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Abstract: When using the Transformer model for wind power prediction, the presence of noise in
wind power data and the model’s final layer relying solely on a simple linear output reduces the
model’s ability to capture nonlinear relationships, leading to a decrease in prediction accuracy. To
address these issues, this paper proposes an ultrashort-term wind power prediction model based on
exponential weighted moving average (EWMA) data processing and Kolmogorov–Arnold Network
(KAN)-Transformer. First, multiple variable features are smoothed using EWMA, which suppresses
noise while preserving the original data trends. Then, the EWMA-processed data is input into the
Encoder and Decoder modules of the Transformer model to extract features. The output from the
Decoder layer is then passed through the KAN layer, built using a cubic B-spline function, to enhance
the model’s ability to capture nonlinear relationships, thereby improving the prediction accuracy of
the Transformer model for wind power. Finally, experimental analysis is conducted, and it shows that
the proposed model achieves the highest prediction accuracy, with a mean absolute error of 4.38 MW,
a root mean squared error of 7.37 MW, and a coefficient of determination of 98.73%.

Keywords: transformer; wind power prediction; noise; EWMA; nonlinear relationship; KAN

1. Introduction

In the past two decades, wind energy has become a key renewable energy source for
addressing energy crises and climate change [1]. With fossil fuels gradually depleting and
the emergence of new situations emphasizing energy conservation and emission reduction,
wind power generation is increasingly receiving attention from countries. However, a major
drawback of wind power is that wind is intermittent and highly fluctuating [2], which is
not conducive to the safe and stable operation and economic dispatch of the power system.
Wind power prediction models can be classified into long-term [3], medium-term [4],
short-term [5,6], and ultrashort-term [7,8] predictions based on time scales. Short-term and
ultrashort-term predictions are highly correlated with the operation of integrated generating
systems in wind farms. High-precision prediction can reduce wind curtailment, helping
power plants adjust their short-term generation plans and reserve capacities promptly.
Therefore, designing an accurate, fast, and reliable ultrashort-term wind power prediction
model is of great significance.

Time series prediction models can generally be categorized into three main types:
physical models [9], statistical models [10], and artificial intelligence methods [11]. Physical
forecasting models, based on numerical weather prediction (NWP) and aerodynamics,
are effective and interpretable in long-term time series forecasting. However, short-term
NWP forecasts often lack precision and may not meet forecasting requirements. Statistical
methods rely on the statistical analysis of historical time series data to predict wind power
generation. These models mainly include autoregressive and moving average (ARMA) [12],
autoregressive integrated moving average (ARIMA) [13], and Markov models [14], among
others. Statistical models were widely used in wind power time series forecasting in the
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past, but with the rapid increase in data volume, they have gradually lost their advantage
compared to machine learning methods. In recent years, deep learning has seen rapid
development and many deep learning models have been applied in the field of wind speed
and wind power prediction. Among them, long short-term memory (LSTM) networks [15,16],
gated recurrent units (GRUs) [17,18], and other methods have been widely used in wind
power prediction.

Traditional recurrent neural networks and their variants have achieved good results in
power prediction, but they have limitations in handling parallel processing and establishing
long-term temporal relationships. With the advent of attention mechanisms, the Trans-
former model was proposed and subsequently widely used [19–21]. Thanks to its powerful
ability to model time correlations, attention mechanisms have been widely used in time
series prediction tasks, leading to a series of models using the Transformer for wind power
prediction. Literature [22] introduced the FEDformer model based on frequency-enhanced
Transformer, for wind power generation and wind speed prediction. This model is the entry
of Transformer-based models into the field of wind power prediction. In literature [23], a
hybrid deep learning model has been proposed that utilizes historical data for calibration.
The model incorporates a Transformer network that accesses historical data in the encoder
to enhance its predictions with correction information. Literature [24] proposed a super-
short-term wind speed prediction model based on complementary ensemble empirical
mode decomposition (CEEMD) and the BILTM-Transformer. It used CEEMD decomposi-
tion to reduce the instability of wind speed sequences. Literature [25] introduced the Wind
Transformer model, which addresses the segmentation problem and predicts the power
output of each turbine individually.

