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Abstract: The fatigue crack growth properties of G20Mn5QT cast steel and corresponding butt
welds, using compact tension specimens, were monitored and investigated via acoustic emission
(AE) techniques. Fatigue crack growth is a combination of cyclic plastic deformations before the
crack tip, tensile crack fractures, and shear crack fractures. The cyclic plastic deformations release
the maximum amount of energy, which accounts for half of the total energy, and the second-largest
number of AE signals, which are of the continuous-wave type. The tensile crack fractures release the
second-largest amount of energy and the largest number of AE signals, which are of the burst-wave
type. The shear crack fractures release the least amount of energy and the lowest number of AE
signals, which are similar to the burst type, albeit with a relatively longer rise time and duration.
Crack tip advancement can be regarded as a discontinuous process. The critical area before the crack
tip brittlely ruptures when the fatigue damage caused by cyclic plastic deformations reaches critical
status. The ruptures produce a large number of tensile crack fractures and rare shear crack fractures.
Through fractography observation, the shear crack fractures occur probabilistically around defects
caused by casting or welding, which lead to stress and strain in the local complex.

Keywords: fatigue crack growth; G20Mn5QT; butt welds; monitoring and investigation; acoustic
emission

1. Introduction

G20Mn5QT cast steel is a type of low-carbon alloy steel specified in the European code
EN 10293 [1]. With sufficient weldability, the static bearing performance of G20Mn5QT is
quite similar to that of A572 (used in America), S335 (used in Europe), and Q345D (used in
China). The mechanical properties of G20Mn5QT and related welds under different work-
ing conditions have been widely studied, such as adhesively bonded steel tubes [2], stress
analysis of the fatigue behaviors of the girth butt weld within welded cast steel joints [3],
and the environment effects of G20Mn5QT cast steel [4–6]. Meanwhile, G20Mn5QT is
usually cast into complex geometrical components, and under cyclic loads such as waves
and winds, such load-bearing members and related welds can incur fatigue damage. Un-
fortunately, the fatigue resistance performance of G20Mn5QT and the corresponding butt
welds is unsatisfactory [7,8]; the reasons for this may include the large stress concentrations
and defects introduced during the casting and welding processes.

Recently, some investigations have been performed to reveal the characteristics of
G20Mn5QT under cyclic loads. The strain–life curves of G20Mn5QT and related welds with
Q345D were obtained by using uniaxial smooth bar specimens, and the Manson–Coffin
model was proposed to evaluate the fatigue life [8]. Lu et al. analyzed the influence of
corrosion on the fatigue properties of G20Mn5QT cast steel and Q355 steel butt welds in
3.5-wt% NaCL solution and undergoing a dry–wet cycle [9,10]. Han et al. investigated the
fatigue performance and fatigue life prediction method of G20Mn5QT cast steel notches [11].
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However, no research discussing the mechanisms of fatigue crack growth in G20Mn5QT
and the corresponding welds has been reported.

Acoustic emission (AE) technology is an effective method of non-destructive monitor-
ing to evaluate material damage [12–14]. AE sensors collect stress waves generated due to
the rapid energy release during the deformation of fracture sources and transform them
into electrical signals. By analyzing the AE signals, information regarding the mechanism
of the AE source can be obtained.

