xi,tr as follows:

→
Dα =

∣∣∣∣→C1·
→
Xα

∣∣∣∣− →
Xi

→
Dβ =

∣∣∣∣→C2·
→
Xβ

∣∣∣∣− →
Xi

→
Dδ =

∣∣∣∣→C3·
→
Xδ

∣∣∣∣− →
Xi

(8)


→
X1 =

→
Xα −

→
A1·

→
Dα

→
X2 =

→
Xβ −

→
A2·

→
Dβ

→
X3 =

→
Xδ −

→
A3·

→
D

δ

(9)

( →
Xi,tr

)prel
=

→
X1 +

→
X2 +

→
X3

3
(10)

In Equation (9), vectors
→
X1,

→
X2, and

→
X3 are defined for each candidate design

→
Xi of the

population. Equations (8)–(10) update the positions of all search agents.
In the optimization process, the wolves α, β, and δ estimate the prey’s position (i.e., the

position of the optimal solution) and each candidate solution in the population updates its
distance from the prey. The parameter a is reduced from 2 to 0 to emphasize exploration
and exploitation, respectively. In the exploration phase, candidate solutions tend to search

for another prey when ∥
→
A∥ > 1. Conversely, in the exploitation phase, candidate solutions

converge towards the prey when ∥
→
A∥ < 1.

Step 3. Rank-based refinement of preliminary trial designs

In the classical GWO, the new population formed by the trial solutions
→

Xi,tr obtained

by perturbing the individuals
→
Xi stored in the population in the previous iteration are sorted

in terms of penalized cost function values to update positions
→
Xα,

→
Xβ, and

→
Xδ. The process

ends upon reaching the limit to the number of iterations or function evaluations defined by
the user. However, the classical GWO search scheme has two inherent drawbacks: (i) since
the position of the prey (optimal solution) is not known a priori, the search is directly
biased toward the α wolf that has a null distance from the current best record Xbest as it
corresponds to the current best record itself in view of population sorting; (ii) there is no

guarantee that each new trial solutions
→

Xi,tr may improve the current best record
→

Xbest or at

least the corresponding individual
→
Xi stored in the previous population.

In order to solve these issues, FHGWJA refines the preliminary trial solutions (
→

Xi,tr)
prel

obtained in Step 1 by means of a rank-based criterion. The population defined in the

previous iteration is sorted with respect to the penalized cost function values Wp(
→
Xi). The

best solution is assigned the rank 1 while the worst solution is assigned the rank 1/NPOP:

let rank(i) = 1/i be the rank of the generic individual
→
Xi. The average rate of variation for

the penalized cost function with respect to the current best record γ(i) = ∆Wp
(i)/∆S(i) is

evaluated for each solution
→
Xi. The ∆Wp

(i) = [Wp(
→
Xi) − Wp(

→
Xbest)] numerator represents
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the increase in the penalized cost function that occurs when the design is perturbed by

∆S(i) = ∥
→
Xi −

→
Xbest∥ from the current best record to the generic candidate solution

→
Xi. The

average rate of variation γ(aver) = ∑NPOP
i=1 γ(i)/NPOP is hence defined. The refinement step

size µ(i) is defined for each individual
→
Xi as follows:

µ(i) = Min

{(
1 − rank(i)

)
;

(
γ(i)

γ(aver)

)}
(11)

The preliminary trial solution
( →

Xi,tr

)prel
is adjusted to the trial solution

→
Xi,tr using

the following equation:

→
Xi,tr = (

→
Xi,tr)

prel +
(

→
Xbest −

→
Xi)

∥
→

Xbest −
→
Xi∥

µ(i) (12)

The rationale behind Equations (11) and (12) is the following. All trial solutions
generated via the GWO must be evaluated to see if they improve design. Individuals
ranked as high-quality solutions in the previous iteration are very likely to preserve their
rank in the current iteration. However, rank may decrease if the cost function changes
sharply in the neighborhood of the currently perturbed solution: for example, this may
occur if the perturbed solution turns infeasible, and the penalty term increases. For this
reason, Equation (11) tends to preserve the overall ranks of population individuals by

setting small refinement step sizes µ(i). Since the design improves by moving from
→
Xi to

→
Xbest, the direction

→
Si = (

→
Xbest −

→
Xi) is a descent direction with respect to the

→
Xi individual.

Hence, FHGWJA attempts to perturb design along the
→
Si direction to further reduce the

cost function at least with respect to
→
Xi.

Step 4. Evaluation and modification/repair of new trial designs: elitist strategies and
JAYA scheme

The trial designs
→

Xi,tr generated via FHGWJA in Steps 1 and 2 are then evaluated. In

the classical GWO, if the new design
→

Xi,tr improves the old design
→
Xi, it replaces

→
Xi in the

new population. However, this task entails a new constraint evaluation to compute the
penalized cost function value for each new trial design.

In order to reduce the number of constraint evaluations required in the optimization
search, FHGWJA utilizes an elitist strategy retaining only the trial solutions that are very
likely to improve design. Hence, FHGWJA initially compares only the cost function

W(
→

Xi,tr) computed for the new trial design
→

Xi,tr with the penalized cost function Wp(
→

Xbest)

computed for the current best record. If W(
→

Xi,tr) > Wp(
→

Xbest), the new trial design
→

Xi,tr is
directly rejected because it certainly cannot improve the current best record as the cost

function value
→

Xi,tr is by itself larger than the penalized cost of
→

Xbest which also accounted
for any constraint violation.

If W(
→

Xi,tr) < Wp(
→

Xbest), the cost function value W(
→

Xi,tr) computed for the new trial

solution
→

Xi,tr is compared with 1.1 times the cost function value W(
→

Xbest) computed for

the current best record. Ifit holds W(
→

Xi,tr) ≤ 1.1W(
→

Xbest), the new trial solution
→

Xi,tr is

provisionally included in the new population. The 1.1W(
→

Xbest) threshold was selected upon
the following rationale. Exploration is characterized by a high probability of improving

design: hence, the W(
→

Xi,tr) > 1.1W(
→

Xbest) condition is not likely to occur. In exploitation,
local minima should be bypassed by the optimizer to converge to the global optimum. Sim-
ilar to SA, FHGWJA is allowed to provisionally accept slightly worse candidate solutions
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than
→

Xbest. The threshold level of acceptance probability in state-of-the-art SA formulations

such as [81,90] is 0.9 if the ratio between the cost function increment [W(
→

Xi,tr) − W(
→

Xbest)]
and the annealing temperature T is 0.1. This means that there is a 90% probability to

provisionally accept a worse design than
→

Xbest and make it improve in the next iterations.
Since T is initially set equal to the expected optimum cost (or roughly corresponds to the

cost function value W(
→

Xbest)), it is reasonable to assume that solutions up to 10% worse

than
→

Xbest may improve
→

Xbest itself in the next few iterations.

Since each new trial solution
→

Xi,tr provisionally included in the new population was
generated by FHGWJA using the classical GWO scheme based on the positions of wolves
α, β, and δ, FHGWJA adopts a JAYA-based scheme to avoid stagnation. For that purpose,

when W(
→

Xi,tr) ≤ 1.1W(
→

Xbest), a new trial solution (
→

Xi,tr)
′ is defined as follows:

(
→

Xi,tr)
′ =

→
Xi,tr +

→
λ1 ·(

→
Xbest −

→
Xi,tr)−

→
λ2 ·(

→
Xδ −

→
Xi,tr) (13)

where
→
λ1 and

→
λ2 are two vectors of NDV random numbers generated in the [0,1] inter-

val. Equation (13) is relative to exploitation as it perturbs the good design
→

Xi,tr that was
provisionally included in the new population being close to the current best record or
likely better than it. The δ wolf is temporarily selected as the worst individual of the
population, and FHGWJA is forced to locally search in a region of design space containing
only high-quality solutions.

The new trial solution (
→

Xi,tr)
′ is compared with

→
Xi,tr to select the solution that finally

updates population. If W((
→

Xi,tr)′) < 1.1W(
→

Xbest) and W((
→

Xi,tr)′) < W(
→

Xi,tr), (
→

Xi,tr)
′ is finally

retained in the new population, and
→

Xi,tr is rejected. If W((
→

Xi,tr)′) < 1.1W(
→

Xbest) but it

occurs that W((
→

Xi,tr)′) > W(
→

Xi,tr), (
→

Xi,tr)
′ is rejected, and

→
Xi,tr is finally retained in the new

population. If W((
→

Xi,tr)′) > 1.1W(
→

Xbest),
→

Xi,tr is finally retained in the new population, and

(
→

Xi,tr)
′ is directly rejected.

FHGWJA adopts a repair strategy if the new trial solution
→

Xi,tr is such that W(
→

Xi,tr) >

1.1W(
→

Xbest). In this case, the trial solution
→

Xi,tr was sufficiently good to avoid immediate

rejection (i.e., it holds W(
→

Xi,tr) < Wp(
→

Xbest)) but it is not good enough to be provisionally
included in the new population. Another JAYA-based scheme is adopted in FHGWJA to

define the new trial solution (
→

Xi,tr)
′ as follows:

(
→

Xi,tr)
′ =

→
Xi +

→
λ1 ·(

→
Xbest −

→
Xi)−

→
λ2 ·(

→
Xworst −

→
Xi) (14)

where
→
λ1 and

→
λ2 are two vectors of NDV random numbers similar to those of Equation (13).

Absolute values of optimization variables are taken for each component of vectors
→
Xi or

→
Xi,tr, respectively, in Equations (13) and (14).

Equation (14) is related to exploration and resembles the classical JAYA solution
updating equation where each individual is perturbed trying to approach the current

best solution
→

Xbest and moving away from the worst solution of the population
→

Xworst.
FHGWJA involves the whole population of NPOP search agents in the generation of new

trial design (
→

Xi,tr)′ because wolves α, β, and δ that drive search in the GWO phase failed to

move other individuals (i.e.,
→
Xi) to good positions of the search space located near the prey

(i.e., the current best record). Since population renewal aims to improve each individual
→
Xi, FHGWJA searches on the descent direction (

→
Xbest −

→
Xi) that leads to a better design
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than
→
Xi and escape from the worst design of the population

→
Xworst, which certainly cannot

improve
→
Xi.

Similar to the process implemented for Equation (13), FHGWJA compares the cost

function value W((
→

Xi,tr)′) corresponding to the new trial design (
→

Xi,tr)
′ defined with

Equation (14) with 1.1 times the cost function value of the current best record W(
→

Xbest). The

modified trial design (
→

Xi,tr)′ is included in the new population if it holds that W((
→

Xi,tr)′) ≤
1.1W(

→
Xbest).

However, if the JAYA-based repair strategy fails and it still holds that W((
→

Xi,tr)′) >

1.1W(
→

Xbest), FHGWJA has to deal with three solutions,
→
Xi,

→
Xi,tr, and (

→
Xi,tr)

′, that do not

improve the current best record
→

Xbest. Figure 1 shows the mutual positions of the cost

function gradient
→

∇Wbest evaluated at the current best record
→

Xbest and the non-descent

directions
→
Si =

→
Xi −

→
Xbest,

→
Si,tr =

→
Xi,tr −

→
Xbest, and (

→
Si,tr)

′ = (
→

Xi,tr)
′−

→
Xbest; Pbest is the point

of the search space corresponding to the current best record
→

Xbest while the Pi, Pi,tr, and

Pi,tr
′ points, respectively, correspond to trial solutions

→
Xi,

→
Xi,tr, and (

→
Xi,tr)

′
. It can be seen

from Figure 1 that non-descent directions make positive scalar products with the gradient
→

∇Wbest. Design may be improved with respect to
→

Xbest by moving on the descent directions
→
Si

(mirr)
= −(

→
Xi −

→
Xbest),

→
Si,tr

(mirr)
= −(

→
Xi,tr −

→
Xbest), and (

→
Si,tr)

′ (mirr) = (
→

Xi,tr)
′ −

→
Xbest

that are, respectively, opposite to the non-descent directions
→
Si,

→
Si,tr, and (

→
Si,tr)

′ and hence

make negative scalar products with respect to
→

∇Wbest (see Figure 1). Hence, FHGWJA uses

a “mirroring” strategy to define the new trial solution (
→

Xi,tr)
′′ (mirr) as follows:

(
→

Xi,tr)
′′,mirr =

→
Xbest + ηmirr,i

→
Si

(mirr)
+ ηmirr,i−tr

→
Si,tr

(mirr)
+ ηmirr,(i−tr)′(

→
Si,tr)

′ (mirr) (15)

where ηmirr,i, ηmirr,i-tr, and ηmirr,(i-tr)’ are three random numbers in the [0,1] interval. Basi-

cally, FHGWJA takes the descent direction ((
→

Xi,tr)
′′ (mirr) −

→
Xbest) obtained by combining

three other descent directions that may improve design. Hence, the (
→

Xi,tr)
′′ (mirr) trial

solution (corresponding to the point Pi,tr
′′(mirr) of search space shown in Figure 1) is very

likely to improve design. The new solution (
→

Xi,tr)
′′ (mirr) is evaluated as outlined above for

the other trial solutions generated by FHGWJA.
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Step 5. Resort population, update α, β, and δ wolves,
→

Xbest, and
→

Xworst

Once FHGWJA updated all candidate solutions
→
Xi, the population is resorted and

the NPOP individuals are ranked with′ respect to their penalty function values. Should

Wp(
→

Xi,tr) or Wp((
→

Xi,tr)′ or Wp((
→

Xi,tr)′) be greater than Wp(
→
Xi), all new trial solutions gen-

erated/refined for
→
Xi are rejected and the old design

→
Xi is retained in the population.

However, the elitist strategies based on the 1.1W(
→

Xbest) threshold, JAYA-based schemes of
Equations (13) and (14), and the “mirroring” strategy of Equation (15) greatly increase the
probability of updating the whole population with better designs than those stored in the
previous population.

The best three individuals of the new population are reset as wolves α, β, and δ with

the corresponding design vectors
→
Xα,

→
Xβ, and

→
Xδ. The best and worst solutions are set as

→
Xbest and

→
Xworst, respectively.