However, both the Transformer and its variant models rely on simple linear layers for
dimensionality reduction to produce the final prediction, which, to some extent, reduces the
model’s ability to capture nonlinear relationships. As research in this area has progressed,
the emergence of Kolmogorov–Arnold networks (KANs) in 2024 [26] successfully addressed
this limitation, improving model prediction accuracy. KAN is an extension of deep learning
based on the mathematical principles of the Kolmogorov–Arnold representation theorem
(KART). This theorem proves that a multivariate continuous function can be approximated
by the summation of a finite number of nonlinear elementary functions. The KAN network
initializes several B-spline functions and learns their parameters. By summing these B-
spline functions to form nonlinear elementary functions, and then aggregating all the
nonlinear elementary functions to map them to the prediction dimension, the model’s
capacity to capture nonlinear relationships is enhanced. Since KAN networks are adept
at capturing nonlinear relationships, they have subsequently been integrated with time-
series models. For instance, literature [27] demonstrates that KAN networks, due to their
highly accurate modeling of complex nonlinear systems, have proven to be effective in
energy management systems, showcasing their practical utility and effectiveness. Another
study [28] incorporated KAN into time-series forecasting to improve interpretability and
nonlinear relationship modeling, verifying the effectiveness of KAN in the field of time-
series prediction.

When forecasting future wind power, the prediction is not only related to past wind
power values but also closely linked to other variables such as historical wind speed, wind
direction, temperature, and more. Therefore, multiple variable features are often introduced
alongside wind power features. However, during this process, the presence of noise and
outliers in the multivariable data can reduce the accuracy of the prediction model. To
address this, the exponential weighted moving average (EWMA) method is introduced. By
controlling the decay factor, EWMA smooths the data while retaining the original trends,
thereby reducing the impact of noise on the prediction accuracy. For example, in [29],
EWMA analysis is used in the monitoring stage to detect abnormal changes in features.
In [30], EWMA assigns greater weight to more recent data, smoothing time-series data and
improving performance through this optimized data-mining approach.
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In conclusion, when using the Transformer model with point-wise attention mecha-
nisms for wind power prediction, the model’s accuracy is reduced due to noise in wind
power data and the inability of the simple linear output layer to capture nonlinear rela-
tionships. To address this, this paper proposes a KAN-Transformer model incorporating
EWMA data processing. The contributions of this paper are as follows: First, EWMA is
employed to denoise the introduced multivariable features, improving the predictability
of wind power data. Second, the KAN layer is used to replace the Transformer model’s
final linear layer, enhancing the model’s ability to capture nonlinear relationships and thus
improving prediction accuracy.

The chapter arrangement is as follows: In Section 2, EWMA is used to reduce the
impact of noise on the model’s prediction accuracy. KAN is combined with the Transformer
model, where features are extracted through the Encoder–Decoder structure and then
passed into the KAN layer to obtain prediction results, enhancing the model’s ability to
capture nonlinear relationships. In Section 3, simulation experiments and analysis are
conducted. In Section 4, conclusions are summarized.

2. Research Methodology and EWMA-KAN-Transformer Model
2.1. Method of the Present Research

To clearly show the research methods used in this paper, an overall framework diagram
of the research methods is presented in Figure 1.
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In Figure 1, the process begins with the preprocessing of the dataset. The collected
external variable data are denoised using the EWMA method, followed by Z-score normal-
ization. The data are then divided into training, validation, and test sets in a ratio of 7:2:1.
Next, the training set samples are extracted using a sliding window method within the
Dataset class to create time-series forecasting samples. A DataLoader class is defined to
facilitate data loading for model training. The model training process consists of five main
parts: defining the improved KAN-Transformer model, loading data in batches using the
Mini-batch method, inputting the loaded data into the KAN-Transformer model to obtain
prediction values, calculating the loss by comparing the predicted values with the actual
values using mean squared error (MSE), and passing the obtained loss to the backpropaga-
tion (BP) network for backward propagation. The model weights are then optimized using
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the adaptive moment estimation method (ADAM). Finally, the trained model weights are
loaded for testing and evaluation. During the testing phase, data are loaded in batches into
the model to obtain prediction results. After denormalizing the prediction results, the root
mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination
(R2) are calculated to assess the model’s performance on the test set.

