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Abstract: Agastache rugosa is also known as Korean mint, and it has numerous health benefits due
to its rich source of phenolic compounds. The main objective of this study was to produce a ZmLC-
overexpressing transgenic hairy root line via Agrobacterium rhizogenes-mediated transformation. The
overexpressing transgenic lines were screened using qRT-PCR after exposure to light conditions. The
best hairy root line was selected, and the expression levels of phenylpropanoid biosynthetic pathway
genes and phenylpropanoid compound accumulation were analysed using qRT-PCR and HPLC,
respectively. In addition, antioxidant activities (RPA, ABTS, and DPPH), total phenolic content, and
total flavonoid content were analysed. The ZmLC-overexpressing transgenic line upregulated all
the phenylpropanoid pathway genes, which led to the higher accumulation of phenylpropanoid
compounds in the transgenic line than in the control line. In addition, the total phenolic and flavonoid
content was significantly higher in the transgenic line. The antioxidant activity assay showed that
the transgenic hairy root line had significantly higher activity than that of the control lines. Thus,
ZmLC positively enhances the phenylpropanoid biosynthetic pathway and antioxidant activities in
A. rugosa. The results show that ZmLC can be used to enhance phenylpropanoid compounds and
antioxidant activities in transgenic A. rugosa hairy root lines via the genetic engineering approach.

Keywords: Agastache rugosa; Korean mint; transcription factor; ZmLC; phenolic compound; antioxidant
activities

1. Introduction

Aguastache rugosa is a precious medicinal plant from the Lamiaceae family that is
grown in many Korean and East Asian areas. Agastache rugosa is also a famous plant in
traditional Chinese medicine and is included in the list of fifty basic herbs [1]. It is a plant
source containing both bioactive compounds [2] used to treat anxiety, cholera, infections,
nausea, and gastrointestinal problems [3,4], and antimicrobial and antifungal agents [4]. It
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also possesses HIV integrase inhibitory activity and is a potential drug candidate against
COVID-19 [5].

Antioxidants are compounds that play an important role in delaying or preventing the
oxidation of lipids or other molecules by preventing the induction or proliferation of oxida-
tive chain reactions [6]. Phenylpropanoids are a large group of plant secondary metabolites
that contain one or more C6-C3 fragments, playing a central role in phenolic compound
biosynthesis in plants [7]. Phenylpropanoids and other phenolic compounds are synthe-
sised from L-phenylalanine and, to a lesser extent, L-tyrosine through the phenylpropanoid
pathway. Phenylpropanoids have been classified into five groups: flavonoids, phenolic
acids, lignin, stilbenes, and coumarin [8]. In addition to important biological functions in
defence, survival, and structural support related to plant growth [9,10], phenylpropanoids
are also valuable metabolites. These compounds have protective effects on human health,
especially related to their antioxidant activity [11], their anti-inflammatory, antibacterial,
antiviral, anti-skin ageing, anti-cancer properties, and to osteoporosis, insulin sensitivity,
obesity, and cardiovascular disease [12-14].

In plants, light is an important environmental factor that regulates growth and devel-
opment and promotes photosynthesis [15]. At the same time, light exposure also affects the
accumulation of secondary compounds in plants, including phenylpropanoids [16,17].