In order to avoid stagnation, ranking of wolves α, β, and δ is checked with another
elitist criterion if FHGWJA did not update their positions in the current iteration. The

criterion is again based on the concept of descent direction. The
→
Sβ = (

→
Xbest −

→
Xβ) and

→
Sδ = (

→
Xbest −

→
Xδ) obviously are descent directions with respect to positions

→
Xβ and

→
Xδ of

wolves β and δ, and the design improves by moving towards the α wolf. Hence, FHGWJA

perturbs
→
Xβ and

→
Xδ along the descent directions

→
Sβ and

→
Sδ. The positions of wolves β and

δ are “mirrored” with respect to
→

Xbest as follows:(
→
Xβ)

mirr = (1 + ηmirr,β)
→

Xbest − ηmirr,β
→
Xβ

(
→
Xδ)

mirr = (1 + ηmirr,δ)
→

Xbest − ηmirr,δ
→
Xδ

(16)

where ηmirr,β and ηmirr,δ are two random numbers in the interval (0,1) that limit step sizes to
reduce the probability of generating infeasible positions. The best three positions amongst
→
Xα,

→
Xβ,

→
Xδ, (

→
Xβ)

mirr, and (
→
Xδ)

mirr are taken as wolves α, β, and δ for the next iteration,
while the two worst positions are compared with the rest of the population and may replace

→
Xworst and the 2nd worst design of the old population. The latter operation also covers the

case that (
→
Xβ)

mirr and (
→
Xδ)

mirr did not improve any of the wolves α, β, and δ.
The mirror strategy used in FHGWJA is illustrated in Figure 2. In particular, the figure

shows the following: (i) the original positions of wolves α, β, and δ, respectively, correspond
to points Popt≡Pα, Pβ, and Pδ of the search space; (ii) the positions of “mirror” wolves
βmirr and δmirr are defined with Equation (16) and, respectively, correspond to points Pβ,mirr

and Pδ,mirr of the search space; (iii) the cost function gradient vector
→

∇Wbest is evaluated

at
→

Xbest. It can be seen that the “mirror” wolves βmirr and δmirr defined by Equation (16)

lie on descent directions and may even improve
→

Xbest, the position of wolf α. In fact, it

holds that
→

∇Wbest × ((
→
Xβ)

mirr −
→

Xopt) < 0 and
→

∇Wbest × ((
→
Xδ)

mirr −
→

Xopt) < 0, where

“×” denotes the scalar product between two vectors. Interestingly, since ((
→
Xδ)

mirr −
→

Xopt)

is in principle a steeper descent direction than ((
→
Xβ)

mirr −
→

Xopt) as Wp(
→
Xδ) > Wp(

→
Xβ) >

Wp(
→

Xbest), wolf δ may have a higher probability than wolf β to replace wolf α even though
it originally occupied a worse position than wolf β in the search space. This elitist approach
forces FHGWJA to carry out a new exploration of the search space rather than trying to
exploit solutions that have not improved the design in the last iteration. Furthermore,
by eliminating the two worst designs of the population, FHGWJA increases the average
quality of candidate solutions and achieves a higher probability of generating high-quality
trial solutions in the next iteration.
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Figure 2. Schematic of the elitist mirror strategy used in FHGWJA to avoid stagnation of wolves α, β,
and δ.

Step 6. Check for convergence

Standard deviations on optimization variables and penalty function values of candi-
date solutions included in the updated population should decrease as the optimization
search approaches the global optimum. Hence, FHGWJA normalizes standard deviations

with respect to average design
→

Xaver =

(
∑NPOP

i=1

→
Xi

)
/NPOP and average value of penalty

function Wp,aver =

(
∑NPOP

i=1 Wp

(→
Xi

))
/NPOP. The termination criterion is as follows:

Max


STD

{∥∥∥∥→
X1−

→
Xaver

∥∥∥∥,
∥∥∥∥→

X2−
→

Xaver

∥∥∥∥,...,
∥∥∥∥ →

XNPOP−
→

Xaver

∥∥∥∥}∣∣∣∣∣∣∣∣ →
Xaver

∣∣∣∣∣∣∣∣ ;

STD{Wp,1, Wp,2,..., Wp,NPOP}
Wp,aver

 ≤ εconv (17)

where the convergence limit εconv is equal to 10−7. Since convergence occurs in the last
stage of the optimization process when exploitation dominates, Equation (17) requires
all search agents be actually located in the best region of the search space hosting the
global optimum and contributing to exploitation. Population diversity must decrease to

aggregate search agents in the neighborhood of
→

Xbest. Hence, Equation (17) normalizes
the standard deviation of the search agents’ positions to average the solution to quantify
the level of population diversity. The same rationale is adopted for the penalty function
values by normalizing their standard deviation with respect to the average penalty function
value: hence, competitive solutions correspond to the optimum solution only when they
are effectively close to it, that is when the search process is near to end. Penalty function
values are considered in Equation (17) to account for the effect of some solution that may
turn locally infeasible if the set of active constraints changes as design is perturbed in the
neighborhood of the global optimum. Penalty function values are equal to cost function
values for feasible solutions or in the case of unconstrained optimization problems.

Steps 2 through 6 are repeated until FHGWJA converges to the global optimum.

Step 7. Terminate optimization process

FHGWJA terminates the optimization process and writes the output data (i.e., opti-
mum design and optimized cost function value) in the results file.

Figure 3 shows the flow chart of the novel FHGWJA algorithm developed in this
study. The present algorithm actually is an advanced grey wolf optimizer, which updates
population taking care that the α, β, and δ wolves effectively lead to improve the current
best record in each iteration. The JAYA schemes and the elitist strategies implemented in
FHGWJA enhance exploration and exploitation forcing the present algorithm to increase
diversity and select high-quality trial designs without performing too many function
evaluations. The definition of all descent directions utilized in FHGWJA in the optimization
search does not entail any new constraint evaluation, and all decisions are made in FHGWJA
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by comparing only cost function values. Interestingly, FHGWJA does not need any new
internal parameters with respect to the classical GWO and JAYA formulations that require
users to specify population size NPOP and limit number of iterations Nitermax. This feature
of FHGWJA is not very common as simple hybrid metaheuristic algorithms may adopt
a set of new heuristic parameters to switch from one component optimizer to the other.
However, FHGWJA implements a master–slave algorithmic architecture where the slave
algorithm, JAYA, is utilized only to refine or correct the trial designs generated by the
master algorithm, GWO.
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The computational cost of most GWO/JAYA implementations documented in the
literature was NPOP × Nitermax function evaluations (also indicated as function calls or
analyses for general problems or structural analyses for structural optimization problems)
including constraint evaluations. The FHGWJA’s ability of generating high-quality trial
solutions throughout the optimization process significantly reduces the computational cost
of the optimization. As far as population size NPOP, it is well known that increasing NPOP
in metaheuristic optimization may enhance exploration capabilities but also results in a
very large number of function evaluations. Indeed, it is not necessary to work with a large
population if the search engine can always generate high-quality designs that improve the
current best record or the currently perturbed search agents such as is accomplished with
FHGWJA. It should be noted that grey wolves hunt in nature in groups comprising, at most,
10–20 individuals (the typical family pack is formed by 5–11 animals but in some cases the
pack can be formed by 2–3 families). In view of this, FHGWJA optimizations carried out
in this study utilized a population of 10 individuals. Sensitivity analysis confirmed the
validity of this setting.

3. Test Problems and Optimization Results

The FHGWJA algorithm proposed in this study was tested in seven engineering
problems including up to 29 optimization variables and 1200 nonlinear constraints. Test
cases regarded the following: (i–ii) 2D path planning (minimization of trajectory lengths
with 7 or 10 obstacles); (iii) shape optimization of a concrete gravity dam with additional
earthquake load (volume minimization); (iv–v) calibration of nonlinear hydrologic models
(the Muskingum problem solved with 3 or 25 unknown model parameters to be identified);
(vi) optimal crashworthiness design of a vehicle subject to side impact; (vii) weight mini-
mization of a planar 200-bar truss structure under three independent loading conditions.

FHGWJA was implemented in MATLAB as a standalone optimization code. Optimiza-
tion runs were carried out on a standard PC equipped with a 3.1 Mhz AMD processor and
16 MB of RAM memory. The Mersenne-Twister (MT19937) MATLAB default algorithm was
utilized to generate random numbers uniformly distributed between 0 and 1; this algorithm
was selected in view of its ability to generate high-quality numbers with (219937–1) long
period. In order to draw statistically significant conclusions on the computational efficiency
of FHGWJA, 20 independent optimization runs were executed for each test problem start-
ing from different initial populations. The population size and limit number of iterations of
FHGWJA were, respectively, set equal to 10 and 5000. Initial populations included some
designs with up to 1000% constraint violation to check whether FHGWJA can quickly
approach the best region of search space containing the optimum solution. Remarkably,
FHGWJA always completed all optimization runs within a much lower number of analyses
than the theoretical computational budget of 10 × 5000 = 50,000 analyses of the classical
GWO and JAYA. The actual computational cost of FHGWJA was almost entirely due (about
90%) to the number of analyses performed in the optimization search. For example, the
optimization runs performed with FHGWJA for the largest test problem solved in this
study (weight minimization of a planar 200-bar truss structure including 29 sizing variables)
were completed on average within about 25 min of wall clock time.

3.1. 2D Path Planning

Test cases (i–ii) regarded a classical robotics problem: to determine the optimal 2D
path connecting two points A and B with a piecewise cubic spline trajectory, defined by
a certain number of control points (NCP), that passes through points A, B, and a series
of base points (NBP) while avoiding a set of obstacles (NOB). The problem objective is to
minimize the total length of the trajectory. In an obstacle-free environment, the shortest
path between A and B obviously is a straight line. Cubic splines allow for building a smooth
and continuous curved path avoiding obstacles. Path planning complexity increases with
the number of obstacles and the number of base points; coordinates of base points are
selected as optimization variables.
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The 2D path planning problem searching for the minimum length of a 2D trajectory,
passing through NBP base points so as to avoid NOB obstacles, and defined by NCP control
points connected by (NCP−1) spline segments, can be formulated as follows:

Minimize W(
→
X) =

NCP

∑
r=1

√
(xcr+1 − xcr)2 + (ycr+1 − ycr)

2 + PENALTY (18)

Subject to


G(

→
X) = radob(p)√

(xcr−xobp)2+(ycr−yobp)
2
− 1 < 0

G(
→
X) = radob(p)√

(xbi−xobp)2+(ybi−xobp)2 − 1 < 0


i = 1, NBP

p = 1, . . . , NOB
r = 1, . . . , NCP

(19)

In Equations (18) and (19), (xbi,ybi) are the coordinates of the generic i-th base point of
the trajectory, (xcr,ycr) are the coordinates of the generic r-th control point of the trajectory,
radob(p) is the radius of the circular area limited by the p-th obstacle, respectively. The
coordinates of base points are taken as optimization variables.

In general, the optimization problem stated above includes 2.NBP design variables and
(NCP + NBP) × NOB nonlinear constraints. Coordinates of base points must also satisfy
the relationships (xbi − xbi+1) ≤ 0 and

(
ybi − ybi+1

)
≤ 0 (i = 1,. . .,NBP−1) to preserve the

local convexity of the trajectory. The “PENALTY” term in Equation (18) aggregates squared

violations of constraint inequalities occurring for G(
→
X) > 0 multiplied by 1000 to amplify

the effect of collision with obstacles; it is equal to 0 if the optimizer finds a feasible solution
where the designed trajectory does not intersect the NOB obstacles. More details on the
formulation of path planning problems in robotics can be found in Refs. [91–93].

Figure 4 shows the design space of the two path planning problems (all coordinates
are expressed in mm) solved in this study considering the presence of 7 or 10 obstacles
and the same number of base points. In the former case, there are the start/end points
A(1,1) and B(29,29) mm to be connected and the seven obstacles, O1(6,6), O2(7,24), O3(9,15),
O4(16,23), O5(20,11), O6(23,6), and O7(24,23) mm, limiting circular areas of radii 3, 1, 3,
2, 2, 1, and 2 mm, respectively. The optimization problem hence includes 14 variables
corresponding to the coordinates of base points (i.e., 2·NBP = 2 × 7) that can vary between
1 and 29 mm, NOB = 7 obstacles, NCP = 100 control points, and 749 nonlinear constraints
(i.e., (NCP+NBP)× NOB = (100 + 7)× 7 = 749).
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In the latter case, there are three additional obstacles O8(12,10), O9(14,16), and O10(19.5,17.5)
mm all limiting circular areas of radius 2 mm. The optimization problem hence includes 20 vari-
ables (i.e., 2·NBP = 2 × 10), NOB = 10 obstacles, NCP = 100 control points, and 1100 nonlinear
constraints (i.e., (NCP + NBP) × NOB = (100 + 10) × 10 = 1100).

Besides the 20 independent optimization runs, 1 additional optimization run was
carried out by setting the initial positions of base points equal to the coordinates of obstacle
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centers shifted by 0.001 mm in order to avoid constraint singularity. This is the worst-case
scenario when the trajectory intersects all obstacles. The corresponding path lengths were
231.2 mm for 7 base points and 238.5 mm for 10 base points, while initial constraint violation
raised to 159,816% and 204,741%, respectively.

For both problem variants, the FHGWJA hybrid optimizer developed here was com-
pared with the best optimizers quoted in the literature: namely, hybrid harmony search
(hybrid HS), hybrid big bang–big crunch (hybrid BBBC), and hybrid fast simulated an-
nealing (HFSA) [81]. Such a comparison should be considered highly indicative because
the hybrid optimizers developed in [81] combined efficient metaheuristic search engines
with approximate line search strategies and gradient information while FHGWJA repeat-
edly utilizes elitist strategies based on the concept of descent direction. The classical grey
wolf optimizer (GWO) and the classical and improved JAYA formulations [81] also were
compared with FHGWJA to prove the advantages of the hybrid optimizer. Finally, mod-
ified harmony search optimization with adaptive parameter updating (mAHS) (derived
from the AHS algorithm of Ref. [94]), modified big bang–big crunch with upper bound
strategy (mBBBC–UBS) (derived from the BBBC–UBS algorithm of Ref. [95]), and modified
sinusoidal differential evolution (MsinDE) (derived from the sinDE algorithm of Ref. [96])

were enhanced with the W(
→

Xi,tr) ≤ 1.1W(
→

Xopt) elitist strategy of FHGWJA to gather specific
information on the efficiency of this strategy.