2.2. Structure of KAN-Transformer Prediction Model Based on EWMA Data Processing

To reduce noise in the wind power data and enhance the ability of the Transformer
model to capture nonlinear relationships, this paper proposes an ultrashort-term wind
power prediction model based on EWMA data processing and KAN-Transformer. The
model is illustrated in Figure 2.
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In Figure 2, the process begins by applying EWMA data processing to the original
data to reduce the impact of noise in the wind power data on model prediction accuracy.
The processed data are then used with a sliding window approach to obtain inputs for
the Encoder and Decoder, which are embedded through the Embedding layer and then
processed through the Encoder–Decoder architecture to extract historical features. Finally,
the output from the Decoder layer is fed into the KAN layer, constructed with a cubic
B-spline function, to obtain the final prediction result, thereby enhancing the model’s ability
to capture nonlinear relationships.

The experimental dataset used in this paper comes from a publicly available dataset
of a wind power plant with an installed capacity of 200 MW [31]. Data are recorded every
fifteen minutes, totaling 35,041 time steps. The feature columns are numbered and named
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as shown in Table 1, where columns 1–13 represent the introduced multivariable features,
and serial 14 represents the wind power feature.

Table 1. Feature serial number and feature name.

Serial Number Feature Name

1 10 m wind speed
2 30 m wind speed
3 50 m wind speed
4 70 m wind speed
5 Hub height wind speed
6 10 m wind direction
7 30 m wind direction
8 50 m wind direction
9 70 m wind direction
10 Hub height wind direction
11 Temperature
12 Pressure
13 Humidity
14 Actual power generation

2.2.1. Data Processing Method of EWMA

When predicting future wind power, the forecast is influenced by past wind power
features and multiple variable features. To improve predictions, variables such as wind
speed, wind direction, and temperature are introduced alongside wind power features.
However, the introduction of these multiple variable features can introduce noise, which
reduces the accuracy of the model. Therefore, this paper applies the EWMA method for
data smoothing on the introduced multivariable features. This method helps to suppress
noise and retain data trends, making the smoothed data more reflective of actual changes.

Taking the variable 30 m wind speed in sequence 2 as an example, the original data
are plotted as shown in Figure 3.
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In Figure 3, the data show frequent fluctuations and unclear trends, which may indicate
the presence of noise. The noise in serials 1–13 can reduce the model’s prediction accuracy.
To address this, EWMA smoothing is applied to serials 1–13. The EWMA is given using
Formula (1): {

α = 2
span+1

E(t) = α × X(t) + (1 − α)× E(t−1)
, (1)
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where span is the span parameter that determines the value of α, X(t) represents the current
observation value at time t, E(t−1) is the exponential moving average value at the previous
time point (t − 1), and E(t) is the exponential moving average value for the current time
point t.

In Formula (1), α typically ranges between 0 and 1. When α is larger, the smoothed
sequence adapts more quickly to recent trends and fluctuations but retains less long-term
trend information. Conversely, when α is smaller, the smoothed sequence retains more
long-term trend information but adapts more slowly to recent trends and fluctuations. For
the specific implementation, using data points from serial number 2 as an example, by
setting span = 10 and an initial value E(t), α is determined. The observation value X(2) is
then substituted into the formula to get E(2). This process is iteratively applied to achieve
data smoothing, as illustrated in Figure 4.
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In Figure 4, the smoothed curve is more stable compared to that in Figure 3. By
applying EWMA smoothing, noise is suppressed, and the original data trends are retained.
The architecture of the EWMA data processing method is shown in Figure 5.
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In Figure 5, X(mf) represents the original dataset, where mf denotes the concatenation
of the introduced multivariable feature serials and the wind power feature serial. The
multivariable feature serials within mf are processed using EWMA and then concatenated
with the original wind power feature serial to form the multivariable channel data MF.
Through the EWMA process, the original dataset X(mf) is transformed into a new dataset
X1(MF).