Several studies have attempted to investigate the AE characteristics during the fatigue
crack growth process in metal materials. The AE signals exhibited different responses in
different fatigue crack growth stages [15–17], and the cracks’ stable growth stage can be
further divided into two sub-stages based on AE activity [18,19]. Meanwhile, the welds
demonstrated greater AE activity and more complex mechanism of AE sources compared
to those of the base metal [17,20–22]. It was found that both the AE hit release rate and AE
energy release rate exhibited positive correlations with fatigue crack growth rates [23–25];
this phenomenon could be employed to predict fatigue residual life. Considering the
irregularity of AE behaviors, an artificial neural network [26,27] has been introduced into
the fatigue crack growth estimation process to improve the accuracy. Moreover, AE could
also be used in structural health monitoring. For example, Megid et al. [28] monitored
fatigue cracks on the eye-bars of the Alexandra bridge, which is a 587 m long steel truss
bridge located on the boundary between Ottawa and Gatineau, Canada. The results
showed that AE is a very reliable technology for confirming or denying fatigue cracks
initiation and assessing the condition of existing cracks, and it is a cost-effective component
in structural health monitoring. In addition, lots of scholars have employed AE to monitor
structure damage and fatigue cracks in pressure vessels [29], cables and chains [30], tower
structures [31], rail tracks [32], and welded joints [21]. AE monitoring technology has
not only been found applicable for metal materials such as aluminium alloy (the PLC
effect) [25], titanium alloy [33], steel, and related welds [17] but also for concrete [34] and
composite materials [35].

To reveal the damage mechanism of fatigue crack growth, cluster analysis is introduced.
Cluster analysis is a mathematical algorithm that divides a dataset into several clusters
according to the similarity of features. This method is quite suitable for the AE analysis of
structures that exhibit different modes of failure, partitioning the AE signals into clusters
that correspond to the related damage mechanisms. Cluster analysis has been effectively
applied to damage pattern recognition in anisotropic materials [36,37]. For damage pattern
recognition in fatigue crack growth in metals, studies have indicated that the cluster
algorithm can identify different damage modes and evaluate the stress–strain status at the
crack tip [38,39].

Therefore, to fill in the research gaps concerning the AE behaviors of G20Mn5QT cast
steel and related butt welds during fatigue crack growth, AE signals generated during
fatigue crack growth tests employing compact tensile (CT) specimens were collected and
investigated. Moreover, to distinguish AE sources, the AE signals were first classified
into different clusters via the K-means clustering algorithm, and next, the time–frequency
characteristics in each cluster were analyzed and compared to the micrographs of fracture
surfaces. By analyzing the performances of different clusters during the crack growth
process, the relationship between the AE and the fatigue crack mechanism was established
for both G20Mn5QT cast steel and the related butt welds.

2. Experimental Section
2.1. Materials and Specimens

A 20 mm thick welding plate consisting of G20Mn5QT and Q345D was employed in
this study. The butt weld with V groove is fabricated via CO2 gas arc welding. The filler
material was an ER50-6 wire with a diameter of 1.2 mm. During the welding process, the
pre-heating temperature was controlled to be 150 ◦C, the weld inter-pass temperature was
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controlled to be 200–250 ◦C, and the post-heating temperature was controlled to be 250 ◦C
for approximately two hours.

The chemical compositions of G20Mn5QT and the weld wire were determined and
are given in Table 1. The microstructures of the G20Mn5QT cast steel and butt welds were
observed via an optical microscope and are presented in Figure 1. G20Mn5QT cast steel, as
a low alloy and low-carbon (LALC) cast steel, was found in its tempered sorbite form for
the observation of clumpy and needle-like ferrite, as shown in Figure 1a. In addition, fine
dispersed carbides were distributed discontinuously along the grain boundaries and in the
grain interior. The microstructures of the weld zone could be categorized as a homogeneous
ferrite–pearlite structure with Widmanstätten patterns involving coarse grains of the ferritic
phase and a number of oxide inclusions, as shown in Figure 1b.

Table 1. Chemical composition of G20Mn5QT base material and ER50-6 weld wire.

Material
C Mn Si S P Ni Fe

wt. % wt. % wt. % wt. % wt. % wt. % wt. %

G20Mn5QT 0.190 1.340 0.400 0.008 0.014 0.600 Bal.
ER50-6 0.077 1.450 0.870 0.013 0.012 0.010 Bal.
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Figure 1. Microstructures: (a) G20Mn5QT cast steel; (b) welds.