Transcription factors are proteins involved in the conversion or transcription of DNA
into RNA. They play a role in initiating and regulating gene transcription [18]. Several studies
have stated that MYB transcription factors play a significant role in plant phenylpropanoid
production, and this has been proven in a number of plants, including Arabidopsis thaliana [19],
Fagopyrum esculentum [20], A. rugosa [15], Radish callus [21], Fagopyrum tataricum [22], Rose [23],
Nicotiana tabacum [24], Solanum lycopersicum [25], and Saussure involucrate [26]. LC is a type of
regulatory protein identified from Zea mays and this protein is mainly involved in anthocyanin
biosynthesis. Several plant studies have reported that the ectopic expression of the ZmLC
protein leads to anthocyanin accumulation and purple colouration in transgenic plants. In
addition, it enhances the accumulation of phenylpropanoid compounds such as phenolic
acids and flavonoids. For instance, exogenous expression of ZmLC protein in the leaves of
apples [27] and flowers of tobacco [28] leads to enhanced accumulation of phenylpropanoid
compounds via the regulation of flavonoid biosynthesis. In another study, it has been the
overexpression of ZmLC in the hairy root of S. baicalensis that leads to an increased accu-
mulation of flavone content such as baicalein, baicalin, and wogonin via triggering of the
phenylpropanoid biosynthetic pathway [29]. In contrast, in several plants, ZmLC did not
show a significant effect [30,31], whereas when ZmLC co-expressed with PI (purple leaf), an
eventual increase in anthocyanin accumulation occurred; however, expression of ZmLC did
not show any noticeable effect in creeping bentgrass [32]. Several studies reported that light
enhances the anthocyanin accumulation in ZmLC-transgenic alfalfa [33], petunia [34], cotton
leaves [35], and maize seeds [36]. Similarly, light triggers ZmLC-overexpression and enhances
phenylpropanoid accumulation in a few plants (S. involucrata, F. tataricum, and Scutellaria
baicalensis) [26,29,37]. In addition, it has been reported that Lc also enhances the ferric-reducing
antioxidant power (FRAP) and 2,2’-azinobis-3-ethylbenzotiazo-line-6-sulfonic acid (ABTS)
assay. However, to date, none of the studies have been conducted on the enhancement of
phenylpropanoid production and antioxidant activities on ZmLc overexpression in A. rugosa
transgenic hairy root cultures after exposure to light conditions.

The main aim of this study was to produce a ZmLC-overexpressing transgenic hairy
root line via Agrobacterium rhizogenic-mediated transformation. The best hairy root line
was selected, and expression levels of phenylpropanoid biosynthetic pathway genes and
accumulation of phenylpropanoid compounds were analysed using qRT-PCR and high-
performance liquid chromatography (HPLC). In addition, antioxidant activities reducing
power assay (RPA), ABTS, and 2,2-Diphenyl-1-Picryl Hydrazyl (DPPH), total phenolic
content (TPC), and total flavonoid content (TFC) were also analysed. These results show
that ZmLC can be used to enhance phenylpropanoid compounds and antioxidant activities
in transgenic A. rugosa hairy root lines via the genetic engineering approach.



Appl. Sci. 2024, 14, 9617

30f13

2. Materials and Methods
2.1. Plant Materials

A. rugosa seeds were provided by Aram Company (Seoul, Republic of Korea) and
were washed with soap under tap water. The seeds were then quickly shaken for 30 s
in 70% (v/v) ethanol containing 1% Tween 20. The seeds were shaken for 12 min in 2%
(v/v) sodium hypochlorite solution, rinsed with sterilised distilled water, and dried with
sterilised papers. Seeds were sown on %2 MS medium containing 0.8% plant agar (pH 5.8)
that had been autoclaved 4 days previously. For 3 weeks, they were cultured in a growth
chamber using white, fluorescent bulbs with a flux rate of 30 umol-s~!-m~2 under long-day
conditions (light/dark = 16/8 h) at 25 °C and 60% humidity. The leaves were used for hairy
root induction.

2.2. Hairy Root Induction

The hairy root induction method followed that presented by Do et al. [15] with some
modifications. The target gene (pB7FWG2-ZmLC) and control vector (GUS-pB7FWG2) were
constructed according to the previous protocol described by Park et al. [29]. Korean mint
seeds were sown, and after three weeks The leaves were infected with the A. rhizogenes
R1000 strain carrying the vector system containing the target gene and the control. The
leaves were then cultured on solid medium (1/2 SH containing cefotaxime 500 mg/L) to
induce hairy roots. After one week, the materials were transferred to screening medium
(1/2 SH containing cefotaxime 500 mg/L and kanamycin 50 mg/L). After three weeks,
we selected the most promising hairy root lines and continued culturing for another three
weeks. A 5 g sample of stably grown hairy roots from the control and transgenic were
nourished in 30 mL of 1/2 SH liquid and cultured with a 16-/8-h light/dark photoperiod
and shaking at 100 rpm. After two weeks, we harvested and froze the samples in liquid
nitrogen. A small number of samples were used to extract RNA, and the remaining samples
were used to analyse phenylpropanoids.