2.2.2. Xen and Xde

The sliding window method is applied to extract samples from X1(MF), resulting in
the Encoder input Xen(mf1). Additionally, the Informer model’s input partitioning method
is used to obtain the Decoder input. The partitioning method of the Informer model is
illustrated in Figure 6.
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In Figure 6, the historical data from the green area of Xen(mf1) are concatenated with
data of value 0 to obtain Xde(mf2). The Decoder layer then transforms the 0 values into
predicted values pr.

2.2.3. Embedding Layer

The Embedding layer primarily consists of convolutional neural network multi-
channel (CNN-MC) Embedding and positional encoding (PE) Embedding. To enhance
the capability of extracting local features, the CNN-MC Embedding uses one-dimensional
convolution for dimensional expansion. The CNN-MC Embedding module is illustrated in
Figure 7.
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In Figure 7, dark green represents the original data, pink represents the padding data,
and light green represents the convolutional data, for example, a matrix Xen with dimen-
sions (30, 14) is input, where 30 represents the number of data points, and 14 represents the
number of features. Padding (P) is applied to Xen, resulting in a matrix B with dimensions
(32, 14). The matrix B is then transposed (T), yielding a matrix C with dimensions (14, 32).
Matrix C is fed into the CNN module, which uses a convolutional kernel D with dimensions
(14, 3). Convolution is performed on C with a stride of 1 from left to right, resulting in
an output matrix E with dimensions (1, 30). Matrix E is then transposed (T) to produce a
matrix F with dimensions (30, 1), thereby incorporating local information into each data
point of Xen. It is important to note the following two points: First, the process described
involves using a single convolutional kernel. To expand the dimension of the Embedding
layer to 512, 512 convolutional kernels need to be set. Consequently, the final output of the
CNN-MC Embedding layer should be (30, 512). Second, Formula (2) should be used to
ensure that the number of data points in matrix F matches the number of data points in
matrix Xen.

L = H + P − Kn + 1 (2)

where H is the number of rows in the original input matrix, P is the padding dimension,
and Kn is the width of the convolutional kernel.

PE Embedding creates a zero matrix with the same dimensions as the output of CNN-
MC Embedding. The odd columns of the zero matrix are assigned positional information
using the cosine function from Formula (3), while the even columns use the sine function
from Formula (3) to assign positional information. Finally, the CNN-MC Embedding and
PE Embedding are added together to obtain the final output of the Embedding layer, with
the last dimension remaining at 512.{

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
, (3)
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where pos represents the position, i represents the dimension, and dmodel represents the
expanded dimension.

2.2.4. Encoder Layer

The flow of the Encoder layer is illustrated in Figure 8. The output of the new
Embedding layer is fed into three linear layers to obtain Q, K, and V. Multi-head attention
mechanism calculations are performed using Formula (4) to establish temporal correlations
and extract relevant features through weighting. The output then passes through an Add &
Norm layer, followed by a feedforward neural network composed of CNN-Gelu-CNN for
nonlinear transformation, enhancing the model’s ability to capture nonlinear relationships
in the data. Finally, another Add & Norm layer processes the data to produce the output
of the Encoder layer. It is important to note that the last dimension of the Encoder layer’s
input and output remains unchanged at 512.
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The multi-head attention mechanism algorithm is described using Formula (4): Score(w) = softmax
(

Q×KT√
dk

)
C = Score(w) × V

, (4)

where Q represents the query matrix, K represents the key matrix, V represents the value
matrix, and

√
dk represents the scaling factor for the attention weight range.