All the compact tension (CT) specimens used in the tests were machined from the core
material of the welding plate, as shown in Figure 2. The specimens used for testing the
fatigue crack growth behaviors of G20Mn5QT were machined from an area far from the
butt weld to avoid the influence of welding heat. For the specimens used for testing the
fatigue crack growth behaviors of the butt weld, the pre-crack was ensured to be in the
middle of the weld zone. The geometric specifications of the CT specimens, according to
standard ASTM: E647 [40], are shown in Figure 3.

2.2. Fatigue Crack Growth Tests

All the specimens were tested on an electrohydraulic servo fatigue testing machine
under ambient temperature. The setup of the test is illustrated in Figure 4. The tests were
carried out under sinusoidal cyclic loads with a maximum load of 18 kN and a load ratio
of 0.5. In this test, the load frequency of 20 Hz was used to prefabricate the fatigue crack,
and the load frequency of 4 Hz during the main phase of the fatigue test was applied to
facilitate the precise observation of fatigue cracks. The stress intensity factor range ∆K
could be calculated via Equation (1) [40].

α = a/W
∆K = ∆P

B
√

W
· (2+α)

(1−α)3/2

(
0.886 + 4.64α − 13.32α2 + 14.72α3 − 5.6α4), (1)
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where a is the crack length, which represents the distance between the fatigue crack tip
and the loading centre line; W is the geometry parameter of the specimen (=100 mm in this
study); ∆K is the stress intensity factor range; ∆P is the load range; and B is the specimen
thickness (=5.5 mm in this study).
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Figure 3. Geometry of CT specimen.

The fatigue crack length was measured using two different methods (see Figure 4).
One was the visual measurement method, in which a high-magnification digital camera
was employed, and a scale ruler was engraved on the surface of the specimen parallel to
the crack. The test machine and the camera began operation simultaneously. The camera
captured images of the crack tip every 4 min (960 load cycles). The crack length in the
images was then measured. The other method was the compliance method. A COD
extensometer was employed to measure the crack opening displacements every 400 load
cycles, and the crack size was calculated based on Equation (2) [40].

µX =

[(
EνB

P

)1/2
+ 1

]−1

a/W = 1.0010 − 4.6695µX + 18.460µX
2 − 236.82µX

3 + 1214.9µX
4 − 2143.6µX

5
(2)

where E denotes the modulus of elasticity; v is the crack opening distance; B denotes
the specimen thickness; and P is the load. The values measured using each method were
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compared and plotted in the same figure and subsequently fitted into a crack length–fatigue
load cycle curve.
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The fatigue crack growth tests were terminated at a crack length of 55 mm as at this
point, the crack had already reached the unstable growth stage. After the fatigue crack
growth tests, a scanning electron microscope (SEM) was employed to observe the fracture
surfaces of all specimens.

2.3. AE Setup

The AE signals generated during the fatigue crack growth tests were collected by a
PC-based multi-channel monitoring system named SAMOS AEwin, manufactured by the
Physical Acoustic Corporation (PAC). Two narrow-band piezoelectric ceramic transducers
(R15α), having an operating frequency of 50 kHz to 200 kHz, were used to record the AE
signals. To prevent the transducer from sliding or falling, first, a plastic positioner with
a hole in the middle was bonded on the specimen. Next, the transducer was stuck in the
hole and the detection surface and specimen surface were attached together by using an
adhesive tape and high-vacuum grease (see Figure 4).

A preamplifier with a gain of 40 dB was used for each transducer. Before the fatigue
crack growth tests were performed, a specimen without cracks was tested under the same
load conditions and monitored to collect the external noises from the experimental setup.
Based on this noise check test, the threshold was set as 36 dB to reduce the noise. Table 2 lists
the main parameters of the AE system in the test. The AE parameter set was determined
and verified using the pencil lead breaking test [41].

Table 2. Set of AE parameters.