2.3. Total RNA Extraction and cDNA Synthesis

Total RNA was extracted from 14 ZmLC-transgenic hairy root lines and the A. rugosa
control using the CTAB method. RNA purification was carried out using the RNeasy
Plant Mini Kit (Qiagen, Valencia, CA, USA). RNA samples were assessed for quality using
NanoVue Plus (GE Healthcare Life Sciences, Marlborough, MA, USA). The cDNA was
synthesised using the ReverTra Ace-x Kit (Code No. FSK-101), Toyobo Co., Ltd. (Life
Department, Osaka, Japan).

2.4. Gene Expression Analysis

The cDNA of each sample was synthesised, and we diluted it 20-fold to be used for gene
expression analysis. The total volume for an RT-PCR reaction (10 uL) included the following
ingredients: 2.5 uL. cDNA, 1 pL primers (forward and reverse), 5 uL of 2X- Realtime Mix
SFC green (BioFACT™, Daejeon, Republic of Korea), and 1.5uL nuclease-free water. After
vortexing, the reaction mix was centrifuged to remove air bubbles. The samples were run
using the CFX Opus 96 Real-Time PCR System with the following thermal cycle: 95 °C for
10 min, 39 cycles of 95 °C for 15 s, 59 °C for 20's, 72 °C for 20 s, and 72 °C for 10 min. In this
study, the housekeeping gene [3-actin was used as a reference gene to measure target gene
expression. The gRT-PCR primer sequences are shown in Table S1 [1,38].

2.5. Analysis of Phenylpropanoid Content by HPLC

Korea mint hairy root samples were ground finely after being freeze-dried at —45 °C
for 72 h. A 100 mg sample of each type was added to a centrifuge tube with 2 mL of 80%
methanol, vortexed, and placed in an ultrasonic bath for 60 min. The tubes were maintained
at 45 °C and vortexed every 20 min. Samples were then centrifuged at 12,000 rpm for
10 min, after which the supernatant was filtered through a 0.45 pm poly-filter membrane
(Sartorius Stedim Biotech, Gottingen, Germany). HPLC analysis was performed according
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to the procedure previously described by Sathasivam et al. [39]. The detailed protocol is
described in Table S2.

2.6. Analysis of TPC and TFC

Total polyphenols and total flavonoids were extracted from the samples using methanol
based on a previous description by Lim et al. [40]. Briefly, 2 mL of 70% methanol was added
to 100 mg of sample, mixed gently, and sonicated for 1 h at room temperature. Following
sonication, samples were centrifuged in the same manner as in the TA method, and the
supernatant was filtered using a 0.45 um PTFE hydrophilic syringe filter.

The TPC was quantified by determining the sample’s Folin-Ciocalteau reduction
capacity (FCRC) and was slightly modified by the previous methods from Lim et al. To
estimate the FCRC, the diluted sample was prepared at a concentration of 5 mg/mL. A
volume of 0.5 mL of 2 N Folin-Ciocalteau phenol reagent (Junsei, Yongin, Republic of Korea)
was mixed with 0.1 mL of diluted sample extracts, and the mixture was incubated for 3 min.
After adding 4 mL of 10% sodium carbonate, the mixtures were left in the dark for 90 min.
Their absorbances were read at 760 nm using a UV-Vis spectrophotometer, and the TPC in
the samples was determined as gallic acid equivalent (GAE) using a calibration curve of
the standard: ranging from 31.25 to 1000 mg/L; y = 0.0014x + 0.0162, R = 0.9997.