2.2.5. Decoder Layer

The flow of the Decoder is illustrated in Figure 9. The output from the Embedding
layer is passed through three linear layers to obtain Q, K, and V. To prevent information
leakage during inference, a masked multi-head attention mechanism is used to compute
correlations, and the output is then fed into an Add & Norm layer. A linear layer generates
the query matrix Q′, while the Encoder’s output is processed through two linear layers
to obtain K′ and V′. The matrices Q′, K′, and V′ are input into the multi-head attention
mechanism to facilitate the interaction between the Encoder and Decoder. The output then
passes through an Add & Norm layer, a feedforward neural network, and another Add &
Norm layer. It is important to note that the last dimension of the Decoder layer’s input and
output remains unchanged at 512.
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2.2.6. KAN Layer

In Transformer models and their variants, the final prediction results are typically
obtained through a simple linear layer for dimensionality reduction. Using self-learned
nonlinear unit functions instead of a simple linear layer, the model can better capture
nonlinear relationships and improve prediction accuracy. To address this, the KAN network,
which is based on the KART mathematical principle, is introduced. The principle is
described using Formula (5).

f (x) = f (x1, . . . , xn) =
2n+1

∑
q=1

Φq

(
n

∑
p=1

ϕq,p(xp)

)
, (5)

where q represents the number of unit functions, p represents the number of input units,
ϕq,p(xp) represents the unary function of the first layer in the KART network, and ϕq
represents the unary function of the second layer in the KART network.

Based on Formula (5), it can be concluded that a multivariate function can be obtained
by summing a finite number of nonlinear unit functions. In this process, if n = 2, then the
first layer of the KART network will have a fixed number of nodes, specifically (2n + 1) = 5
nodes. The KAN network is a variant of this formula, where the fixed number of (2n + 1)
nodes can be manually set. For ease of analysis, the basic architecture of the KAN network,
using the example of predicting a future wind power value, is illustrated in Figure 10.
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In Figure 10, the 512 outputs from the Decoder, denoted as x1 to x512, are mapped to
512 unit functions ϕ1~ϕ512. These unit functions are then summed to obtain the multivariate
function f (x1, . . . ,x512), which is used to derive the final prediction result pr. The core of the
KAN network is to learn each of these nonlinear unit functions. The learning process is
described using Formula (6):

ϕ(x) = w(b(x) + spline(x))
b(x) = silu(x) = x/(1 + e−x)
spline(x) = ∑ ciBi(x)

, (6)

where w represents the learnable parameters, spline(x) represents the B-spline function,
and ci represents the learnable parameters.

In Formula (6), each nonlinear unit function ϕ(x) is defined by adding a B-spline
function spline(x) to the silu(x) function and then scaling it by a learnable parameter w
to ensure smoothness of ϕ(x). The most important part is spline(x), which is the B-spline
function; the KAN network uses a cubic B-spline.

To facilitate a clear explanation of the process of learning the nonlinear unit function,
the code for the most important component, spline(x), in the KAN network is shown in
Figure 11. Additionally, the learning process of spline(x) and other components within the
KAN network is elaborated in detail, as illustrated in Figure 12.
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In Figure 12, b(x) is a fixed silu function and does not require learning, while w is a
learnable parameter used for scaling. The most critical aspect of the figure is the learning
process of spline(x). The process is as follows: First, G1 = 5 is set, which indicates that
there are five grid points where the nonlinear unit function will be formed. Second, seven
B-spline functions are initialized with K = 3. By learning the weights ci of these seven
B-spline functions, one can control the shape of each B-spline function. These seven learned
B-spline functions are summed to obtain spline(x). Then, a smooth curve silu(x) is added
to spline(x) to enhance the smoothness of the unit function. Finally, {spline(x) + silu(x)}
is multiplied by w to obtain the final unit function ϕ(x). It is important to note that the
process described is for learning a single unit function. In practical applications, one needs
to map the 512 outputs of the Decoder layer to 512 nonlinear unit functions, each learnable.
Summing these 512 learned unit functions will yield the final prediction result pr

3. Experimental Analysis
3.1. Evaluation Metrics

In the experimental analysis of this paper, the accuracy of the model predictions is
measured using three metrics: RMSE, MAE, and R2. The calculation formula for RMSE is
presented in Equation (7):

RMSE =

√
1
n

n

∑
i=1

(
Yi − Ŷi

)2, (7)

where Yi represents the actual value of the data, Ŷi represents the predicted value output
by the model, and n denotes the total number of prediction samples.