Transducer R15α Peak definite time 300 (µs)

Operating frequency 50–200 (kHz) Hit definite time 600 (µs)

Preamplifier gain 40 (dB) Hit lookout time 1000 (µs)

Threshold 36 (dB) Hit length 4 (k)

Compatible filter 100–400 (kHz) Sampling frequency 3 (MHz)
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3. Results and Discussion
3.1. Fatigue Crack Growth and AE Activity

The fatigue crack growth rates of the G20Mn5QT and butt welds were compared.
Figure 5 shows the relationship between the fatigue crack length and the fatigue load cycles.
Figure 6 shows the relationship between the fatigue crack growth rate da/dN and the stress
intensity factor range ∆K. It was noted that compared to the G20Mn5QT, the weld requires
a larger number of load cycles to reach the same crack length. The fatigue crack growth rate
of the weld is less than that of G20Mn5QT at low values of ∆K; however, the corresponding
rates tend to be similar at high values of ∆K. The results obtained by fitting the fatigue crack
growth rate curves according to the famous Paris law [42] (see Equation (3)) on double
logarithmic coordinates can be represented as in Equation (4) (R2 = 0.97) for G20Mn5QT
and Equation (5) (R2 = 0.95) for the weld.

log10(da/dN) = m log10(∆K) + log10 C (3)

log10(da/dN) = 3.07 log10(∆K)− 8.34 (4)

log10(da/dN) = 3.78 log10(∆K)− 9.52 (5)
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According to the fatigue crack growth rate (FCGR) curves, the fatigue crack growth
process can be divided into three stages, as shown in Figure 6. The transition from stage I
to stage II pertains to crack initiation progressing to stable crack growth. The transition
from stage II to stage III corresponds to the crack demonstrating unstable crack growth.
The AE activities of G20Mn5QT and the weld vary considerably at different fatigue crack
growth stages. The differences between ∆K, AE hit release rates, and energy release rates for
G20Mn5QT and the weld are shown in Figure 7. For G20Mn5QT, the hit and energy release
rates reach the first peak at the end of stage I and later decline rapidly. For the weld, the hit
and energy release rates also increase in stage I, but they reach the first peak at the boundary
between stage I and stage II and decline gradually compared to the corresponding values
for the case of G20Mn5QT at the beginning of stage II. In stage II, the AE activity remains
stable and relatively low level at first; however, it resumes growth in the middle of stage II
as the fatigue crack propagation approaches stage III. The regrowth point for G20Mn5QT
appears earlier than it does for the weld. In stage III, the fatigue crack rapidly grows to the
point of ultimate failure, and the hit and energy release rates become discrete and unstable.
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Therefore, the cumulative hit and energy of G20Mn5QT demonstrate rapid accumula-
tion in stage I and later demonstrate a stable increase in the first half of stage II. In contrast,
the cumulative hit and energy of the weld indicate a high increase rate at the beginning
of stage II, as shown in Figure 8. An obvious inflection point on the cumulative curve of
the weld in stage II can be observed, and it divides stage II into two sub-stages: IIa and
IIb. However, the G20Mn5QT material does not demonstrate such a behavior involving
sub-stages. Moreover, the AE activity of the weld is higher than that of G20Mn5QT when
comparing the cumulative AE hit and energy, as shown in Figure 8. This phenomenon was
also reported in some studies focusing on the base metal and weld [17].
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3.2. Cluster Analysis and Pattern Recognition

To conduct a detailed study of the AE source mechanisms, all the AE signals are
classified into different types via the K-means cluster algorithm. The K-means is a cluster
algorithm that partitions observations into k clusters, aiming to minimize the sum of Eu-
clidean distances from signals to their clustering centroids. The K-means cluster algorithm
has been proved to be efficient and reliable for AE signal analysis [43–45]. The value of k is
artificially set. To obtain the optimum solution of k, the Davies and Bouldin (DB) index [46]
is employed, and it can be expressed as in Equation (6):

DB =
1
c

c

∑
i=1,i ̸=j

max(
di + dj

Mij
) (6)

where c is the number of clusters; di and dj denote the average Euclidean distances of
vectors in clusters i and j to the centroids of clusters i and j, respectively; and Mij is the
distance between the two clusters i and j. A lower value of the DB index indicates greater
concentration in the cluster and separability between clusters.