The TFC was determined based on the spectrophotometric method previously de-
scribed by Lim et al. [40], with slight modifications. First, 0.5 mL of the diluted sample,
which was prepared in the same manner as in the TPC method, was mixed with 2.0 mL
of deionised water and 0.15 mL of 5% sodium nitrite and incubated for 5 min. We added
0.15 mL of 10% aluminium chloride to this mixture and measured the absorbance 15 min
later at 415 nm using a UV—-Vis spectrophotometer. The TFC in the samples was deter-
mined as rutin equivalent (RE) using a calibration curve of the standard ranging from
31.25 to 1000 mg/L; y = 0.0016x + 0.009, R? = 0.9998.

2.7. Determination of RPA from Extracts of A. rugosa

RPA, which was estimated as the transformation of Fe3* to Fe?*, was determined
following the method described by Lim et al. [40]. A sample extract volume of 0.3 mL
at 6 concentrations was mixed with 0.3 mL of 1% potassium hexacyanoferrate (III) and
0.3 mL of 0.2 M phosphate buffer (pH 6.6). After 20 min of incubation at 50 °C, 0.3 mL
of trichloroacetic acid (10%) was added, and the mixture was centrifuged at 10,000 rpm
for 10 min. Subsequently, 0.5 mL of deionised water and 0.1 mL of 0.1% iron trichloride
were added to 0.5 mL of the supernatant mixture. The absorbance was measured at 700 nm
using a UV-Vis spectrophotometer, and the increase in absorbance value indicated the
strength of the reducing power.

2.8. In Vitro Antioxidant Activity

Aguastache rugosa extracts were used to determine antioxidant activity in the same manner
as in the TPC and TFC assays. The DPPH radical scavenging activity (RSA) was evaluated
based on previous reports by Lim et al. [40], with slight modifications. Briefly, 0.1 mL of 0.2 mM
DPPH, which was dissolved in 99.9% methanol, was added to a 96-well plate, and 0.1 mL of the
extracts was added to each well at 6 concentrations: 31.25, 62.5, 125, 250, 500, and 1000 mg/L.
After incubation in the dark for 30 min, the absorbance was measured at 517 nm using a
UV-Vis spectrophotometer. For the control, 70% methanol, which was used for the extraction
solvent, was added instead of the sample extracts.

The ABTS RSA was evaluated following the protocol previously reported by Lim
et al. [40], with slight modifications. Briefly, 7 mM ABTS powder was thoroughly dissolved
in potassium persulfate (2.5 mM) solution, which was prepared in deionised water, and
the mixture was incubated in the dark for 16 h. After incubation, the absorbance of the
ABTS bulffer was adjusted to 0.7 £ 0.002 at 734 nm, and 0.15 mL of the ABTS buffer was
transferred to a 96-well plate. Then, 0.05 mL of A. rugosa extract was added to each well,
ranging from 31.25 to 1000 mg/L, and incubated in the dark for 3 min. The decrease in
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absorbance was measured at 734 nm using a UV-Vis spectrophotometer, and 70% methanol
was used in place of the sample extracts for the control. The sample’s RSA was calculated
based on a previous report by Lim et al., and the plotted curve was used to indicate the
amount of antioxidants needed (mg/mL) to reduce the initial free radical concentration by
50% (ICsp).

2.9. Statistical Analysis

The results were stated as the mean values with a standard deviation (SD) from
every result in triplicate, and the statistical analysis of this study was performed using
analysis of variance (ANOVA) in SPSS 20 (SPSS Inc., Chicago, IL, USA) and Graph pad
Prism 8. Duncan’s multiple range test was used to establish significance at the p < 0.05
level. Asterisks denote statistical significance (* p < 0.05, ** p < 0.01, and *** p < 0.001). A
correlogram was drawn by using the MATLAB software (R2020b).

3. Results
3.1. Hairy Root Induction

We selected hairy root lines on a medium containing kanamycin, resulting in 14 trans-
genic root lines and 2 control lines capable of fast and stable growth (Figure 1). The gene
expression results of the hairy root lines are presented in Figure 2. These 14 lines (ZmLC)
showed higher expressions than the control sample (GUS), especially hairy root lines 1 and
10. Homogenized line 10, thereafter LC10, was used to conduct further evaluations.