The calculation formula for MAE is presented in Equation (8):

MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣. (8)

The coefficient of determination, denoted as R2, is an important metric for assessing
the goodness of fit of a time series forecasting model. It indicates the proportion of variance
between the predicted values and the actual observed values. The specific calculation
method for R2 is presented in Equation (9):

R2 = 1 −

n
∑

i=1

(
Yi − Ŷi

)2

n
∑

i=1

(
Yi − Yi

)2
, (9)

where Yi represents the mean value.
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3.2. Data and Simulation Settings

This experiment uses data from the 200 MW wind farm, as described in Section 2.
To predict the future wind power value based on 30 historical data points, a sliding
window method is used to extract samples. The dataset is divided as follows: Training set:
24,498 samples, Validation set: 7008 samples, and Test set: 3504 samples. The model is built
and trained using Python 3.9.7 programming language and the PyTorch-gpu 2.1.0 deep
learning framework. The hyperparameters for the model are set as shown in Table 2.

Table 2. Hyperparameter configuration.

Hyperparameter Parameter Values

Batch_size 32
Train_epochs 15

Kenel_size 3
D_model 512
H_heads 8

Encoder_layers 2
Decoder_layers 1

Dropout 0.05
Learning_rate Adaptive Optimization

The test set contains a total of 3504 samples. To clearly present the prediction results,
samples are selected at intervals for plotting. MAE, RMSE, and R2 are used to evaluate and
analyze the prediction results of the 3504 test samples. The experimental analysis consists
of two parts. The first part is model optimization verification. First, the Transformer
model is enhanced with the KAN module to create the KAN-Transformer model. This part
validates whether the KAN layer improves the model’s prediction accuracy by capturing
nonlinear relationships. Next, the original data are processed using EWMA to create the
EWMA-KAN-Transformer model. This part verifies whether applying EWMA denoising
to the introduced multivariable features enhances the model’s prediction accuracy. The
second part is a comparison with common time series prediction models. The proposed
model is compared with common time series prediction models in terms of prediction
curves and test set evaluation metrics. This part assesses whether the proposed model
shows advantages over other models in the field of ultrashort-term wind power prediction.

3.3. Optimization Analysis of Transformer Model Based on EWMA and KAN

The KAN network is a novel deep-learning algorithm that captures nonlinear relation-
ships by introducing learnable activation functions at the network’s edges [26,27]. It has
significant advantages in handling complex function fitting and nonlinear patterns, and
it has been demonstrated to be an effective method for improving accuracy in the field of
time series forecasting [28].

To verify that the KAN network can effectively improve the prediction accuracy
of the Transformer model, we replace the final linear layer of the Transformer model
with a KAN layer. This modification improves the model’s ability to capture nonlinear
relationships. The comparison of prediction curves between the Transformer model and the
KAN-Transformer model is shown in Figure 13, and the comparison of test set prediction
evaluation metrics is shown in Table 3.

Data from 3 days are selected for plotting in Figure 13, and Table 3 shows the results
of calculations for the entire test set data. In Figure 13, the orange curve represents the
prediction of the Transformer model, while the green curve represents the prediction of the
KAN-Transformer model. Table 3 indicates that the KAN-Transformer model reduces MAE
and RMSE by 0.41 MW and 0.49 MW, respectively, and increases R2 by 0.18% compared
to the Transformer model. This demonstrates that the KAN layer’s ability to self-learn
non-linear functions results in higher prediction accuracy than the Transformer model’s
linear mapping, highlighting the importance of capturing non-linear relationships.
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Table 3. Comparison of test set evaluation metrics between Transformer and KAN-Transformer models.