To describe the AE signal, we employ five AE characteristics, comprising rise time,
duration, ringing count, amplitude, and energy, to represent the waveform features of an
AE signal. Some studies have indicated that these five characteristics demonstrate notable
diversity against different damage patterns [43,47,48].

We simplify each AE signal to the above five characteristics and later introduce all the
signals into the K-means cluster algorithm. The number of clusters is set from two to nine.
Figure 9a shows the DB index values of for different cluster numbers. For both G20Mn5QT
and the welds, the optimum cluster number is three. The proportions of the three clusters’
AE signals are shown in Figure 9b. The proportion of cluster 1 is more than 70%, and that
of cluster 2 is more than 20%. The proportion of cluster 3 is considerably lower than that of
clusters 1 and 2.

To recognize the AE source pattern, the typical AE signals from each cluster for both
G20Mn5QT and the weld are analyzed. The AE signals of cluster 1 are of a typical burst
type, which has a short rise time and duration and a notable peak amplitude, which is
much stronger than that of other peaks (see Figure 10a,b). The AE signals of cluster 2
demonstrate a short rise time but a long duration. Unlike in the burst type, some strong
peaks arise repeatedly after the peak amplitude (see Figure 10c,d). Therefore, cluster 2
can be confirmed to pertain to continuous-type signals. The research of Behnia et al. [49]
indicated that burst-type AE signals in fatigue crack growth are released from metal
fractures during tensile crack propagation, while continuous-type AE signals are released
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from the plastic deformation before the crack tip. When a tensile crack fracture occurs,
the materials adjacent to the new crack separate, which leads to a transient volumetric
change. The fracture generates a shear wave that consumes only a little energy and has a
low propagation velocity and a longitudinal wave that consumes most of the energy and
has a high propagation velocity. The two types of waves combine and create a wave with a
short rise time and duration. In addition, Ennaceur et al. [50] and Han et al. [51] suggested
that continuous-type AE signals should be derived from the cyclic plastic deformation
zone because the formation of stress–strain hysteresis loops occurs only in the cyclic plastic
deformation zone. Vanniamparambil et al. [52] clarified the mechanism of the burst-type
and continuous-type AE signals using another approach. They collected the AE signals
before and after fatigue initiation using a CT specimen and noted that the AE signals before
crack initiation were mainly of the continuous type, which can be released only from the
cyclic plastic deformation of the material before the crack tip. Immediately after crack
initiation, burst-type AE signals appeared, representing the fatigue crack propagation.
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In addition, AE signals of cluster 3 are neither of the burst type nor the continuous
type; these signals are similar to burst-type signals, albeit with a longer rise time and
duration. The associated mechanism may be the shear crack fracture, which generates a
shear wave that consumes most of the energy but has a low propagation velocity and a
longitudinal wave that consumes less energy but has a high propagation velocity. The
longitudinal wave and shear wave arrive at the AE sensor successively and then combine
to form a combination-type signal that is similar to a burst type signal but has a relatively
longer rise time and duration (see Figure 10e,f). This type of AE signal has been found
previously In the studies of Chai [39] and Aggelis [53] and has been attributed to shear
cracks. In other types of steel (316LN [39] and 304L [54]), these three types of AE waveform
characteristics can also be observed.