Figure 1. Hairy root induction of A. rugosa using A. rhizogenes. (A) Control hairy root harbouring
GUS construct. (B) Transgenic hairy root harbouring ZmLC construct. The scale bar represents 1 cm.

Zml.c

Relative gene expression

Cl C2 #1 #2 #3 #4 #5 #6 #7 #38 #9 #10 #11 #12 #13 #14

Figure 2. qRT-PCR analysis of control hairy root lines expressing GUS (C1 and C2) and transgenic
hairy root lines expressing ZmLC (#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13, and #14). Asterisks
denote statistical significance (** p < 0.01, and *** p < 0.001).
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3.2. Analysis of Phenylpropanoid Biosynthesis Pathway Genes Expression in A. rugosa Grown
under Light Condition

The results of the qRT-PCR analysis are shown in Figure 3. The expression level of
eight phenylpropanoid pathway genes was higher in the LC-10 sample than in the control
sample. The highest expression was obtained for the CHS gene (2.7-fold higher), and the
lowest expression was 1.28-fold for the HPPR gene compared to the control. There were
two genes, RAS and PAL, with similar expression levels, and their expression was 2.48- and
2.44-fold higher, respectively, than that in the control. The expression of the TAT, C4H, and
4CL genes was 1.69-, 1.40-, and 1.30-fold higher, respectively, than that in the controls.

PAL C4H 4CL

0.25- altl 0.8 * 0.6 *
£ 0207 £ o6 2
3 4 ] .
g 0.157 z g 0.4
g g 0.4 2
o 0.10 o 5
2 2 Z 0.2
g 2 0.2 =
2 0.05- = =

0.00- 0.0- 0.0-

Control LC-10 Control LC-10 Control LC-10
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o Z 0415 ]
5 2 2
o z Y
2 0.01 g 010 2 0.2+
5 E =
& Z o005 E]

0.00- 0.00 0.0—
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8 £ 06
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¢ 04
£ 0.001 £ -
= =
& 2 02
0.000 0.0
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Figure 3. Effect of light treatment on phenylpropanoid biosynthetic pathway genes expression in
A. rugosa transgenic hairy root lines. Control: GUS overexpressing hairy root line; LC-10: ZmLC-
overexpressing hairy root line. Asterisks denote statistical significance (* p < 0.05, ** p < 0.01, and
*** p <0.001). PAL, phenylalanine ammia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumaroyl
CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; RAS, hydroxycinnamoyl-CoA: hy-
droxyphenyllactate hydroxycinnamoyl transferase; TAT, tyrosine aminotransferase; HPPR, hydrox-
yphenylpyruvate reductase.

3.3. Analysis of Phenylpropanoid from A. rugosa Extracts

We identified eight phenylpropanoid compounds in A. rugosa extracts, and the LC-
10 extracts accumulated higher contents in every compound compared to the control.
Rosmarinic acid showed the highest content in the control and LC-10 (24.4 & 0.394 and
26.803 £ 0.635 mg/g DW, respectively) (Table 1). In the LC-10 extracts, the second highest
content (mg/g DW) was caffeic acid (0.951 + 0.026), followed by rutin (0.292 £+ 0.003),
benzoic acid (0.148 £ 0.003), acacetin (0.03 £ 0.003), p-coumaric acid (0.022 £ 0.001),
trans-cinnamic acid (0.012 + 0.001), and ferulic acid (0.011 £ 0.004). However, in the
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control hairy root, p-coumaric acid, ferulic acid, trans-cinnamic acid, and acacetin showed
a content (mg/g DW) of 0.01 mg or less (0.005 &+ 0.001, 0.01 & 0.001, 0.004 &+ 0.001, and
0.007 £ 0.001, respectively).

Table 1. Effects of overexpressing the ZmLC transcription factor on the phenylpropanoid content
(mg/g DW) in A. rugosa extracts.