The selected population size in Ref. [81] for the hybrid HS, hybrid BBBC, and improved
JAYA algorithms was 20, while it was set equal to 10 in this study for the new optimization
runs carried out for mAHS, mBBBC–UBS, and MsinDE to have a homogeneous basis of
comparison with FHGWJA and its component algorithms, the standard GWO and standard
JAYA. All other internal parameters required for SHGWJA’s competitors were left the same
as those indicated in the original references [81,94–96]. The same approach was adopted
for the two problem variants with 14 and 20 optimization variables.

Table 1 presents the optimization results for the 2D path planning problem variant with
14 design variables (seven base points and seven obstacles). All data listed in the table refer
to feasible solutions; the number of analyses refers to the number of times that nonlinear con-
straints were evaluated. FHGWJA was the best optimizer overall and designed the shortest
path of 40.811 mm, outperforming the component algorithms, the standard GWO and stan-
dard JAYA, that designed longer trajectories of 41.104 mm and 41.050 mm, respectively. The
optimal positions of base points found with FHGWJA were (3.6617;1.3944), (6.5927;2.7934),
(16.562;11.705), (21.231;17.081), (24.186;19.826), (27.855;26.254), and (28.626;28.196) mm. The
other algorithms ranked as follows: hybrid HS [81], MsinDE (derived from [96]), hybrid
BBBC [81], HFSA [81], mAHS (derived from [94]), mBBBC–UBS (derived from [95]), and
improved JAYA [81].

Table 1. Optimization results for the 2D path planning problem solved with 14 design variables.

Algorithm Best
(mm) Average (mm) Worst

(mm) ST Dev (mm) Number of
Analyses

FHGWJA (present) 40.811 40.859 40.890 3.331 × 10−2 4581 ± 1127 ♣

Standard GWO 41.104 41.112 41.129 1.340 × 10−2 50,000
Standard JAYA 41.050 41.092 41.162 6.080 × 10−2 17,204
Improved JAYA [81] 41.082 41.104 41.119 1.850 × 10−2 6523

Hybrid HS [81] 40.983 41.040 41.105 6.133 × 10−2 4150
Hybrid BBBC [81] 40.986 41.078 41.101 6.110 × 10−2 3611
HFSA [81] 40.994 41.048 41.113 6.035 × 10−2 4127
mAHS (der. from [94]) 41.059 41.067 41.095 1.890 × 10−2 7237
mBBBC–UBS (der. from [95]) 41.081 41.099 41.112 1.136 × 10−2 5724
MsinDE (der. from [96]) 40.985 41.002 41.026 2.122 × 10−2 6291

♣ The fastest optimization run of FHGWJA requires only 3837 analyses.
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The rate of success of FHGWJA was 100% because all independent optimization runs
designed shorter trajectories than the best solutions obtained with its competitors. In
particular, the worst solution of FHGWJA achieved a path length of 40.890 mm while the
shortest paths designed via all other optimizers ranged between 40.983 and 41.104 mm.
Such a behavior occurred because FHGWJA inherently balances exploration and exploita-
tion phases enhancing the exploration capability of α, β, and δ wolves without risk of
stagnation and forcing the optimizer to search very high-quality solutions regardless of per-

forming exploration or exploitation. Interestingly, the W(
→

Xi,tr) ≤ 1.1W(
→

Xbest) elitist strategy
implemented in FHGWJA was effective also for mAHS, mBBBC–UBS, and MsinDE that
improved their optimized solutions with respect to the original AHS [94], BBBC–UBS [95],
and sinDE [96] algorithms utilized in [81]: in particular, MsinDE enhanced its overall rank
up to the 3rd position.

FHGWJA was the fastest optimizer overall in the 2D path planning problem with
14 variables, requiring on average only 4581 analyses vs. 50,000 and 17,204 analyses,
respectively, required for standard GWO and JAYA to converge to their optimized solutions.
Furthermore, the present algorithm was about 42.3% faster than the improved JAYA. The
computational speed for the fastest optimization run of FHGWJA was practically the
same as those of the HS/BBBC/SA hybrid algorithms: only 3837 analyses vs. 4150, 3611,
and 4127 analyses, respectively. However, the present algorithm generated a feasible
intermediate design with a path length of 40.961 mm (hence, shorter than optimized path
lengths of hybrid HS/BBBC/SA ranging between 40.983 and 40.994 mm) within only
2875 analyses.

FHGWJA ranked 6th in terms of standard deviation on optimized path length after
mBBBC–UBS, standard GWO, improved JAYA, mAHS, and MsinDE, which, however,
completed their optimizations within more analyses than the present algorithm and con-
verged to worse designs. The present algorithm was also robust enough with respect to
computational cost showing only 24.6% dispersion on the number of analyses required in
the 20 independent optimization runs.

Figure 5 confirms the superiority of FHGWJA over its competitors in terms of con-
vergence behavior. The figure compares the optimization histories of the best runs for the
algorithms listed in Table 1; the average FHGWJA convergence curve is also shown in
the figure. The plot is limited to the first 4500 analyses of the optimization history and
to the 40.5–48.5 mm trajectory length interval for the sake of clarity. It can be seen from
the figure that the best and average optimization runs’ convergence curves of FHGWJA
always lie below those of the other algorithms. FHGWJA started its best optimization run
from the very large cost of 225.35 mm (i.e., about 5.5 times the globally optimum length
of 40.811 mm found with FHGWJA) while the initial cost for all other optimizers ranged
between 59.62 and 184.214 mm. However, the present algorithm immediately recovered
the initial gap in cost function with respect to its competitors. The hybrid simulated an-
nealing algorithm (HFSA) of Ref. [81] and the modified big bang–big crunch algorithm

(mBBBC–UBS) implementing the W(
→

Xi,tr) ≤ 1.1W(
→

Xopt) elitist strategy of FHGWJA were
the only optimizers to compete in convergence speed with FHGWJA, respectively, for the
first 150 and 190 analyses.

Table 2 presents the optimization results for the 2D path planning problem variant
solved with 20 design variables (10 base points and 10 obstacles). FHGWJA again was the
best optimizer overall. In fact, it designed the very short trajectory of length 40.898 mm
while the best solutions found with the other algorithms correspond to longer trajectories
than 40.898 mm, ranging between 40.997 mm (for hybrid HS) and 41.141 mm (for improved
JAYA). Furthermore, the worst solution of FHGWJA corresponds to the path length of
40.924 mm, again shorter than the best designs obtained with all its competitors. The
optimal positions of base points found with FHGWJA were (3.9165;1.7729), (7.9192;3.6484),
(20.853;16.019), (25.143;21.071), (27.178;24.426), (27.185;24.444), (27.188;24.449), (27.967;26.268),
(27.998;26.345), and (28.981;28.578) mm.
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Table 2. Optimization results for the 2D path planning problem solved with 20 design variables.

Algorithm Best
(mm) Average (mm) Worst

(mm) ST Dev (mm) Number of
Analyses

FHGWJA (present) 40.898 40.901 40.924 1.161 × 10−2 5153 ± 248 ♣

Standard GWO 41.134 41.146 41.165 1.276 × 10−2 50,000
Standard JAYA 41.112 41.160 41.187 3.102 × 10−2 11,778
Improved JAYA [81] 41.141 41.184 41.209 2.808 × 10−2 11,393

Hybrid HS [81] 40.997 41.053 41.116 4.861 × 10−2 7408
Hybrid BBBC [81] 41.034 41.091 41.108 3.165 × 10−2 7542
HFSA [81] 41.004 41.060 41.127 5.028 × 10−3 8245
mAHS (der. from [94]) 41.075 41.092 41.116 1.682 × 10−2 8541
mBBBC–UBS (der. from [95]) 41.091 41.123 41.150 2.412 × 10−2 7492
MsinDE (der. from [96]) 41.030 41.077 41.092 2.641 × 10−2 8762

♣ The fastest optimization run of FHGWJA requires only 5065 function evaluations.

FHGWJA was also significantly faster than the other algorithms, completing optimiza-
tion runs on average within only 5153 analyses while computational cost of its competitors
ranged between 7408 (for hybrid HS) and 50,000 (for standard GWO) analyses. Stan-
dard JAYA was slightly more efficient than improved JAYA while standard GWO was the
worst optimizer overall. The present algorithm was the most robust optimizer, achieving
the lowest standard deviation on path length and just 4.8% dispersion on the number
of analyses.

The W(
→

Xi,tr) ≤ 1.1W(
→

Xbest) elitist strategy implemented in FHGWJA again improved
significantly the performance of the mAHS, mBBBC–UBS, and MsinDE algorithms with
respect to the original AHS, BBBC–UBS, and sinDE formulations documented in [94–96]:
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in particular, computational cost decreased on average by 36%. Interestingly, the high level
of nonlinearity of 2D path planning problem variants including 14 and 20 optimization
variables was better handled with FHGWJA than with the hybrid HS/BBBC/SA algorithms
of Ref. [81]. This occurred in spite of the fact that hybrid HS/BBBC/SA utilized gradient
information and multiple line searches to minimize the number of analyses. However, this
limited the approximation quality and hence the ability of the optimizers to generate trial

solutions effectively located in regions of the search space where
→

Xbest is likely to improve.
Figure 6 compares the optimization histories of the best runs for FHGWJA and its

competitors in the 2D path planning problem solved with 20 design variables; the average
FHGWJA convergence curve is also shown in the figure. The plot is limited to the first
9000 analyses of optimization history for the sake of clarity. Similar to the 14-variable
problem variant, the best and average optimization runs’ convergence curves of FHGWJA
practically always lie below those of the other algorithms. All algorithms started their best
optimization runs from the very large cost of 238.54 mm (i.e., about 5.83 times the optimum
trajectory length of 40.898 mm found with FHGWJA). However, the present algorithm
recovered the gap in cost function with respect to target optimum in a much faster way
than the other algorithms. The hybrid simulated annealing algorithm (HFSA) of Ref. [81]
was the only optimizer to compete in convergence speed with FHGWJA but only after
2000 analyses, that is when the distance from target optimum was less than 5%.
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Figure 6. Comparison of convergence curves of FHGWJA and its competitors for the 2D path
planning problem solved with 20 design variables.

Figure 7a compares the optimized trajectories obtained with FHGWJA and its com-
petitors in the 2D path planning problem variant including 14 design variables. For the
sake of clarity, the figure shows only the best six solutions quoted in Table 1. It can be seen
that optimized paths involve only obstacles 1 and 7. Furthermore, the trajectory branch
limited by the start point A and obstacle 1 is practically the same for all optimizers. Optimal
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trajectories diverge between obstacles 1 and 7: the slope is larger for hybrid HS, HFSA,
and standard JAYA than for the present algorithm, hybrid BBBC, and MsinDE. Hybrid
HS, hybrid BBBC, HFSA, and MsinDE found very similar path lengths between 40.983
and 40.994 mm; these trajectories are practically symmetric about the line connecting the
point near obstacle 1, where trajectories diverge, and the end point B. Since the trajectory
designed with standard JAYA between obstacles 1 and 7 is more curved than those de-
signed with hybrid HS and HFSA, the length of standard JAYA’s optimal path increased to
41.050 mm.Appl. Sci. 2024, 14, x FOR PEER REVIEW 21 of 46 
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The detailed analysis of the optimized trajectory revealed that, in order to minimize
length, trajectory should be rectilinear between obstacles 1 and 7 as well as in the final
branch from obstacle 7 to end point B. Interestingly, FHGWJA was the only optimizer to
satisfy this requirement. In fact, the optimal path found with FHGWJA between obstacles
1 and 7 may be fitted in the XY plane via a linear regression with R2 = 0.999 vs. only
R2 = 0.992 and R2 = 0.994, respectively, for hybrid HS (HFSA’s trajectory is very close to
the one designed with hybrid HS) and hybrid BBBC (MsinDE’s trajectory is very close
to the one designed with hybrid BBBC). Furthermore, the optimal path of FHGWJA may
be linearly fitted with R2 = 0.998 vs. only R2 = 0.991 and R2 = 0.994 for hybrid HS and
hybrid BBBC, respectively. Besides the higher curvature of the trajectories designed with
the other algorithms between obstacles 1 and 7, the final branches of the optimal trajectories
designed via hybrid HS, HFSA, hybrid BBBC, and MsinDE show changes in concavity that
make trajectory deviate from a straight line.

Figure 7b compares the optimized trajectories obtained with FHGWJA and its com-
petitors in the 2D path planning problem variant including 20 optimization variables. The
figure shows the trajectories of the best and worst optimization runs of FHGWJA as well as
the other five best solutions quoted in Table 2. The new obstacles 8 and 10 introduced in the
problem became active for all algorithms while the optimized trajectory approached the
new obstacle 9 only for mAHS. This explains why the optimized path lengths of hybrid HS,
HFSA, MsinDE, and hybrid BBBC varied at most by 0.037 mm (i.e., between 40.997 mm
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and 41.034 mm) while path length increased by 0.041 mm just passing from hybrid BBBC
to mAHS (i.e., from 41.034 mm to 41.075 mm). Again, FHGWJA designed the straightest
trajectory in the path branches between obstacles 1 and 7 and between obstacle 7 and
end point B. Such a behavior occurred for both the best and worst FHGWJA optimization
runs. Conversely, trajectories designed with hybrid HS/BBBC/SA and MsinDE algorithms
exhibited significant changes in slope and curvature especially in the final branch of the
path or between obstacles 10 and 7. For example, the final branch of the FHGWJA’s optimal
paths may be linearly fitted with R2 = 0.997 vs. only R2 = 0.965, R2 = 0.940, and R2 = 0.978
for hybrid HS, hybrid BBBC, and HFSA, respectively.