To validate that the signals in cluster 3 are generated by shear crack fractures, the
correlation between the RA and AF parameters is used. These two parameters are defined
in Equations (7) and (8). RA is the ratio of rise time to peak amplitude and is measured in
µs/v. AF is the ratio of ringing count to duration and is measured in kHz. The AE signal,
due to the shear crack fracture, has a high RA and a low AF; while the AE signal, due to
the tensile crack fracture, has a low RA and a high AF [53,55]. It can be found that cluster
3 signals distribute widely along the RA and have a small distribution range along the
AF (see Figure 11), while cluster 1 signals are the opposites of cluster 3 signals. Therefore,
it can be reliably concluded that the mechanism of cluster 3 signals is related to shear
crack fractures:

RA = Rise time/Peak amplitude, (7)

AF = Ringing count/Duration. (8)
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Overall, cluster 1 is associated with tensile crack fractures, with the most AE signals;
cluster 2 is associated with cyclic plastic deformations before the crack tip, with the second
most AE signals; and cluster 3 is associated with shear crack fractures, with the fewest
AE signals.
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Figure 10. Waveforms of typical AE signals in different clusters: (a) cluster 1 signals of G20Mn5QT;
(b) cluster 1 signals of welds; (c) cluster 2 signals of G20Mn5QT; (d) cluster 2 signals of welds;
(e) cluster 3 signals of G20Mn5QT; (f) cluster 3 signals of welds.

The typical signal of each cluster is converted to the frequency spectrum by incorpo-
rating fast Fourier transform (see Figure 12). Similar to the research of Chang et al. [56], the
frequency spectra of fatigue crack growth have three peaks. The frequencies of peaks 1, 2,
and 3 are approximately 80 kHz, 150 kHz, and 280 kHz, respectively. Peak 2 has the largest
magnitude, while the frequency of peak 1 exhibits a dense band composed of several peaks
and has the second-largest magnitude. The dissimilarities between the frequency spectra
of different clusters are not notable. For cluster 1, location 3 also exhibits a dense band,
as does location 1; however, the magnitude is not excessively high. For clusters 2 and 3,
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location 3 has a significant peak in the dense band. Although the methodology of this
research is based on experimental samples, the analysis method can also be applied to the
potential practical implications of monitoring engineering structures.
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3.3. AE Behaviors and Fatigue Crack Growth Mechanism

After confirming that cluster 1 is related to tensile crack fractures, cluster 2 is related
to cyclic plastic deformations, and cluster 3 is related to shear crack fractures, the behaviors
of each cluster are analyzed to clarify the mechanism of fatigue crack growth further for
both G20Mn5QT cast steel and related butt welds.

The dissimilarities in the AE signals among different clusters are reflected mainly
in terms of the parameters of rise time, duration, and ringing count (see Figure 13). It
can be noted that these three parameters increase with the increase in the cluster number.
Therefore, AE signals released from shear crack fractures exhibit the largest rise time,
duration, and ringing count; AE signals released from cyclic plastic deformations have the
second-largest rise time, duration, and ringing count; and the AE signals released from
tensile crack fractures have the smallest rise time, duration, and ringing count. Moreover,
the corresponding three characteristics for the weld are larger than those pertaining to
G20Mn5QT. This phenomenon has also been noted for metal 316 LN [39]. Generally, an AE
signal with a larger rise time, duration, and ringing count carries a larger amount of energy.
Therefore, shear crack fractures have the maximum average energy carried by an AE signal,
cyclic plastic deformations have the second-largest average energy carried by an AE signal,
and tensile crack fractures have the least average energy carried by an AE signal.

Figures 14 and 15 show the cumulative hit and energy of each cluster for both
G20Mn5QT and welds. In Figures 14 and 15, the X-axis denotes the stress intensity factor
range, and the Y-direction indicates the percentage of each cluster for all signals at the end
of the experiment.