No. Compound Control LC-10 Fold Change
1 Caffeic acid 0.687 4+ 0.015 0.951 + 0.026 1.38
2 p-coumaric acid 0.005 4 0.001 0.022 4+ 0.001 4.40
3 Ferulic acid 0.01 £ 0.001 0.011 4+ 0.004 1.10
4 Benzoic acid 0.141 £ 0.007 0.148 4 0.003 1.05
5 Rutin 0.29 4+ 0.001 0.292 + 0.003 1.01
6 Trans-cinnamic acid 0.004 £ 0.001 0.012 4+ 0.001 3.00
7 Rosmarinic acid 24.4 + 0.394 26.803 + 0.635 *** 1.10
8 Acacetin 0.007 4 0.001 0.03 £ 0.003 4.29

All results were carried out in triplicate, and the values are shown as mean + SD. Asterisks denote statistical
significance (*** p < 0.001). The column without asterisks denotes no significant differences between the control
and LC-10.

3.4. Quantification of TPC and TFC

As shown in Table 2, the LC-10 sample, which overexpressed the ZmLC gene, showed
a significantly higher TPC (28.07 & 0.22 GAE mg/g DW) and TFC (42.35 & 0.67 QE mg/g
DW) (Figure 4), whereas the control showed a lower TPC (19.92 & 1.66 GAE mg/g DW)
and TFC (30.55 £ 0.15 QE mg/g DW). Based on these results, we can conclude that the
sample overexpressing the ZmLC gene contains more TPC and TFC than the control.

Table 2. Relative TPC and TFC from two A. rugosa extracts.

Control LC-10
Total Polyphenol (GAE mg/g DW) 19.92 £+ 1.66 28.07 4 0.22 ***
Total Flavonoid (QE mg/g DW) 30.55 + 0.15 42.35 £ 0.67 ***

All results were carried out in triplicate, and the values are shown as mean + SD. Asterisks denote statistical
significance (*** p < 0.001). The column without asterisks denotes no significant differences between the control
and LC-10.
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Figure 4. Correlation matrix using correlogram between the phenylpropanoid biosynthetic pathway
genes and identified metabolites in ZmLC-overexpressing A. rugosa transgenic hairy root line. The
correlation values are shown as a heatmap in the bottom left, using colour boxes to denote the
strength of association, and the pie chart shown in the top right provides a quick overview.
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3.5. Determination of RPA and Antioxidant Activities

The RSA, which was evaluated at 6 different concentrations (ranging from
31.25 to 1000 mg/L) of A. rugosa, showed a gradual increase with increased concen-
trations regardless of the samples. At all concentrations, the LC-10 sample showed more
effective reducing power than the control, and ascorbic acid was used as the positive
control (Figure 5a). The DPPH and ABTS RSA (%) results of different A. rugosa extracts
were also determined at 6 different concentrations, and ascorbic acid was used as the
positive control. At a concentration of 1000 mg/L, the LC-10 sample extracts showed
about 90% scavenging activity for DPPH (86.2 £ 0.31%), whereas the control showed about
70% activity for DPPH (68.6 &= 5.29%) (Figure 5b). In addition, their values confirmed the
significant difference between them. The IC5y for DPPH does not show any significance
difference between the control and LC-10 lines. The highest efficiency was achieved
in LC-10 (0.53 £ 0.0 mg/mL) (Table 3). ABTS RSA (%) followed the same tendency as
the other assays. The LC-10 samples extracts, at 1000 mg/mL, attained 88.03 & 0.92%
activity in ABTS scavenging, followed by the activity of the control at 75.63 + 1.83%
(Figure 5c). The higher efficiency of the ICsy for ABTS, which indicated the required
sample’s concentration to inhibit their free radicals at 50% of the ABTS, was achieved in
LC-10 (0.48 £ 0.01 mg/mL), whereas the control required a relatively high concentration of
0.63 £ 0.03 mg/mL to achieve 50% inhibition of the ABTS (Table 3). However, the ICsq for
ABTS result showed that there is no difference between the LC-10 and control lines.