In summary, the FHGWJA algorithm developed in this study is an efficient and
robust tool for solving highly nonlinear 2D path planning problems in robotics. The
proposed algorithm could always design shorter paths requiring less analyses to complete
optimization runs than its competitors.

3.2. Shape Optimization of a Concrete Gravity Dam Under Multiple Earthquake Loads

The test case (iii) solved in this study was the shape optimization of a concrete gravity
dam under multiple earthquake loads. The real structure is located in the Shafaroud region
of Northern Iran: the dam height (Hdam) is 150 m, water elevation in the normal state in
the dam upstream (hwater) is 145 m, and the sediment height (hse) is 7 m. The 3D schematic
of the dam is shown in Figure 8a. Here, the concrete volume per unit width of the dam was
minimized by optimizing the dam cross-section shown in Figure 8b with the nine shape
variables (x1,x2,x3,x4,x5,x6,x7,x8,x9) indicated in the figure.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 22 of 46 
 

 
(a) 

 
(b) 

Figure 8. (a) 3D schematic of the gravity dam; (b) cross-section of the concrete gravity dam indi-
cating shape variables and main geometric dimensions. 

In Equation (21), the SFS factor (involved in the inequality constraint G1) is defined 
as (f.ΣFv + σ.b)/ΣFH, where f  =  0.7 is the static friction coefficient, σ  =  3.5 MPa is the al-
lowable shear tension in the cutting surface, and b = (x1+x3+x5+x7+x9) is the dam base 
length. The dam is subject to the vertical forces denoted as Fv: concrete weight W, vertical 
components of water pressure Fhv, and sediment pressure PSV directed downward; uplift 
force generated by the dam basement Fuplift, and earthquake force FE directed upward. 
The dam is also subject to horizontal forces FH in the positive X-direction: an additional 
earthquake force of magnitude 2FE, the horizontal components of water pressure Fhh, and 
sediment pressure PSO. 

The SFO factor (involved in the inequality constraint G2) is defined as ΣMR/ΣMo 
where MR and Mo, respectively, are the torque of resisting forces (W, Fhv, PSV) and the 
torque of driving forces (Fuplift, 2FE, Fhh, PSO) on the dam. 

Vertical fatigue loads σU and σD (involved in inequality constraints G5 and G6) are 
defined as (ΣFv/ b  − 6ΣMo/b2) and (ΣFv/ b  + 6ΣMo/ b2), respectively. 

The last inequality constraint G7 in Equation (21) is relative to geometric proportions 
in the vertical direction, while the equality constraint H8 requires the dam height to be 150 
m. 

The concrete volume per unit width of 10,502.1 m3 of the real dam was significantly 
reduced to 7448.774 m3 via the multi-level cross entropy optimizer (MCEO) [97] and the 
flying squirrel optimizer (FSO) [98]. However, Refs. [97,98] neither considered the equal-
ity constraint H8 nor the presence of the horizontal earthquake force 2FE. These issues 
were instead included in [81], which presented the results of hybrid HS, hybrid BBBC, 
hybrid fast simulated annealing (HFSA), adaptive harmony search (AHS) [94], big 

       

Y 

x7 x5 x3 x1 x9 

x6 

x4 x8 

X   

Hdam hwater 

hse

x2 

Figure 8. (a) 3D schematic of the gravity dam; (b) cross-section of the concrete gravity dam indicating
shape variables and main geometric dimensions.
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The optimization problem was stated as follows:

Minimize W(
→
X) = Hdamx1 +

1
2

x2x3 + x3(x4 + x6) +
1
2

x4x5 + x5x6 +
1
2

x6x7 +
1
2

x8x9 (20)

Subject to



G1(
→
X) = 4 − SFS ≤ 0

G2(
→
X) = 1.5 − SFO ≤ 0

G3−4(
→
X) = 0 ≤ σU ≤ σMAX

G5−6(
→
X) = 0 ≤ σD ≤ σMAX

G7(
→
X) = x4 + x6 − x8 ≤ 0

H8(
→
X)= (x2 + x4 + x6 − Hdam)

2 = 0

(21)

where SFS is the safety factor against dam sliding; SFO is the safety factor against dam
overturning; σU, σD, and σmax are the vertical fatigue specific loads in upstream and
downstream and the corresponding fatigue limit, respectively. Side constraints of shape
variables are as follows: 1 ≤ x1,x3 ≤ 20 m; 1 ≤ x2 ≤ 50 m; 5 ≤ x4,x5,x6,x7 ≤ 100 m;
50 ≤ x8,x9 ≤ 150 m.

In Equation (21), the SFS factor (involved in the inequality constraint G1) is defined
as (f·ΣFv+σ·b)/ΣFH, where f = 0.7 is the static friction coefficient, σ = 3.5 MPa is the
allowable shear tension in the cutting surface, and b = (x1+x3+x5+x7+x9) is the dam base
length. The dam is subject to the vertical forces denoted as Fv: concrete weight W, vertical
components of water pressure Fhv, and sediment pressure PSV directed downward; uplift
force generated by the dam basement Fuplift, and earthquake force FE directed upward.
The dam is also subject to horizontal forces FH in the positive X-direction: an additional
earthquake force of magnitude 2FE, the horizontal components of water pressure Fhh, and
sediment pressure PSO.

The SFO factor (involved in the inequality constraint G2) is defined as ΣMR/ΣMo
where MR and Mo, respectively, are the torque of resisting forces (W, Fhv, PSV) and the
torque of driving forces (Fuplift, 2FE, Fhh, PSO) on the dam.

Vertical fatigue loads σU and σD (involved in inequality constraints G5 and G6) are
defined as (ΣFv/b − 6ΣMo/b2) and (ΣFv/b + 6ΣMo/b2), respectively.

The last inequality constraint G7 in Equation (21) is relative to geometric proportions in
the vertical direction, while the equality constraint H8 requires the dam height to be 150 m.

The concrete volume per unit width of 10,502.1 m3 of the real dam was significantly
reduced to 7448.774 m3 via the multi-level cross entropy optimizer (MCEO) [97] and
the flying squirrel optimizer (FSO) [98]. However, Refs. [97,98] neither considered the
equality constraint H8 nor the presence of the horizontal earthquake force 2FE. These
issues were instead included in [81], which presented the results of hybrid HS, hybrid
BBBC, hybrid fast simulated annealing (HFSA), adaptive harmony search (AHS) [94], big
bang–big crunch with upper bound strategy (BBBC–UBS) [95], and sinusoidal differential
evolution [96]. For this reason, the FHGWJA algorithm developed in this study was
compared with hybrid HS/BBBC/SA as well as with modified adaptive harmony search
(mAHS), modified big bang–big crunch with upper bound strategy (mBBBC–UBS), and
modified sinusoidal differential evolution (MsinDE). Similar to the 2D path planning

problem, mAHS, mBBBC–UBS, and MsinDE included the W(
→

Xi,tr) ≤ 1.1W(
→

Xbest) elitist
strategy implemented in FHGWJA to enhance the performance of the original algorithms.

Similar to the 2D path planning problem, population size was set equal to 20 in
Ref. [81] for hybrid HS, hybrid BBBC, and improved JAYA, while mAHS, mBBBC–UBS,
and MsinDE were run with NPOP = 10 in this study.

Table 3 compares the optimization results of FHGWJA and its competitors for the dam
problem. The number of structural analyses corresponds to the number of evaluations

of constraints G1–7(
→
X) and H8(

→
X). The average number of structural analyses and corre-
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sponding standard deviation along with the number of structural analyses required by the
fastest optimization run also are reported in the table when available.

Table 3. Optimization results of the concrete gravity dam design problem.

Algorithm Best
(m3)

Average
(m3)

Worst
(m3)

ST Dev
(m3)

Number Structural
Analyses

Constraint
Violation (%)

FHGWJA (Present) 7079.558 7079.558 7079.558 0 3834 ± 1597
2207 1.441 ×10−3

Standard GWO 7117.441 7119.288 7125.568 3.4995 50,000 2.423 × 10−3

Standard JAYA 7121.134 7125.213 7129.822 5.3946 25,000 1.338 × 10−3

Improved JAYA
[81] 7117.437 7119.141 7120.890 1.7269 22,537 ± 1996

19,917 4.076 × 10−4

Hybrid HS [81] 7109.608 7112.340 7113.474 2.5882 18,487 ± 3226
17,708 3.641 × 10−5

Hybrid BBBC [81] 7108.772 7111.175 7112.275 1.8606 18,074 ± 2692
18,128 3.029 × 10−5

HFSA [81] 7113.456 7114.225 7114.533 1.5385 19,390 ± 1324
18,232 1.343 × 10−3

mAHS
(derived from [94]) 7109.419 7111.476 7113.292 2.0719 24,687 ± 2916

22,172 3.333 × 10−3

mBBBC–UBS
(derived from [95]) 7109.122 7110.306 7111.004 0.7912 18,376 ± 1737

16,924 6.067 × 10−3

MsinDE
(dererived from [96]) 7113.123 7114.350 7115.267 0.8983 24,196 ± 2048

22,809 4.145 × 10−3

MCEO [97] 7448.74 N/A N/A 3.274 × 10−2 35,000 32
FSO [98] 7448.74 N/A N/A N/A N/A 32

FHGWJA was the best optimizer overall also in this test problem. In fact, it converged
to the lowest concrete volume for unit width of 7079.558 m3, which is 0.411% smaller
than the 7108.772 m3 for the best design quoted in literature so far for hybrid BBBC [81].
All algorithms performed significantly better than MCEO [97] and FSO [98]: in fact, op-
timized values of unit volume ranged from 7059.558 m3 to 7121.134 m3 vs. 7448.774 m3

of Refs. [97,98]. The solutions quoted in Table 3 fully satisfied design constraints G1(
→
X)

through G7(
→
X) and practically the geometric equality constraint H8(

→
X) on dam height

(in fact, violation never exceeded 6.067 × 10−3%). The algorithms ranked as follows in
terms of optimized concrete volume values: FHGWJA, hybrid BBBC, mBBBC–UBS, mAHS,
hybrid HS, MsinDE, HFSA, improved JAYA, standard GWO, and standard JAYA.

FHGWJA was also the fastest and most robust optimizer. In fact, it converged to the
global optimum of 7059.558 m3 in all independent optimization runs with zero standard
deviation. Conversely, none of its competitors could achieve zero standard deviation
on optimized concrete volume values. The present algorithm was on average between
4.7- and 6.5-times faster than its competitors; the fastest optimization run converging to
the global optimum was completed by FHGWJA within only 2207 structural analyses vs.
16,924 structural analyses required for mBBBC–UBS that, however, obtained a higher value
for the dam’s concrete volume.

The hybrid formulation implemented in FHGWJA was significantly more efficient than
its component algorithms GWO and JAYA that converged in their standard formulation
to the best solutions of 7117.441 m3 and 7121.134 m3, respectively. The improved JAYA
algorithm of Ref. [81], implementing a simplified elitist strategy where each new trial

solution
→

Xi,tr is included in the new population only if it improves its counterpart individual
→
Xi (i.e., if it holds W(

→
Xi,tr) ≤ W(

→
Xi)), also could not reduce the unit volume of the dam

below 7117.44 m3. The classical GWO was on average about 13-times more computationally
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expensive than the present algorithm, while classical JAYA and improved JAYA were on
average about 6.5- and 5.9-times slower than FHGWJA.

The W(
→

Xi,tr) ≤ 1.1W(
→

Xbest) elitist strategy implemented in FHGWJA again improved
significantly the performance of the mAHS, mBBBC–UBS, and MsinDE algorithms with
respect to the original AHS, BBBC–UBS, and sinDE formulations documented in [94–96]:
in particular, the best solutions of mAHS, mBBBC–UBS, and MsinDE became very close to
those of hybrid HS/BBBC/SA while computational cost decreased on average by 16.5%,
6.1%, and 35.2%, respectively.

Figure 9 clearly shows the superior convergence behavior of FHGWJA with respect
to its competitors. The figure compares the optimization histories of the best runs for the
algorithms listed in Table 3; the average FHGWJA convergence curve also is shown in
the figure. The plot is limited to the first 21,000 structural analyses of the optimization
history and to the 7000–14,000 m3 concrete volume interval for the sake of clarity. It can
be seen from the figure that the best and average optimization runs’ convergence curves
of FHGWJA always lie below those of the other algorithms. FHGWJA started its best
optimization run from the very large cost of 18,372.761 m3 (i.e., about 2.6 times the globally
optimum length of 7079.558 m3 found with FHGWJA) while the initial cost for all other
optimizers ranged between 13,265.001 and 14,209.219 m3. However, the present algorithm
immediately recovered the initial gap in cost function with respect to its competitors.
The hybrid simulated annealing algorithm (HFSA) of Ref. [81] was the only optimizer to
compete in convergence speed with FHGWJA for the first 100 structural analyses.
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Figure 9. Comparison of convergence curves of FHGWJA and its competitors for the concrete dam
optimization problem.

Table 4 lists the optimized designs obtained with FHGWJA and its main competitors;
coordinate values are expressed in meters. The data relative to the standard GWO and JAYA
and the improved JAYA are omitted for the sake of brevity as these algorithms converged
to the worst solutions overall. The 7079.558 m3 dam’s concrete volume design obtained
with FHGWJA is very similar to the optimal solutions obtained with the other algorithms:
all design variables changed by at most 5.6% except X3 that was fixed to its lower bound of
1 mm by FHGWJA and between 4.0001 m and 4.1358 m for the other algorithms.
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Table 4. Comparison of optimized designs obtained with FHGWJA and its competitors in the concrete
gravity dam problem.