Model MAE/MW RMSE/MW R2/%

Transformer 4.87 8.21 98.43
KAN-Transformer 4.46 7.72 98.61

EWMA, with its exponential weighting average characteristic, helps to smooth time series
data and can effectively address issues related to noise and outliers in the data [29,30], which
is particularly important in applications such as time series forecasting. In the context of
wind power forecasting, noise from external variables like wind speed and wind direction
can directly impact the accuracy of power predictions. By applying EWMA smoothing,
we can preprocess these external variables, providing the model with more stable feature
inputs. This paper first introduces the KAN network based on the Transformer time series
forecasting model and then combines it with EWMA to suppress noise in the data. To
validate that the combination of the two achieves the highest prediction accuracy, we com-
pare the KAN-Transformer with the EWMA-KAN-Transformer model. The comparison of
prediction curves between the KAN-Transformer model and the EWMA-KAN-Transformer
model is shown in Figure 14, and the evaluation metrics for the test set are compared in
Table 4.
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Table 4. Comparison of test set evaluation metrics between the KAN-Transformer model and the
EWMA-KAN-Transformer model.

Model MAE/MW RMSE/MW R2/%

KAN-Transformer 4.46 7.72 98.61
EWMA-KAN-Transformer 4.38 7.37 98.73

Data from 3 days is selected in Figure 14 for plotting, and Table 4 shows the results
calculated from the entire test set data. In Table 4, the KAN-Transformer model has a
reduction in MAE and RMSE by 0.08 MW and 0.35 MW, respectively, and an increase in R2

by 0.12% compared to the EWMA-KAN-Transformer model. This confirms that applying
EWMA for denoising when introducing multiple variable features improves the model’s
prediction accuracy for future wind power values. From Tables 3 and 4, it can be seen that
the EWMA-KAN Transformer model reduces MAE and RMSE by 0.49 MW and 0.84 MW,
respectively, and increases R2 by 0.3% compared to the Transformer model.

3.4. Comparion and Analysis of the Proposed Model with Other Models

The EWMA data-processed KAN-Transformer short-term wind power forecasting
model is compared with Transformer variant models, traditional machine learning algo-
rithms, and recurrent neural network variants such as LSTM and GRU series models to
verify the advantages of the proposed model in the field of short-term wind power time
series forecasting. During the verification process, data from day 1 are drawn and selected,
and the results are analyzed in the table as the computed results from the entire test set data.

3.4.1. Comparison of the Proposed Model with Transformer Variant Models

The proposed model is compared with CARD, Autoformer, Informer, NSTransformer,
and Autoformer models. The comparison of model prediction curves is shown in Figure 15,
and the evaluation metrics for the test set are compared in Table 5.
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In Figure 15, red represents the model proposed in this article, and the blue solid
line represents the actual wind power data. From Figure 15, it is evident that the model
proposed in this article has the highest degree of fitting with real wind power data in terms
of prediction results. In Table 5, the EWMA-KAN-Transformer model shows a reduction in
MAE and RMSE by 4.05 MW and 7.96 MW and an increase in R2 by 4.19% compared to the
CARD model. Compared to the Autoformer model, the MAE and RMSE are reduced by
1.42 MW and 1.48 MW, and R2 is increased by 0.55%. Compared to the Informer model,
the MAE and RMSE are reduced by 0.38 MW and 1.30 MW, and R2 is increased by 0.48%.
Compared to the NSTransformer model, the MAE and RMSE are reduced by 0.05 MW
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and 0.79 MW, and R2 is increased by 0.28%. This demonstrates that the proposed model
achieves the highest prediction accuracy among the four Transformer variant models.

Table 5. Comparison of test set evaluation metrics between the Transformer variant models and the
EWMA-KAN-Transformer model.