(a) 25 = Control -L(,-ll]Fl —0—.‘\sc0rh|fl Acid

Reducing Power Assay

<
il ag
0.0 L e | t_ - -
(b)

100.0
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o0 | NN :

DPPH RSA (%)

(C) a a
a a
100.0 A  a— & & &
:/E b
80.0 ¢
IS
£ 60.0 b
&
w [
2 40.0 b
“ ) b ¢
N . -c -
“_0 __- T T T T T
3125 62.5 125 250 500 1000

Concentration of Extracts (mg/L)

Figure 5. Reducing power and RSA (%) of six concentrations of A. rugosa extracts. (a) Reducing
Power Assay; (b) DPPH RSA (%); (c) ABTS RSA (%). Values are shown as mean =+ SD, and different
letters a—c are the statistically significant differences among the means using Duncan’s multiple range
test (ANOVA, p < 0.05).
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Table 3. ICs5( values for DPPH and ABTS (mg/mL) from two A. rugosa extracts.

IC50 of DPPH IC50 of ABTS
Control 0.7 +0.03 0.63 +0.03
LC-10 0.53 £ 0.00 0.48 = 0.01

All results were carried out in triplicate, and the values are shown as mean =+ SD. The column without asterisks
denotes no significant differences between the control and LC-10.

4. Discussion

In this study, the results showed that the following genes are responsible for the
phenylpropanoid biosynthetic pathway: PAL, C4H, 4CL, CHS, CHI, TAT, HPPR, and RAS.
These genes were expressed very clearly in the transformed hairy root lines compared to
the control within two weeks of light exposure. Previously, several plant species maize LC
genes have been used to manipulate the anthocyanin and flavonoid biosynthetic pathways.
The introduction of the LC gene might work individually or co-ordinately with C1 to
increase flavonoid biosynthesis by triggering flavonoid biosynthetic pathway genes [29].
In dicot plants such as N. tabacum and A. thaliana, expression of the LC gene leads to
enhanced accumulation of anthocyanin pigmentation [41]. In another study, in petunia,
the overexpression of ZmLC genes leads to a higher accumulation of flavonoid content
by triggering the flavonoid biosynthetic pathway genes such as anthocyanidin synthase,
dihydroflavonol 4-reductase (DFR), flavonoid 3'5' hydroxylase (F3'5'H), flavonoid 3'-hydroxylase
(F3'H), and UDP-glucose:flavonoid-3-O-glucosyltransferase. In addition, it was found that
there is a slight increase in the CHI, CHS, and flavanone 3-hydroxylase gene expression,
whereas the flavonol synthase (FLS), PAL, C4H, rhamnosyltransferase, and UDP-rhamnose:
anthocyanidin 3-glucoside were not influenced by the LC overexpression [31]. Similar results
were obtained in tobacco where overexpression of LC leads to activation of CHS and DFR
gene expression [42]. Moreover, exogenous expression of the LC gene in S. baicalensis
hairy root leads to increased expression of most of the flavonoid biosynthetic pathway
genes [29]. In contrast, in chrysanthemum pigmentation, the expression of LC does not
have a noticeable effect. Similarly, in plants such as Pelargonium and Lisianthus, ectopic
expression of the ZmLC gene does not trigger the CHI, CHS, FLS, and F3'5'H genes [30].
However, in our study, we found that all the phenylpropanoid pathway genes were
slightly overexpressed in the LC overexpressed transgenic lines, which leads to a higher
accumulation of individual phenolic content, TPC, and TFC. From these results, it is shown
that the effect of ZmLC overexpression on flavonoid and phenylpropanoid compounds
might be dependent on the species of the plant.

In medicinal plants, the phenylpropanoid biosynthetic pathways genes such as PAL,
C4H, and 4CL play an important role in rosmarinic acid production. In Salvia miltiorrhiza,
PAL is a main enzyme in the rosmarinic acid biosynthetic pathway, which indicates that
alteration in the rosmarinic acid content is directly proportional to the PAL expression [43].
Another study reported that in S. miltiorrhiza, decreased expression of PAL has an impact on
the C4H and 4CL expression [44]. Similarly, in Melissa officinalis, it has been reported that the
PAL and 4CL expressions are associated with their corresponding enzymatic activities and
with the rosmarinic acid content [45]. Park et al. [1] reported that in A. rugosa, the highest
expression of PAL, C4H, and 4CL genes leads to a significant accumulation of rosmarinic
acid content. These results were consistent with this study’s result that the expression of
PAL, C4H, and 4CL genes was significantly high in the LC overexpressed transgenic lines,
which leads to a significant accumulation of rosmarinic acid content. From this result, it
is shown that PAL, C4H, and CL genes are the most important genes responsible for the
rosmarinic acid content in most of the plant species.