Variables
(m) FHGWJA Hybrid

HS [81]

Hybrid
BBBC

[81]

HFSA
[81]

mAHS
(der. [94])

mBBC–UBS
(der. [95])

MsinDE
(der. [96])

MCEO/FSO
[97,98]

Existing
Dam

X1 5.0000 5.0000 5.0006 5.0004 5.0394 5.0175 5.0256 5.1678 4
X2 50.000 49.670 49.554 49.924 49.211 49.333 49.497 25.1978 42
X3 1.0000 4.0132 4.0043 4.0001 4.1358 4.0846 4.0866 4.9556 4.2
X4 69.784 70.084 70.309 68.244 70.006 70.053 69.483 55.7811 50
X5 24.835 24.499 24.539 23.955 23.973 24.175 24.066 16.0874 12.5
X6 30.000 30.239 30.131 31.673 30.696 30.924 31.090 21.0009 58
X7 40.000 39.997 40.025 39.984 39.974 39.968 39.919 29.9036 23.2
X8 99.770 100.39 100.49 99.241 100.51 100.75 100.26 120.169 140
X9 80.000 80.261 80.164 81.874 80.566 81.348 80.947 85.382 105

Figure 10 compares the optimized shapes of the dam (coordinates are expressed
in meters) obtained with FHGWJA and its competitors with the real structure and the
optimum design of Refs. [97,98]. For the sake of clarity, the average of hybrid HS, hybrid
BBBC, and HFSA configurations and the average of mAHS, mBBBC–UBS, and MsinDE
configurations are shown in the figure. It can be seen that all designs resemble the aspect
ratio of the real dam: in particular, the ratio between optimized base length and height is
very close to 1. The optimized profiles are slightly shifted in the positive X-direction with
respect to the real dam and the dam configurations optimized in [97,98] to counteract the
effect of the additional horizontal earthquake force 2FE included in the design problem.
The smaller inclination of the bottom segment of the dam’s upstream side increases the
dam’s storage capacity with respect to the real structure.
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The safety factors against sliding and overturning evaluated for the optimal solution
of FHGWJA became 5.738 and 3.470, respectively, practically the same as those quoted
in [81]. Hence, reducing the concrete volume did not affect at all the level of structural
safety of the dam. This proves the suitability of the proposed FHGWJA algorithm for civil
engineering design problems.

3.3. Calibration of Nonlinear Hydrologic Models

Test problems (iv–v) regarded the calibration of nonlinear hydrologic models includ-
ing 3 or 25 unknown parameters. This is a typical inverse problem in the hydrology
field [99–101]. The Muskingum model was selected in this study. The difference between
observed river outflows and their counterpart computed with the Muskingum model over
a period of 126 h, split in 21 intervals ∆t = 6 h, was minimized. The inverse problem was
formulated as an unconstrained optimization problem:

Minimize SSQ =
NCT

∑
t=1

(Ooro,t − Ocro,t)
2 (22)

where Ooro,t and Ocro,t, respectively, are the observed and computed river outflows at time
t; NCT = 22 is the number of control points defined by the 21 time intervals. The com-
puted river outflow Ocro,t can be determined using the classical three-parameter nonlinear
Muskingum model:

Ocro,t =
1

1 − h

(
St

K

) 1
r
(1 − h) It (23)

In Equation (23), K, h, and r are the parameters of Muskingum model to be calibrated,
respectively, taken as optimization variables x1, x2, and x3; St and It, respectively, are the
channel storage and measured river inlet at time t. The channel storage St at time t is
updated as follows:

St+1 = St +
.

St∆t (24)

The storage rate
.

St at time t is as follows:

.
St =

1
1 − h

·
(

St

K

) 1
r
+

1
1 − h

· It (25)

Two variants of the hydrologic model calibration problem were solved in this
study: (i) the classical problem including only 3 optimization variables, the unknown
parameters K, h, and r [102–106]; (ii) the extended problem solved in [81] including also
the 22 storage values St as additional design variables for a total of 25 optimization
variables. The side constraints on Muskingum model parameters and storage values are
as follows: 0.01 ≤ k ≤ 0.2; 0.2 ≤ h ≤ 0.3; 1.5 ≤ r ≤ 2.5, and 1 ≤ St ≤ 1000 m3.

The FHGWJA algorithm developed in this study was compared with the best solutions
of the literature obtained with following: (i) metaheuristic methods such as the hybrid
HS/BBBC/SA algorithms of Ref. [81], other HS variants [102], improved immune clonal
selection (IICSA) [103], backtracking search with orthogonal initialization and chaotic
map (COBSA) [104], genetic algorithms (GA) [104], differential evolution (DE) [104],
and particle swarm optimization (PSO) [104]; (ii) modified adaptive harmony search
(mAHS), modified big bang–big crunch with upper bound strategy (mBBBC–UBS), and
modified sinusoidal differential evolution (MsinDE) including the FHGWJA’s elitist strat-

egy W(
→

Xi,tr) ≤ 1.1W(
→

Xbest) to improve the original AHS/BBBC–UBS/sinDE algorithms of
Refs. [94–96]; (iii) gradient-based methods such as the Broyden–Fletcher–Goldfarb–Shanno
algorithm (BFGS) [105]; (iv) zero-order heuristic methods such as the Nelder-Mead Simplex
algorithm (NMS) [106]. FHGWJA was also compared with the standard GWO as well as
standard and improved JAYA variants [81].
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Similar to the previous test cases, population size was set equal to 20 in Ref. [81] for
hybrid HS, hybrid BBBC, and improved JAYA, while mAHS, mBBBC–UBS, and MsinDE
were run with NPOP = 10 in the present study.

Table 5 presents the optimization results of FHGWJA and its competitors for the
three-variables problem variant. The table reports the average number of evaluations of
the SSQ cost function (NFE) and corresponding standard deviation, along with the number
of function evaluations required by the fastest optimization run when available.

Table 5. Optimization results of the hydrologic model calibration problem solved with 3 unknown
parameters.

Algorithm K h m Best Average Worst ST Dev NFE

FHGWJA (Present) 0.08620 0.2869 1.8681 36.760 36.760 36.760 0 2005 ± 386
1637

Standard GWO 0.08621 0.2869 1.8681 36.761 36.762 36.764 1.258 × 10−3 50,000

Standard JAYA 0.08620 0.2869 1.8681 36.760 36.761 36.763 1.500 × 10−3 5438 ± 756
4331

Improved JAYA [81] 0.08620 0.2869 1.8681 36.760 36.761 36.762 1.442 × 10−4 2412 ± 684
1766

Hybrid HS [81] 0.08633 0.2869 1.8677 36.761 36.762 36.762 4.892 × 10−4 2547 ± 1035
1331

Hybrid BBBC [81] 0.08618 0.2869 1.8682 36.761 36.761 36.762 1.769 × 10−5 2468 ± 1102
1281

HFSA [81] 0.08632 0.2869 1.8678 36.761 36.762 36.762 3.891 × 10−4 2755 ± 1344
1326

mAHS (der. [94]) 0.08620 0.2869 1.8681 36.760 36.761 36.762 1.543 × 10−4 2368 ± 967
1670

mBBBC–UBS (der. [95]) 0.08620 0.2869 1.8681 36.760 36.761 36.762 2.044 × 10−4 2344 ± 835
1711

MsinDE (der. [96]) 0.08620 0.2869 1.8681 36.760 36.762 36.763 2.119 × 10−3 2966 ± 1293
2213

HS [102] 0.0870 0.2870 1.8661 36.77 N/A N/A N/A 20,000
IICSA [103] 0.0865 0.2870 1.8675 36.77 N/A N/A N/A N/A
COBSA [104] 0.0864 0.2869 1.8678 36.76 36.77 36.77 0.01 100,000
GA [104] 0.0865 0.2869 1.8674 36.77 36.85 37.24 0.13 N/A
DE [104] 0.0863 0.2869 1.8680 36.77 37.09 38.04 0.36 N/A
PSO [104] 0.0867 0.2867 1.8668 36.77 36.84 37.25 0.14 N/A
BFGS [105] 0.0863 0.2869 1.8679 36.768 N/A N/A N/A N/A
NMS [106] 0.0862 0.2869 1.8681 36.76 N/A N/A N/A 221 *

* Number of optimization iterations.

It can be seen from Table 5 that the present algorithm always converged to the lowest
value of SSQ = 36.760 in all independent optimization runs thus reaching 0 standard
deviation on optimized cost. Hence, FHGWJA was the most robust optimizer overall.
Standard and improved JAYA, modified AHS/BBBC–UBS/sinDE, COBSA, and NMS also
found the globally optimum solution. However, none of these algorithms converged to
the same design in all optimization runs: standard deviations on optimized SSQ values
ranged between 1.442 × 10−4 (improved JAYA) and 0.01 (COBSA). All other methods
found optimized solutions ranging between SQQ = 36.761 (standard GWO and hybrid
HS/BBBC/SA) and 36.77 (HS, IICSA, GA, DE, and PSO).

The hybrid FHGWJA algorithm was significantly more efficient than its components,
the GWO and JAYA. In particular, the standard GWO converged to SSQ = 36.761 after
50,000 function evaluations (i.e., 25-times slower than FHGWJA) while standard JAYA
converged to SSQ = 36.760 but it was on average 2.7-times slower than the present algo-
rithm. Improved JAYA was on average 20.3% slower than FHGWJA while their fastest
optimization runs practically required the same number of function evaluations (i.e., 1637
for FHGWJA vs. 1766 for improved JAYA). However, the fastest optimization run of im-
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proved JAYA converged to SSQ = 36.762 vs. the global optimum of 36.760 reached with the
present algorithm in all runs.

The computational efficiency of FHGWJA operators generating new trial solutions in

the search process is confirmed by the fact that the W(
→

Xi,tr) ≤ 1.1W(
→

Xbest) elitist strategy
allowed mAHS, mBBBC–UBS, and MsinDE algorithms to converge to the global optimum
value SSQ = 36.760 and reduce computational cost by 9.1%, 11%, and 35.6% with respect
to the original AHS, BBBC–UBS, and sinDE algorithms of Refs. [94–96]. Interestingly,
mAHS and mBBBC–UBS became very competitive with FHGWJA in terms of average
computational cost (respectively, 2368 and 2344 function evaluations vs. only 2005 of
FHGWJA) and peak computational speed of the fastest optimization run (respectively, 1670
and 1711 vs. only 1637 of FHGWJA).

The hybrid HS/BBBC/SA algorithms of Ref. [81] that utilized gradient information
and approximate line searches could even complete their fastest optimization runs within
less function evaluations than FHGWJA (i.e., between 1281 and 1331 vs. 1637 of FHGWJA)
but converged to higher values of SSQ than the global optimum 37.760 found with FHGWJA.
Furthermore, hybrid HS/BBBC/SA required on average more function evaluations than
FHGWJA (i.e., between 2468 and 2755 vs. only 2005 of FHGWJA). Again, in a highly
nonlinear problem like the hydrologic model calibration, the elitist strategies implemented
in FHGWJA were extremely efficient in generating high-quality trial solutions over the
whole search process. This happened because generation of trial solutions in FHGWJA
is not biased to any extent by the quality of gradient information that may instead drive
hybrid HS/BBBC/SA towards poor trial solutions should the cost function gradient not be
well approximated. However, looking at Table 5, it appears that computational cost was
not an issue for this test problem: HS [102] and COBSA [104], respectively, required 20,000
and 100,000 function evaluations vs. only 2000 of FHGWJA while no information on the
effective number of function evaluations were given in Refs. [103–106] for metaheuristic
(i.e., IICSA, GA, DE, and PSO) as well as gradient-based algorithms (BFGS) and zero-order
heuristic methods (NMS).

Figure 11 confirms the superiority of FHGWJA over its competitors in terms of conver-
gence behavior also in this test problem. The figure compares the optimization histories of
the best runs for the algorithms listed in Table 5; the average FHGWJA convergence curve is
also shown in the figure. Since FHGWJA always converged to the global optimum of 36.760
in all optimization runs, its best run corresponds to the fastest one. The plot is limited to the
first 4500 function evaluations of optimization history and to the 35–70 cost function interval
for the sake of clarity. It can be seen from the figure that the best and average optimization
runs’ convergence curves for FHGWJA lie below those of the other algorithms practically
over the whole search history for this test problem. FHGWJA started its best optimization
run from the very large cost of 1520.145 (i.e., about 41.3 times the target optimum of 36.760
quoted in Table 5) while the initial cost for all other optimizers ranged between 181.683 and
1122.263. However, the present algorithm immediately recovered the initial gap in cost
function with respect to its competitors reducing cost to 37.5 (just 2% more than the target
optimum) within only 280 function evaluations while all other algorithms required at least
520 function evaluations to reach the same intermediate cost function value. The hybrid
harmony search algorithm of Ref. [81] was competitive with FHGWJA only for the first 150
function evaluations, while the hybrid simulated annealing algorithm (HFSA) of Ref. [81]
went close to the average convergence curve of FHGWJA at about 325 function evaluations.

The W(
→

Xi,tr) ≤ 1.1W(
→

Xopt) elitist strategy of FHGWJA allowed mAHS, mBBBC–UBS, and
MsinDE to approach the cost function reduction rate of FHGWJA from 400 to 700 function
evaluations, while the hybrid big bang–big crunch algorithm of Ref. [81] showed a similar
convergence speed to FHGWJA after about 750 function evaluations.
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Figure 11. Comparison of convergence curves of FHGWJA and its competitors for the 3-variable
hydrologic model calibration problem.

Table 6 presents the results obtained with FHGWJA and its competitors in the problem
variant with 25 variables; the same nomenclature of Table 5 is utilized. For the sake
of clarity, the table reports only the optimal values of channel storage St (included as
optimization variables 4 through 25) found with FHGWJA. The present algorithm was
the best optimizer also in this test problem variant. In fact, it converged to the lowest
value overall of SSQ = 36.761, followed by the HFSA and hybrid HS/BBBC algorithms of
Ref. [81] that obtained SSQ = 36.762 and 36.763, respectively.

Table 6. Optimization results of the hydrologic model calibration problem solved with 25 variables.