For G20Mn5QT cast steel, the increase in the AE hit is primarily due to the tensile
crack fractures, whose contribution is much greater than that of clusters 2 and 3. However,
cluster 2 has the largest contribution with regard to the increase in AE energy, and the
corresponding contribution of cluster 1 is the second largest, being only slightly less than
that of cluster 2. At the end of the test, clusters 1, 2, and 3 are noted to contribute 73.24%,
23.19%, and 3.57% to the cumulative hit and 39.56%, 45.35%, and 15.09% to the cumulative
energy, respectively, as shown in Figure 14. At fatigue stage I and the beginning of stage II,
both the hit and energy exhibit a fast growth rate.
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Figure 12. Frequency spectra of typical AE signals in different clusters: (a) cluster 1 signals of
G20Mn5QT; (b) cluster 1 signals of welds; (c) cluster 2 signals of G20Mn5QT; (d) cluster 2 signals of
welds; (e) cluster 3 signals of G20Mn5QT; (f) cluster 3 signals of welds.

For the weld, in trends similar to those for the G20Mn5QT, cluster 1 contributes the
maximum to the hit, and its contribution to the energy is the second-largest; the contribution
of cluster 2 to the hit is the second largest, and it contributes the largest in terms of energy;
the contribution of cluster 3 to AE activity is small. At the end of the test, clusters 1, 2, and 3
are noted to contribute 72.31%, 22.47%, and 5.22% to the cumulative hit and 36.33%, 50.18%,
and 13.49% to the cumulative energy, respectively. Unlike for G20Mn5QT cast steel, for the
weld, the hit and energy growth rates generated by clusters 1 and 2 exhibit a transition
point at the boundary between the two sub-stages in stage II, which is similar to the trend
exhibited by the total cumulative hit and energy. However, cluster 3 does not demonstrate
such a transition point. The cumulative hits for G20Mn5QT and the weld exhibit minor
differences. However, the cumulative energy generated by cluster 2 of the weld is larger
than that generated by cluster 2 of G20Mn5QT. On the contrary, the cumulative energy
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values generated by clusters 1 and 3 of the weld are slightly less than those generated by
clusters 1 and 3 of G20Mn5QT.
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Based on the analysis discussed previously, fatigue crack growth is a combination of
cyclic plastic deformation, tensile crack fractures, and shear crack fractures. Generally, AE
signals pertain to stress waves released by deformations or crack fractures, and the signals’
energies detected by the AE sensors are positively associated with the energies released by
the deformations or fractures [57]. Cyclic plastic deformations before the crack tip release
the maximum amount of energy, which is basically equal to the sum of the energies released
by the tensile crack fractures and shear crack fractures. However, tensile crack fractures
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have the maximum number of occurrences, and this number is considerably larger than
those for the others.

Furthermore, fatigue crack propagation can be regarded as a discontinuous crack tip
advancement caused by fatigue damage accumulation before the crack tip, which has also
been observed in an annealed, commercially pure iron (JIS-C2504) [58]. Fatigue damage
before the crack tip—including slips, dislocations, fractures between crystals bonds, and so
on—is caused by cyclic plastic deformations. Fatigue damage before the crack tip is the
main factor leading to the further advancement of the crack front. The fatigue damage
accumulation process releases around half of the total energy. When fatigue damage reaches
critical status, the critical area of the material along the crack growth distance cannot bear
the stress and ruptures in a brittle manner owing to a large number of tensile crack fractures
and a small number of shear crack fractures; then, the crack tip advances a distance. The
energy released by a single tensile crack fracture is quite small, but a large number of tensile
crack fractures make the total accumulated energy slightly less than the energy released
by the fatigue damage. The energy released by a single shear crack fracture is larger than
that released by a single tensile crack fracture, but the total accumulated energy is the least.
Moreover, it is worth noting that shear crack fractures are rarely observed in fatigue crack
growth tests with CT specimens. Shear crack fractures appear as a discontinuity in acoustic
emission signals, and a large amount of energy is carried by each signal. The mechanism of
shear crack fractures is introduced in the next section.