The hypocotyl elongation transcription factor (HY5) and two major photosensitizers,
phytochrome (PHY)B and cryptochrome (CRY)2, are involved in light-dependent phenyl-
propanoid accumulation in Arabidopsis roots, and many phenylpropanoid genes are highly
expressed [46]. Quantitative results using HPLC also demonstrated that ZmLC participated
in the phenylpropanoid biosynthesis process in A. rugosa hairy roots, especially the out-
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standing accumulation of three substances, namely trans-cinnamic acid, p-coumaric acid,
and acacetin, which increased 3.46-, 4.35-, and 4.6-fold, respectively. The total polyphenol
content increased 1.41-fold, and the flavonoid content increased 1.33-fold. These results are
consistent with previous work showing light-induced phenolic biosynthesis and flavone ac-
cumulation in A. rugosa hairy roots [15], flavonoid accumulation in Alnus glutinosa roots [47],
and phenylpropanoids, anthocyanins, and distinct proanthocyanidins in Malus domestica
Borkh. [27]. Treating Scutellaria lateriflora with light and 15 mM of methyl-3-cyclodextrin
increased phenolic compounds (baicalein, aglycones, and wogonin) [48], and this treat-
ment increased rutin in F. tataricum Hokkai T10 hairy roots [37]. Furthermore, caffeic acid
derivatives were significantly increased in Echinacea purpurea hairy roots [49].

The radical scavengers DPPH and ABTS are often used for the rapid assessment of the
antioxidant activity of natural compounds [50]. Previous research has shown that all parts
of the plant contain natural antioxidants [51], with flowers showing higher antioxidant
capacity than stems and leaves in A. rugosa. However, flower harvesting depends on the
weather and season; thus, it is difficult to proactively source raw materials for large-scale an-
tioxidant production. Therefore, we evaluated the antioxidant activity of phenylpropanoids
extracted from A. rugosa hairy roots using ABTS and DPPH. The results showed that LC-10
had a more effective reduction ability than the control. At a concentration of 1000 mg/L,
the LC-10 sample extract showed 86.2% scavenging activity against DPPH, while that in the
control sample was 68.6%. ABTS removal was 88.03% in LC-10 and 75.63% in the control.
An increase in the free radical content in cells will lead to ageing and diseases, including
atherosclerosis, a weakened immune system, reduced intelligence, diabetes, and cancer [52].
Therefore, the antioxidant activity of A. rugosa transgenic hairy roots in this report enrich
the materials that can be used in the pharmaceutical industry to serve human health.

5. Conclusions

Knowledge about enhancing phenylpropanoid biosynthesis in A. rugosa is continu-
ously being researched because it has excellent therapeutic properties for health, especially
in eliminating free radicals that cause certain human diseases. Our results indicate that
ZmLC gene overexpression and light treatment induce phenylpropanoid accumulation in A.
rugosa hairy roots. This accumulation is related to the control of the following genes: PAL,
C4H, 4CL, CHS, CHI, TAT, HPPR, and RAS. The DPPH and ABTS free radical scavenging
capacity of phenylpropanoids tested at 6 concentrations (from 31.25 to 1000 mg/L) showed
a gradual increase as the concentration increased, regardless of the sample, with an ICs
for DPPH of 0.53 mg/mL after 30 min of incubation in the dark and ICsy for ABTS of 0.48
mg/mL after 16 h of incubation in the dark. This is the first report on the enhancement of
phenylpropanoid production and antioxidant activity in A. rugosa transgenic hairy root
cultures by overexpressing the maize Lc transcription factor. Further research is needed on
exploring the effects of other transcription factors or environmental stressors in A. rugosa
hairy roots.
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