Algorithm K h M Best Average Worst ST Dev NFE

FHGWJA (Present) * 0.08611 0.2869 1.8681 36.761 36.761 36.761 2.919 × 10−12 4438 ± 544
4122

Standard GWO 0.08576 0.2870 1.8694 36.818 36.870 36.934 1.395 × 10−2 50,000

Standard JAYA 0.08620 0.2868 1.8677 36.765 36.766 36.769 1.435 × 10−3 22,663 ± 8359
13,820

Improved JAYA [81] 0.08591 0.2866 1.8689 36.806 36.806 36.807 1.078 × 10−7 7276 ± 2367
5476

Hybrid HS [81] 0.08614 0.2869 1.8705 36.763 36.763 36.763 3.333 × 10−11 4744 ± 1954
3277

Hybrid BBBC [81] 0.08567 0.2868 1.8718 36.763 36.763 36.763 8.416 × 10−11 4863 ± 1607
3656

HFSA [81] 0.08599 0.2867 1.8670 36.762 36.762 36.762 1.032 × 10−10 5144 ± 1733
3887

mAHS (der. [94]) 0.08624 0.2862 1.8678 36.774 36.774 36.775 1.263 × 10−8 5385 ± 760
4610

mBBBC–UBS (der. [95]) 0.08621 0.2872 1.8693 36.786 36.786 36.787 1.149 × 10−8 5146 ± 797
4488

MsinDE (der. [96]) 0.08604 0.2864 1.8676 36.786 36.786 36.787 1.456 × 10−8 5848 ± 1016
5261

* The optimal channel storage values St found with FHGWJA are {27.723;26.729;35.245;80.441;147.329;
199.195;244.112;279.252;296.016;300.904;291.677;263.154;229.724;187.670;146.693;107.274;75.785;54.842;41.014;30.810;
25.732;20.491} m3.
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Standard JAYA ranked 5th overall in terms of SSQ but required on average 5.1-
times more function evaluations than FHGWJA to complete optimization runs. Improved
JAYA and standard GWO found the worst solutions amongst all optimizers (respectively,
SSQ = 36.806 and 36.818), requiring on average, respectively, about 1.64- and 11.3-times
more function evaluations than the present algorithm. These results confirm the validity of
the hybridization scheme implemented in FHGWJA.

The W(
→

Xi,tr) ≤ 1.1W(
→

Xbest) elitist strategy of FHGWJA significantly improved the
performance of the AHS/BBBC–UBS/sinDE algorithms of Refs. [94–96] also in the 25-
variables problem variant. In particular, in their best optimization runs, mAHS reduced
the optimized cost from 37.078 of AHS [94] to 36.774 (i.e., the 6th best result amongst those
quoted in Table 6), mBBBC–UBS from 36.826 of BBBC–UBS [95] to 36.786, and MsinDE
from 37.101 of sinDE [96] to 36.786. Furthermore, mAHS, mBBBC–UBS, and MsinDE
reduced average computational cost by 32.7%, 34.4%, and 28.4% with respect to the original
algorithms of Refs. [94–96], thus becoming competitive enough with FHGWJA in terms of
average computational speed.

The superiority of FHGWJA over its competitors is confirmed by the fact that the present
algorithm achieved the lowest standard deviation on optimized cost (only 2.919 × 10−12 vs.
3.333 × 10−11 to 1.395 × 10−2 of the other algorithms). Remarkably, the worst solution
of FHGWJA practically coincided with its best solution, and it was always better than
the best solutions found with its competitors. Furthermore, FHGWJA was faster than
the other optimizers completing on average the 20 independent optimization runs within
only 4438 function evaluations vs. 4744 to 5848 evaluations of hybrid HS/BBBC/SA and
modified AHS/BBBC–UBS/sinDE. Interestingly, the hybrid HS/BBBC/SA algorithms of
Ref. [81] completed their fastest optimization runs within less function evaluations than
FHGWJA (respectively, only 3277, 3656, and 3887 vs. 4122). However, FHGWJA found
intermediate solutions corresponding to SSQ = 36.763 (i.e., the best solutions of hybrid HS
and hybrid BBBC) always within only 3200 function evaluations, and SSQ = 36.762 (i.e., the
best solution of HFSA) always within only 3700 function evaluations.

Figure 12 compares the optimization histories of the best runs for the algorithms listed
in Table 6; the average FHGWJA convergence curve also is shown in the figure. The plot is
limited to the first 4500 function evaluations of optimization history and to the 35–80 cost
function interval for the sake of clarity. The convergence behavior depicted in the figure
resembles that observed for the three-variable problem variant. The best and average
optimization runs’ convergence curves for FHGWJA again lie below those of the other
algorithms practically over the whole search history. FHGWJA started its best optimization
run from the very large cost of 3547.602 (i.e., about 96.5 times the target optimum of 36.761
quoted in Table 6) while the initial cost for all other optimizers ranged between 461.502 and
2063.123, except the improved JAYA variant of Ref. [81] that started from 75.965. However,
the present algorithm immediately recovered the initial gap in cost function with respect
to its competitors reducing cost to 37.2 (just 1.2% more than the target optimum) within
only 320 function evaluations while all other algorithms required at least 995 function
evaluations to reach the same intermediate cost function value. The hybrid big bang–big
crunch algorithm of Ref. [81] was competitive with FHGWJA only for the first 190 function

evaluations. The W(
→

Xi,tr) ≤ 1.1W(
→

Xopt) elitist strategy of FHGWJA allowed mAHS and
MsinDE to approach the cost function reduction rate of FHGWJA from 220 to 310 function
evaluations, while mBBBC–UBS generated the closest intermediate designs to those of
FHGWJA between 650 and 1000 function evaluations.

The excellent performance of FHGWJA in the two variants of the hydrologic model
calibration problems confirms the suitability of the proposed algorithm for highly nonlinear
optimization problems. Interestingly, the higher level of design freedom introduced in the
optimization search by the additional 22 variables did not affect at all the robustness of
FHGWJA that was able to converge practically to the same values (with at most 0.105%
difference) of Muskingum model parameters (i.e., K, h, and m) and channel storage values
St found in the three-variables problem variant.
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Figure 12. Comparison of convergence curves of FHGWJA and its competitors for the 25-variable
hydrologic model calibration problem.

3.4. Optimal Crashworthiness Design of a Vehicle Subject to Side Impact

The test case (vi) solved in this study regarded the optimal crashworthiness design of
a vehicle. The goal was to minimize the weight of the vehicle subject to side impact. Crash-
worthiness optimization must ensure that the vehicle effectively absorbs and dissipates
impact energy, minimizing forces transferred to occupants. The vehicle structure must be
optimized to provide maximum protection without significantly increasing weight or com-
promising other performance aspects [107–109]. Figure 13a shows the typical finite element
schematization of a vehicle subject to side impact by the barrier [108], while Figure 13b
illustrates the vehicle frame parts to be optimized. Since in side impact tests the B-pillar
zone often is most affected, design variables are correlated with this zone.

The optimal crashworthiness design problem solved in this study included 11 opti-
mization variables of which 7 related with the vehicle’s structural geometry: B-pillar inner
thickness (x1), B-pillar reinforcement thickness (x2), floor side inner thickness (x3), cross
members thickness (x4), door beam thickness (x5), door beltline reinforcement (x6), and
roof rail thickness (x7). Two discrete variables refer to material selection and quantify the
efficiency of the structure in absorbing energy during impact: shape factor for the B-pillar
inner (x8) and shape factor for the floor side inner (x9). The last two variables are related
with the presence of the obstacle: the barrier height (x10), and the hitting position of the
barrier with respect to the center of mass of the vehicle (x11). In summary, the optimization
problem includes nine continuous and two discrete variables.

Here, the optimal crashworthiness design problem was stated as follows:

Minimize W(
→
X) = 1.98 + 4.90x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7 (26)
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G1(
→
X) = 1.16 − 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10 ≤ 1

G2(
→
X) = 0.261 − 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0144x3x5 + 0.0008757x5x10+

0.08045x6x9 + 0.00139x8x11 + 0.00001575x10x11 ≤ 0.32

G3(
→
X) = 0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.03099x2x6 − 0.018x2x7+

0.0208x3x8 + 0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10 − 0.0005354x6x10+
0.00121x8x11 + 0.00184x9x10 − 0.02x2

2 ≤ 0.32

G4(
→
X) = 0.074 − 0.61x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9 + 0.227x2

2 ≤ 0.32

G5(
→
X) = 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.7x7x8 + 0.32x9x10 ≤ 32

G6(
→
X) = 33.86 + 2.95x3 + 0.1792x10 − 5.057x1x2 − 11.0x2x8 − 0.0215x5x10 − 9.98x7x8+

22.0x8x9 ≤ 32

G7(
→
X) = 46.36 − 9.9x2 − 12.9x1x8 + 0.1107x3x10 ≤ 32

G8(
→
X) = 4.72 − 0.5x4 − 0.19x2x3 − 0.0122x4x10 + 0.009325x6x10 + 0.000191x11

2 ≤ 4

G9(
→
X) = 10.58 − 0.674x1x2 − 1.95x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10 ≤ 9.9

G10(
→
X) = 16.45 − 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x11

2 ≤ 15.7

(27)

The expressions written above for the objective function W(
→
X) (i.e., the structural

weight of vehicle parts that must be optimized) and the constraints G(
→
X) were fitted

in [108] using response surface models. The 10 inequality constraint functions stated
by Equation (27) define limitations on the force transferred to the dummy’s abdomen
(G1), velocities of the dummy’s upper/middle/lower chest (respectively, G2, G3, and G4),
deflections of the dummy’s upper/middle/lower ribs (respectively, G5, G6, and G7), force
transferred to the dummy’s pubic symphysis (G8), velocity at B-pillar middle-point (G9),
and velocity at B-pillar front door (G10). Forces are expressed in kN, velocities in mm/s,
and deflections in mm.

The side constraints on optimization variables are as follows: 0.5 ≤ x1,x2,x3,x4,x5,x6,x7
≤ 1.5 mm (continuous variables); x8,x9∈{0.192;0.345} (discrete variables); −30 ≤ x10,x11 ≤
30 mm (continuous variables).
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The best solution available in the literature for the optimal crashworthiness problem
is that obtained with the multi-strategy fusion improved gray wolf optimization (IGWO)
algorithm with a structural weight of 21.39473 kg [69]. In particular, IGWO outperformed
the chaotic GWO, CSO, and tunicate swarm algorithm (TSA) that converged to optimized
structural weights between 21.46164 and 22.70296 kg. The adaptive dynamic self-learning
grey wolf optimization algorithm (ASGWO) [70] obtained a slightly higher optimized
weight than TSA, 22.87188 kg. The starling murmuration optimizer (SMO) of Ref. [47]
converged to the optimized weight of 22.84298 kg, practically the same as the improved
continuous ant colony optimization algorithm (LIACOR) that obtained 22.84299 kg. The
other metaheuristic algorithms tested in [47] (i.e., the krill herd algorithm (KH), the best
variant of artificial bee colony (ABC), the Harris hawks optimizer (HHO), the comprehen-
sive learning particle swarm optimizer (CLPSO), and the whale optimization algorithm
(WOA)) found optimized weights ranging between 22.88596 and 23.12717 kg.

Table 7 compares the optimal solution obtained with the FHGWJA algorithm devel-
oped in this study with those of the aforementioned optimizers. The results are grouped
as follows: (i) FHGWJA and its component algorithms, the standard GWO and JAYA;
(ii) IGWO and its three best competitors compared in [69]; (iii) ASGWO [70]; (iv) SMO and
its six best competitors compared in [47]. All designs reported in the table are practically
feasible as the maximum constraint violation was 0.001%. Details on computational cost
and statistical performance for independent optimization runs are reported below the table
when available.

Table 7. Comparison of optimized designs obtained with FHGWJA and its competitors in the optimal
crashworthiness problem.

Algorithms x1 (mm) x2 (mm) x3 (mm) x4 (mm) x5 (mm) x6 (mm) x7 (mm) x8 x9 x10 (mm) x11 (mm)
Structural

Weight (kg)

FHGWJA *
Present 0.50000 1.21204 0.50000 0.77908 0.50000 1.49004 0.50000 0.345 0.345 −28.9781 0.00010 21.38340

Standard
GWO * 0.50002 1.11343 0.50000 1.30794 0.50041 1.5 0.50011 0.345 0.192 −20.0960 −0.86260 22.84755

Standard
JAYA * 0.50000 1.22573 0.50000 1.20711 0.50000 1.49194 0.50000 0.345 0.345 0.00000 0.00000 23.19115

IGWO [69] ♣ 0.50000 0.88641 0.50000 1.25781 0.64809 0.91372 0.50000 1.00000 0.52483 1.94790 15.3719 21.39473
Chaotic GWO ♣ 0.84252 0.50000 0.50000 1.36186 0.83852 0.86445 0.57679 0.94066 0.24622 4.55062 12.3084 21.46164
CSO ♣ 0.78544 0.56882 0.50000 1.34514 0.82107 0.86975 0.74586 0.89302 0.39281 0.89510 1.17997 22.00444
TSA ♣ 0.50315 0.89471 0.50000 1.40533 0.86396 0.84245 0.59580 0.86533 0.06579 0.12364 2.06338 22.70296

ASGWO [70] ♦ 0.50004 1.13454 0.50009 1.27905 0.50020 1.49996 0.50005 0.34496 0.33248 −16.3332 −2.14912 22.87188

SMO [47] ** 0.5000 1.11634 0.5000 1.30224 0.5000 1.50000 0.5000 0.345 0.345 −19.566 0.000001 22.84298
LIACOR ** 0.5000 1.11593 0.5000 1.30293 0.5000 1.50000 0.5000 0.192 0.345 −19.640 −0.000003 22.84299
KH ** 0.5000 1.14747 0.5000 1.26118 0.5000 1.5000 0.5000 0.345 0.345 −13.998 −0.8984 22.88596
Best ABC ** 0.5000 1.30539 0.5000 1.10312 0.5000 0.50000 0.5000 0.345 0.345 14.213 20.3306 22.88605
HHO ** 0.5000 1.15627 0.5000 1.27133 0.5000 1.47770 0.5000 0.345 0.192 −14.592 −2.4898 22.98537
CLPSO ** 0.5061 1.17379 0.5013 1.24706 0.5037 1.49560 0.5000 0.345 0.345 −9.5985 3.3627 23.06244
WOA ** 0.5000 1.09276 0.5000 1.41233 0.5000 1.45497 0.5000 0.345 0.192 −24.038 −3.1789 23.12717

* Optimized weight: 21.3905 ± 0.007125 kg for FHGWJA; 22.9318 ± 0.1423 kg for the standard GWO;
23.2067 ± 0.02431 kg for standard JAYA; computational cost: 1309 ± 343 structural analyses for FHGWJA; 50,000
for standard GWO; 7560 ± 998 for standard JAYA; the best optimization run of FHGWJA was completed within
1367 structural analyses. ♣ Computational cost: 30,000 structural analyses, determined as the product between
the population size NPOP = 30 and the limit number of iterations Nitermax = 1000. No statistical information on
optimized weight and computational cost were given in [69]. ♦ computational cost: 15,000 structural analyses,
determined as the product between the population size NPOP = 30 and the limit number of iterations Nitermax = 500.
No statistical information on optimized weight and computational cost were given in [70]. ** computational
cost: 30,000 structural analyses, determined as the product between the population size NPOP = 20 and the limit
number of iterations Nitermax = 1500. No statistical information on optimized weight and computational cost were
given in [47].