3.4. Fractography Investigation

The fatigue fracture morphologies of the G20Mn5QT cast steel and the weld, after they
were corroded using 5% alcohol nitrate solution, were observed using an S-3400N scanning
electron microscope at the School of Material Science and Engineering, Tianjin University.
Compared to that of G20Mn5QT, the crack surface of the butt weld is relatively flatter and
smoother, and the necking zone of the butt weld appears much later (see Figure 16a,b). In
stage I, the micromorphologies of both G20Mn5QT and the butt weld exhibit flat facets
and fine fatigue striations with little secondary cracks, as shown in Figure 16c,d. As the
fatigue crack propagates into stage II, the spacing of fatigue striations becomes wider and
extremely evident. At the same time, secondary cracks appear extensively, as shown in
Figure 16e,f. When the crack grows into stage III, dimples, tearing ridges, and secondary
cracks begin to appear extensively. At the end of the cracks, ductile overload fracture
morphologies characterized by microvoids and microcracks are predominant in the crack
surfaces, as shown in Figure 16g,h.

It is worth noting that shear bands are observed on the fracture surfaces of G20Mn5QT
and the butt weld. Furthermore, the shear bands are not continuously distributed along
the surface but occur probabilistically around defects caused by casting or welding, as
shown in Figure 17a,b. Therefore, the shear cracks appearing in the fracture surface of a CT
specimen that should primarily exhibit tensile cracks may be caused by the multi-state of
stress and strain occurring due to the casting or welding defects. This phenomenon verifies
the existence of cluster 3 signals generated by shear crack fractures and the discontinuous
occurrences pertaining to the discontinuous distributions of defects. Furthermore, as the
average energy released by a shear crack fracture of G20Mn5QT is less than that of the
weld, the material weakening caused by the defects of G20Mn5QT is larger than that of
the weld.
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Figure 17. Scanning electron micrographs of crack surfaces: (a) shear bands of G20Mn5QT cast steel;
(b) shear bands of butt weld.

4. Conclusions

In this research, fatigue crack growth experiments for G20Mn5QT and related butt
welds were performed using CT specimens, and the corresponding AE signals were col-
lected. By comparing and analyzing the AE behaviors, the following conclusions could be
obtained:

(1) The AE activities vary greatly in different fatigue crack growth stages. The AE release
activity of G20Mn5QT and butt welds reaches a peak at the end of fatigue crack stage
I and decreases subsequently, demonstrating a relatively low level in the first half of
stage II. The AE release activity returns to an increasing trend in the middle of stage
II. The regrowth point for G20Mn5QT occurs earlier than that for the weld. Moreover,
stage II of the welds can be further divided into two sub-stages based on the AE
activity; however, G20Mn5QT does not exhibit such behavior.

(2) By introducing the K-means cluster algorithm, the AE signals for both G20Mn5QT
and the weld can be divided into three clusters: cluster 1 pertains to the burst type
with a short rise time and duration and is related to tensile crack fractures during
fatigue crack growth; cluster 2 pertains to the continuous type with a short rise time
and longer duration and is related to cyclic plastic deformations before the crack tip;
and cluster 3 signals are similar to the burst type albeit with a long rise time and
duration, and they are related to shear cracks.

(3) Fatigue crack growth is a combination of cyclic plastic deformations before the crack
tip, tensile crack fractures, and shear crack fractures. Crack tip advancement can
be regarded as the discontinuous process of the critical area brittlely rupturing as a
large number of tensile crack fractures and rare shear crack fractures with fatigue
damage due to cyclic plastic deformation reach critical status. The fatigue damage
accumulation process releases around half of the total energy. The energy released
by a single tensile crack fracture is quite small, but a large number of tensile crack
fractures make the total accumulated energy slightly less than the energy released by
fatigue damage. The energy released by a single shear crack fracture is larger than
that released by a single tensile crack fracture, but the total accumulated energy is
the least.

(4) Shear crack fractures in fatigue crack growth are induced by local multi-states of stress
and strain caused by casting or welding defects. Shear crack fractures demonstrate
discontinuous occurrences and pertain to the release of large average energies. The
material weakening caused by the defects of G20Mn5QT is greater than that caused
by the defects of the weld.
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