It can be seen that FHGWJA again was the best optimizer also for this test case. In fact,
the present algorithm converged to the very low structural weight of 21.38340 kg while
the optimized weights obtained with the other algorithms ranged between 21.39473 kg
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(IGWO used in [69]) and 23.12717 kg (WOA used in [70]). The chaotic GWO (used in [69])
ranked 3rd overall, finding a very close structural weight to those of FHGWJA and IGWO:
21.46164 kg vs. 21.38340 and 21.39473 kg, respectively. However, the optimized values of
variables x8 and x9 listed in Table 7 for the IGWO and chaotic GWO do not coincide with
the available discrete values {0.192;0.345} originally set for this test problem: the optimized
designs of the IGWO and GWO would become infeasible as soon as x8 is set equal to
0.192 or 0.345, thus violating constraint functions G6, G7, G8, and G9 by up to 13.9 and
23.7%, respectively.

Interestingly, the average optimized weight achieved with FHGWJA over the 20 inde-
pendent runs was lower than the best solutions of IGWO and chaotic GWO: only 21.3905 kg
vs. 21.39473 and 21.46164 kg, respectively. Furthermore, the present algorithm required
on average only 1309 structural analyses vs. the 30,000 analyses indicated in [69] for the
IGWO and chaotic GWO. The hybrid optimizer proposed here clearly outperformed the
standard GWO and standard JAYA that obtained 22.84755 and 23.19155 kg, respectively.
Furthermore, FHGWJA required on average only 1309 structural analyses vs. 50,000 of
standard GWO and 7560 of standard JAYA for completing the search process. The adaptive
dynamic self-learning grey wolf optimization algorithm (ASGWO) [70] ranked below the
standard GWO in terms of optimized weight (22.87188 kg vs. 22.84755 kg) but it required
only 15,000 structural analyses vs. 50,000 analyses of the standard GWO. In summary,
using rather simple elitist strategies and properly refining/repairing trial solutions (so that
they always lie on descent directions) allowed FHGWJA to outperform complex GWO
schemes combining special perturbations of design variables or several strategies taken
from various metaheuristic algorithms. This happened because only the present algorithm
can always generate high-quality trial solutions throughout the optimization process.

The starling murmuration optimizer (SMO) and the other algorithms compared in
Ref. [70] also were less efficient than FHGWJA. In fact, they required 30,000 structural
analyses vs. only 1309 of the present algorithm to find heavier optimized weights than
FHGWJA (i.e., from 22.84298 to 23.12717 kg vs. only 21.38340 of FHGWJA).

The present algorithm was very robust: the standard deviation on optimized weight
was only 0.0333% of the average optimized weight while the ratio between the standard
deviation on number of structural analyses and the average number of structural analyses
was 26.2%. Statistical data relative to the other algorithms compared with FHGWJA usually
were not available in the literature. This can be explained in view of the formulation of the

optimal crashworthiness design problem. The cost function W(
→
X) stated by Equation (26)

depends only on variables x1, x2, x3, x4, x5, and x7, while x10 is the only variable entering
in the expressions of all constraint functions (see Equation (27)). Hence, the search space
of this problem hosts many competitive solutions corresponding to significantly different
optimized values of design variables with obvious implications in terms of statistical
dispersion of solutions. For example, the optimized values of the first seven variables for
the solutions listed in Table 7 varied by at most 27.8% while optimized values of variables
x8 through x11 varied from 36% to 259.5% where the largest variation occurred for variable
x10 that must be adjusted to satisfy all constraints. Remarkably, FHGWJA was always able
to precisely approach and efficiently explore and exploit the best region of search space in
all optimization runs in view of its inherent ability to generate high-quality trial solutions
over the whole search process. This reduced by a great deal the standard deviation of the
optimized solution.

The excellent convergence behavior and robustness of FHGWJA is confirmed in
Figure 14, which compares the optimization history of the proposed algorithm and its
component algorithms GWO and JAYA. The convergence curves relative to the best and
average optimization runs of FHGWJA are shown in the figure while those of the other
algorithms listed in Table 7 were not reported in [47,69,70]. For the sake of clarity, the plot
is limited to the first 1800 structural analyses. FHGWJA started its best optimization run
from the structural weight of 40.032 kg, which is about 87.2% larger than the best optimized
weight of 21.383 kg found by the present algorithm. In spite of this, in its best run, FHGWJA
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generated a feasible intermediate design just 1.48% worse than the global optimum after
only 350 structural analyses, that is at approximately 26% of the optimization process.
Furthermore, the best and average optimization runs’ convergence curves for FHGWJA
practically coincided after only 830 structural analyses, that is at just 60.7% of the best run’s
optimization history.
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Figure 14. Comparison of convergence curves of FHGWJA and its competitors for the optimal
crashworthiness problem.

The results presented in this section confirm once again the suitability of FHGWJA
for solving complex engineering optimization problems. This conclusion is supported by
the fact that the present algorithm was compared with another 14 (actually 28, consid-
ering all methods evaluated in Refs. [47,69,70]) state-of-the-art metaheuristic algorithms
also including three advanced GWO variants developed just a few months before the
present study.

3.5. Weight Minimization of a Planar 200-Bar Truss Structure

The last test case solved in this study regarded the weight minimization of the planar
200-bar truss structure shown in Figure 15. The structure, made of steel (Young’s modulus
of 206.91 GPa; mass density of 7833.413 kg/m3), is composed of 200 elements connected by
77 nodes. Because of structural symmetry, the 200 elements are categorized in 29 groups as
indicated in Table 8: the elements of each group have the same cross-sectional area, which
is taken as a sizing optimization variable. Hence, this test problem has 29 design variables.

The structure is subjected to three independent loading conditions:

(a) Concentrated forces of 4.45 kN (i.e., 1000 lbf) acting in the positive X-direction at
nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, and 71 (denoted by the green horizontal arrows
in Figure 15);

(b) Concentrated forces of 44.497 kN (i.e., 10,000 lbf) acting in the negative Y-direction at
nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 33,
34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60,61,62,64, 66, 68, 70, 71,
72, 73, 74, and 75 (denoted by the vertical horizontal arrows in Figure 15);
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(c) Loading conditions (a) and (b) acting together.
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The truss weight must be minimized under 1200 nonlinear constraints on element
stresses that should not exceed ±68.97 MPa (i.e., ±10,000 psi, the same limit stress under
tension and compression). The cross-sectional areas taken as sizing variables can vary
between 0.64516 cm2 (i.e., 0.1 in2) and 645.16 cm2 (i.e., 100 in2).
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Table 8. Groups of elements defined in the 200-bar truss design problem.

Group Elements Group Elements

1 1, 2, 3, 4 16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104,
106, 107, 109, 110, 112, 113

2 5, 8, 11, 14, 17 17 115,116,117,118
3 19, 20, 21, 22, 23, 24 16 119, 122, 125, 128, 131

4 18, 25, 56, 63, 94, 101, 132, 139, 170,
177 19 133, 134, 135, 136, 137, 138

5 26, 29, 32, 35, 38 20 140, 143, 146, 149, 152

6
6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30,
31,
33, 34, 36, 37

21 120, 121, 123, 124, 126, 127, 129, 130,
141, 142, 144, 145, 147, 148, 150, 151

7 39, 40, 41, 42 22 153, 154,155, 156
8 43,46,49,52,55 23 157, 160, 163, 166, 169
9 57,58,59,60,61,62 24 171, 172, 173, 174, 175, 176
10 64, 67, 70, 73, 76 25 178, 181, 184, 187, 190

11
44, 45, 47, 48, 50, 51, 53, 54, 65, 66,
68,
69, 71, 72, 74, 75

26 158, 159, 161, 162, 164, 165, 167, 168,
179, 180, 182, 183, 185, 186, 188, 189

12 77, 78, 79, 80 27 191, 192, 193, 194
13 81, 84, 87, 90, 93 28 195, 197, 198, 200
14 95, 96, 97, 98, 99, 100 29 196,199
15 102, 105, 108, 111, 114

The optimization problem was stated as follows:

Minimize W
(→

X
)
= ργ

NEL

∑
j=1

AjLj (28)

Subject to


G
(→

X
)
=

σj,ilc
σt,lim

− 1 ≤ 0

G
(→

X
)
=

σj,ilc
σc,lim

− 1 ≤ 0

{
j = 1, . . . , NEL

ilc = 1, 2, 3
(29)

In Equation (28), ρ and γ, respectively, are the mass density and the specific weight of
the material; NEL is the number of elements of the truss; Aj and Lj, respectively, denote the

cross-sectional area and the length of the j-th element of the structure. The design vector
→
X

includes the values of the 29 sizing variables corresponding to the cross-sectional areas of
the 200 truss elements.

In Equation (29), σj,ilc denotes the stress developed in the j-th element of the struc-
ture under the ilc-th loading condition, while σt,lim = 10,000 psi and σc,lim = −10,000 psi,
respectively, denote the limit stresses in tension and compression. A total of 1200 nonlinear
constraints on element stresses are included in the optimization problem.

This design example is an average-scale structural optimization problem and has been
extensively investigated in the literature. The target optimum weight for this problem
is 11,542.4 kg, but there is also a local optimum corresponding to a structural weight
of 11,544 kg. The non convexity of the search space makes this test problem hard to
be solved with metaheuristic optimizers. The hybrid harmony search, big bang–big
crunch, and simulated annealing algorithms developed in [81] converged to a struc-
tural weight of 11,542.409 kg, practically the same as the target optimum. Other very
competitive solutions were obtained with the following: (i) the eigenvectors of covari-
ance matrix (ECM) algorithm derived from the covariance matrix adaptation evolution
strategy high-performance optimizer (i.e., 11,543.521 kg, [110]); (ii) the variant of success
history-based adaptive differential evolution with linear population size reduction algo-
rithm using an ensemble sinusoidal approach to automatically adapt the DE scaling factor
(LSHADE-Epsin) (i.e., 11,543.980 kg, [111]); (iii) the modified coyote optimization algorithm
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(MCOA) that uses chaotic sequences instead of random sequences for perturbing solutions
(i.e., 11,544.007 kg, [112]); (iv) the cyclic neighborhood network topology particle swarm
optimizer (CNNT-PSO) that handles population diversity based on the interactions be-
tween each particle and its neighboring individuals (i.e., 11,545.330 kg, [113]); (v) the hybrid
geometric mean optimizer (hGMO) that integrates GMO with variable neighborhood to
enhance exploitation (i.e., 11,545.568, [114]).

Other advanced MHAs converged to lighter designs than the 11,542.4 kg target weight,
but their optimized solutions were infeasible. For example, the corrected multi-level and
multi-point simulated annealing (CMLPSA) algorithm of Ref. [90], that generates the new
trial design using a population of candidate designs lying on descent directions rather than
developing a single point as is conducted in classical SA, found an optimized weight of
11,542.137 kg (practically the same value of target optimum weight) violating stress con-
straints by only 0.0709%. The hybrid HPSACO algorithm [115], combining harmony search,
particle swarm, and ant colony optimization, found an optimum weight of 11,410.737 kg but
stress constraints were violated by 9.97%. An improved Harris hawks optimization algo-
rithm was used in [116]: the optimized design weighted 11,533.983 kg (i.e., 0.073% less than
target optimum weight) with 9.55% violation on stress constraints. PSOHHO [117], com-
bining the particle swarm optimization and Harris hawks optimization methods, obtained
11,374.477 kg structural weight (i.e., 1.46% reduction) but the corresponding solution vio-
lated stress constraints by about 27.6%. Finally, the biogeography-based optimization [118]
reduced structural weight to 11,320.758 kg (i.e., 1.92% reduction) but the corresponding
design violated stress constraints by 11.33%.

In view of the above arguments, the optimization results obtained with the FHGWJA al-
gorithm developed in this study were compared with those of the hybrid HS/BBBC/SA [81],
ECM [110], LSHADE-Epsin [111], MCOA [112], CNNT-PSO [113], and hGMO [114] al-
gorithms providing the best feasible solutions available in the literature. Furthermore,
FHGWJA was compared with the classical GWO and improved GWO [119] as well as with
classical and improved JAYA [81]. The political optimizer (PO) algorithm implemented
in [120] also was included in the comparison as its best optimized weight was close to those
of the classical GWO and standard and improved JAYA. The comparisons presented in
this section should be considered highly significant because each competitor selected from
Refs. [81,110–114,119,120] was reported to outperform from 5 to 76 other state-of-the-art
metaheuristic algorithms.

According to the literature, population size values for this test problem were as fol-
lows: 50 for hybrid HS [81], MCOA [112], and hGMO [114]; 100 for hybrid BBBC [81]; 20
for improved JAYA [81]; 14 for ECM [110]; 1000 for CNNT-PSO [113]; 121 for PO [120].
Such a large variation in the number of search agents confirms the difficulties encoun-
tered with metaheuristic optimizers in solving the 200-bar truss problem. Interestingly,
FHGWJA could use the smallest population size overall. This was the logical consequence
of the inherent ability of FHGWJA to select high-quality trial solutions throughout the
search process.

Table 9 presents the optimization results obtained with FHGWJA and its competitors
in the 200-bar truss problem. The table reports the optimized values of cross-sections
(expressed in in2) and the structural weight for the best run along with the number of
structural analyses; the best, average, and worst values of optimized weight along with the
corresponding standard deviation (ST Dev) over the independent runs; and the number of
structural analyses (NSA) required in the search process. Statistical data on computational
cost (i.e., average number of structural analyses and corresponding standard deviation) are
reported when available. The detailed data reported for this test problem in Refs. [115–118]
that present solutions violating stress limits were not replicated in Table 9 for the sake
of brevity.
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Table 9. Comparison of optimized designs obtained with FHGWJA and its competitors in the 200-bar truss problem.

Design
Variable

FHGWJA
(Present) Standard GWO Standard JAYA Improved JAYA

[81]
Hybrid HS/BBBC/

SA [81] ECM [110] LSHADE-Epsin
[111]

MCOA
[112]

CNNT-
PSO
[113]

hGMO
[114]

PO
[120]

1 0.1484 0.1467 0.1473 0.1473 0.1484 0.1471 0.14838 0.1390 0.1482 0.1484 0.13911
2 0.9447 0.9415 0.9417 0.9404 0.9445 0.9399 0.94448 0.9355 0.9405 0.9408 0.96277
3 0.1000 0.1001 0.1002 0.1001 0.1000 0.1000 0.10000 0.1000 0.1000 0.1000 0.10996
4 0.1000 0.1006 0.1001 0.1001 0.1000 0.1000 0.10000 0.1000 0.1000 0.1000 0.10000
5 1.9434 1.9419 1.9423 1.9412 1.9445 1.9399 1.94448 1.9355 1.9408 1.9409 1.94300
6 0.2976 0.2965 0.2970 0.2968 0.2980 0.2965 0.29796 0.2909 0.2975 0.2975 0.29526
7 0.1000 0.1001 0.1001 0.1001 0.1000 0.1000 0.10000 0.1000 0.1000 0.1000 0.10006
8 3.1177 3.1147 3.1076 3.1067 3.1227 3.1049 3.12260 3.0816 3.1067 3.1097 3.09870
9 0.1000 0.1001 0.1001 0.1001 0.1000 0.1000 0.10000 0.1000 0.1000 0.1000 0.13761
10 4.1149 4.1416 4.1093 4.1081 4.1227 4.1049 4.12260 4.0816 4.1067 4.1097 4.09920
11 0.3989 0.4022 0.4034 0.4040 0.3990 0.4037 0.39897 0.3967 0.4057 0.4047 0.41926
12 0.1000 0.1871 0.1931 0.1931 0.1000 0.1906 0.10044 0.2959 0.1897 0.1722 0.15592
13 5.3783 5.4324 5.4406 5.4342 5.3934 5.4298 5.39336 5.3854 5.4343 5.4303 5.43440
14 0.1000 0.1001 0.1001 0.1001 0.1000 0.1006 0.10000 0.1000 0.1000 0.1179 0.10437
15 6.3731 6.4298 6.4360 6.4342 6.3934 6.4298 6.39336 6.3853 6.4340 6.4303 6.43550
16 0.5262 0.5728 0.5745 0.5753 0.5264 0.5739 0.52663 0.6332 0.5745 0.5745 0.56508
17 0.4521 0.1456 0.1352 0.1355 0.4353 0.1332 0.43485 0.1842 0.1366 0.1332 0.15753
18 7.9242 7.9712 7.9825 7.9802 7.5904 7.9744 7.95063 8.0396 7.9803 7.9762 7.96720
19 0.1000 0.1001 0.1002 0.1002 0.1000 0.1000 0.10000 0.1000 0.1000 0.1001 0.10012
20 8.9151 8.9715 8.9829 8.9804 8.5904 8.9744 8.95063 9.0395 8.9802 8.9762 8.96750
21 0.8691 0.7147 0.7092 0.7090 0.8592 0.7064 0.85901 0.7460 0.7109 0.7096 0.72223
22 0.1555 0.4572 0.4363 0.4372 0.1500 0.4339 0.14995 0.1306 0.4659 0.4441 0.48433
23 10.9621 10.8968 10.8940 10.8912 10.9977 10.8790 10.9977 10.9114 10.9110 10.8931 10.9130
24 0.1219 0.1001 0.1001 0.1002 0.1000 0.1000 0.100074 0.1000 0.1000 0.1000 0.10472
25 11.9512 11.8973 11.8948 11.8914 11.9977 11.8790 11.9977 11.9114 11.9112 11.8931 11.9140
26 0.9359 1.0598 1.0394 1.0491 0.9125 1.0453 0.91252 0.8627 1.0712 1.0548 1.08420
27 6.5048 6.5394 6.6153 6.6106 6.6620 6.6300 6.66179 6.9169 6.5030 6.5761 6.50930
28 10.8708 10.8368 10.8721 10.7791 10.8061 10.7827 10.8061 10.9674 10.7210 10.7574 10.7000
29 13.8713 13.9062 13.8872 13.8783 13.8236 13.8691 13.8237 13.6742 13.9310 13.8942 13.9520

Best
(kg) 11,541.380 11,558.650 11,553.355 11,550.054

11,542.409
11,542.409
11,542.409

11,543.521 11,543.980 11,544.007 11,545.330 11,545.568 11,557.384

Average (kg) 11,541.716 11,572.101 11,564.050 11,556.377
11,542.410
11,542.410
11,542.411

11,580.980 11,545.681 11,576.616 11,548.048 11,609.697 11,618.419

Worst (kg) 11,542.390 11,590.931 11,579.700 11,569.059
11,542.411
11,542.410
11,542.415

N/A 11,548.448 11,592.701 11,551.227 N/A N/A

ST DEV (kg) 0.4157 37.109 25.403 10.941
0.00141
0.00010
0.00622

19.125 0.9888 21.600 1.431 39.694 170.601

NSA 3356 ± 431
3464 50,000 40,941 31,580

2736 ± 283 *
1676 ± 137 *
5806 ± 304 *

96,600 290,000 27,720 150,000 20,000 27,984

* Best optimization run completed with Hybrid HS in 2912 structural analyses; with Hybrid BBBC in 1669 analyses; with HFSA in 5600 analyses.
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It can be seen from Table 9 that the FHGWJA was the best optimizer also for this
test case. In fact, it converged to the overall lowest structural weight of 11,541.380 kg.
Furthermore, all optimization runs of FHGWJA found practically feasible designs (in fact,
the maximum element stress evaluated for the optimized solutions of FHGWJA was only
10,000.412 psi vs. the 10,000 psi stress limit set for this problem) that were lighter than the
target optimum weight of 11,542.4 kg. The hybrid HS/BBBC/SA algorithms of Ref. [81]
were very competitive with the present algorithm because they always converged to the
target optimum with at most 0.00622 kg standard deviation vs. 0.4157 kg of FHGWJA. The
average computational cost of FHGWJA (i.e., 3356 structural analyses) practically coincides
with the mean of average computational costs recorded for hybrid HS (i.e., 2736 analyses),
hybrid BBBC (i.e., 1676 analyses), and hybrid fast SA (i.e., 5806 analyses).

The other best competitors of FHGWJA, namely ECM [110], LSHADE-Epsin [111],
MCOA [112], CNNT-PSO [113], and hGMO [114], obtained optimized weights ranging
between 11,543.521 kg (ECM) and 11,545.568 kg (hGMO) and required between 20,000
(hGMO) and 290,000 (LSHADE-Epsin) structural analyses vs. only 3356 structural anal-
yses required on average by the present algorithm. FHGWJA clearly outperformed its
component algorithms: the best solutions of improved JAYA [81], standard JAYA, and the
standard GWO, respectively, achieved optimized weights of 11,550.054 kg, 11,553.355 kg
and 11,558.650 kg vs. only 11,541.380 kg of FHGWJA; furthermore, they, respectively,
required 31,580, 40,941, and 50,000 structural analyses vs. only 3356 analyses of FHGWJA.
The improved GWO variant (IGWO) of Ref. [119], using an exponential variation scheme

for the vectors
→
A1,

→
A2, and

→
A3 of Equations (6) and (9), prematurely converged to the

optimized weight of 11,689.883 kg within 23,760 structural analyses. The political optimizer
(PO) of Ref. [120] obtained a slightly better solution than the standard GWO (the 2nd worst
solution overall) weighing 11,557.384 kg vs. 11,558.650 kg within about 28,000 structural
analyses vs. 50,000 analyses required for the standard GWO.

The present algorithm was very robust. In fact, it ranked 4th overall in terms of
standard deviation on optimized weight but it achieved a rate of success of 100% in
finding slightly lighter designs than the target global optimum of 11,542.4 kg, and it never
got trapped in the 11,544 kg local minimum of structural weight. Furthermore, the ratio
between standard deviation of computational cost and average computational cost achieved
with FHGWJA was only 12.8%.

The W(
→

Xi,tr) ≤ 1.1W(
→

Xbest) elitist strategy of FHGWJA was again effective in improving
the performance of the AHS/BBBC–UBS/sinDE algorithms of Refs. [94–96], which were
reported in [81] to obtain optimized structural weights of 11,542.410 kg (yet with 0.9998%
violation on stress constraints), 11,542.410 kg (yet with 1.076% constraint violation), and
11,555.006 kg (yet with 0.806% constraint violation), respectively. The modified mAHS,
mBBBC–UBS, and MsinDE variants now converged to the fully feasible design listed in
Table 9 for hybrid HS/BBBC/SA weighing 11,542.409 kg. The computational cost of mAHS,
mBBBC–UBS, and MsinDE decreased on average by about 30% with respect to the original
algorithms, yet remaining about 3.5- to 8.5-times higher than its counterpart for FHGWJA.
These results are not reported in Table 9 for the sake of brevity.

Figure 16 compares the optimization histories of the best runs for the algorithms
listed in Table 9; the average FHGWJA convergence curve also is shown in the figure. The
plot is limited to the first 8000 structural analyses of the optimization history and to the
11,000–31,000 kg structural weight interval for the sake of clarity. FHGWJA started its best
optimization run from the very large cost of 208,700.225 kg (i.e., about 18.1 times the target
optimum of 11,541.380 kg quoted in Table 9) while the initial cost for all other optimizers
ranged between 157,234.459 and 185,304.986 kg, except for the ECM (eigenvectors of covari-
ance matrix) [110] and CNNT-PSO (cyclic neighborhood network topology particle swarm
optimizer) [113] algorithms that started from 20,437.901 and 11,754.998 kg, respectively.
However, the present algorithm immediately recovered the initial gap in cost function with
respect to its competitors: for example, within only 210 and 1330 structural analyses for
ECM and CNNT-PSO, respectively. The best and average optimization runs’ convergence
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curves for FHGWJA again lie below those of all other algorithms practically over the
whole search history. The hybrid harmony search and big bang–big crunch algorithms
of Ref. [81] were competitive enough with FHGWJA approaching the best optimization
run of the present algorithm after about 2000 and 1400 structural analyses, respectively,
that is towards the end of their optimization histories. However, while hybrid HS/BBBC
stopped to improve design after reaching their best structural weight of 11,542.409 kg, the
present algorithm continued to reduce structural weight to 11,541.380 kg. The best and
average optimization runs’ convergence curves of FHGWJA practically coincided after
about 1750 structural analyses, that is at only 50.5% of the best run’s optimization history.
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Figure 16. Comparison of convergence curves of FHGWJA and its competitors for the 200-bar
optimization problem.

The data presented in this section confirmed the tendency of metaheuristic optimizers
to prematurely converge to sub-optimal designs in the 200-bar truss weight minimization
problem. However, FHGWJA emerged once again as the best algorithm in view of its
inherent ability to generate high-quality trial solutions throughout the optimization process.
Remarkably, the present algorithm was superior to high-performance optimizers such
as ECM and LSHADE-Epsin that are competitive even with CEC (IEEE Congress on
Evolutionary Computing) competition winners.

4. Conclusions

The novel hybrid metaheuristic algorithm FHGWJA combining the grey wolf opti-
mizer (GWO) and JAYA was presented in this study. FHGWJA is an advanced grey wolf
optimizer using elitist strategies and JAYA-based schemes to improve the current best
record in each iteration. Exploration and exploitation are enhanced by forcing FHGWJA
to increase diversity and select high-quality trial designs lying on descent directions. All
operations carried out in FHGWJA to generate new trial solutions are computationally
cheap because decision making mostly relies on evaluation of cost function rather than
optimization constraints.

The present algorithm was successfully tested in seven engineering problems includ-
ing up to 29 optimization variables and 1200 nonlinear constraints. Test cases covered
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various fields in robotics (i.e., 2D path planning), hydrology (i.e., calibration of a nonlinear
hydrologic model), and hydraulic, mechanical, and civil engineering (i.e., shape optimiza-
tion of a concrete gravity dam, optimal crashworthiness design, and weight minimization
of a planar 200-bar truss structure).

The extensive comparison with the optimization literature carried out in this study
proved the superiority of FHGWJA over a huge number of competitors that were reported
to have found the best available solutions for each test problem. In fact, the present
algorithm always converged to or improved the target global optimum designs indicated
in the literature. Remarkably, FHWGJA was the 1st or 2nd fastest algorithm in all test
problems. The present algorithm was considerably faster than the standard GWO and
JAYA formulations, and advanced variants of its component algorithms, thus confirming
the efficiency of the proposed hybridization scheme. Finally, FHGWJA was very robust,
achieving a high rate of success in all test problems with low standard deviations on
optimized cost and number of analyses required in the search process.

In summary, FHGWJA is a very efficient tool for engineering optimization. Further
research will investigate the suitability of FHGWJA for large scale optimization problems
with thousands of constraints. Optimization with discrete variables also will be analyzed.
In this regard, the optimal solution found with FHGWJA for the 200-bar truss problem was
simply matched with a discrete set of available cross-sections obtaining competitive results
with the best solution available in the literature.
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