Model MAE/MW RMSE/MW R2/%

CARD 8.43 15.33 94.54
Autoformer 5.80 8.85 98.18

Informer 4.76 8.67 98.25
NSTransformer 4.43 8.16 98.45

EWMA-KAN-Transformer 4.38 7.37 98.73

3.4.2. Comparison of the Proposed Model with Traditional Machine Learning Algorithms

In machine learning-based time series forecasting algorithms, SVR can handle the
nonlinear issues in the data, BP effectively trains deep networks using the backpropagation
algorithm, and RF enhances prediction robustness by aggregating multiple decision trees. There-
fore, these three methods are commonly used for wind power forecasting [32–34]. The model
proposed in this paper is a time series forecasting model based on deep learning, aiming to
suppress noise and enhance the model’s ability to capture nonlinear relationships through
EWMA and KAN. Compared to traditional algorithms, this model can automatically learn
deep features of the data, making it superior when dealing with high-dimensional and
nonlinear characteristics while also exhibiting greater generalization capability. To verify
the superiority of the proposed model over traditional machine learning algorithms, it
is compared with traditional machine learning algorithms such as SVR, BP, and RF. The
comparison of model prediction curves is shown in Figure 16, and the test set evaluation
metrics are shown in Table 6.
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From Figure 16, it is evident that the model proposed in this paper has the best
prediction accuracy compared to traditional machine learning algorithms. In Table 6, the
proposed EWMA-KAN-Transformer model shows improvements compared to the SVR
model; MAE and RMSE are reduced by 0.17 MW and 10.15 MW, respectively, while R2

increases by 5.85%. Compared to the BP model, MAE and RMSE are reduced by 2.62 MW
and 5.49 MW, respectively, with an increase of 2.57% in R2. Compared to the RF model,
MAE and RMSE are reduced by 0.17 MW and 1.10 MW, respectively, and R2 increases by
0.40%. Thus, the proposed model demonstrates the highest prediction accuracy compared
to the four traditional machine learning algorithms.

3.4.3. Comparison Between the Proposed Model and LSTM and GRU Series Models

The proposed model is compared with the TCN-BiLSTM, TCN-BiGRU, LSTM, and
GRU models. The comparison of the model prediction curves is shown in Figure 17, and
the evaluation metrics for the test set are shown in Table 7.
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Table 7. Comparison of test set evaluation metrics between the EWMA-KAN-Transformer model and
LSTM and GRU series models.

Model MAE/MW RMSE/MW R2/%

TCN-BiLSTM 8.54 13.15 95.97
TCN-BiGRU 6.66 8.96 98.13

LSTM 5.57 8.56 98.29
GRU 6.24 8.36 98.37

EWMA-KAN-Transformer 4.38 7.37 98.73

From Figure 17, it can be observed that the model proposed in this article has the
highest prediction accuracy. In Table 7, the EWMA-KAN-Transformer model shows the
following improvements compared to other models. Compared to the TCN-BiLSTM model,
the MAE and RMSE are reduced by 4.16 MW and 5.78 MW, respectively, and R2 increases by
2.76%. Compared to the TCN-BiGRU model, the MAE and RMSE are reduced by 2.28 MW
and 1.59 MW, respectively, and R2 increases by 0.60%. Compared to the LSTM model, the
MAE and RMSE are reduced by 1.19 MW and 1.19 MW, respectively, and R2 increases by
0.44%. Compared to the GRU model, the MAE and RMSE are reduced by 1.86 MW and
0.99 MW, respectively, and R2 increases by 0.36%. This demonstrates that the proposed
model achieves higher prediction accuracy compared to the GRU and LSTM series models.

4. Conclusions

In order to enhance grid dispatch flexibility, improve the absorption capacity of renew-
able energy, reduce wind curtailment, and strengthen grid stability, this paper proposes a
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short-term wind power forecasting model based on the EWMA-KAN-Transformer. This
paper addresses the issues of data noise and the limited ability of the model to capture
nonlinear relationships due to the use of a simple linear layer in the final prediction step.
Firstly, EWMA data processing is applied to reduce the impact of noise from the introduced
multivariate features on the model’s prediction accuracy. Secondly, the KAN (Kernelized
Attention Network) is integrated into the Transformer model. By learning the parameters of
cubic B-splines, non-linear unit functions are obtained. These non-linear unit functions are
then summed to form a multi-dimensional continuous function, which is used to generate
the final prediction, thus enhancing the model’s ability to capture non-linear relationships.
Finally, experimental analysis leads to the following conclusions.

1. The KAN-Transformer model reduced the MAE and RMSE by 0.41 MW and 0.49 MW,
respectively, compared to the Transformer model. Additionally, the R2 improved
by 0.18%. This validates that incorporating the KAN network in the final layer
of the Transformer model enhances its predictive accuracy by capturing nonlinear
relationships.

2. By applying EWMA to the original wind power data to remove some of the noise,
the EWMA-KAN-Transformer model reduced the MAE and RMSE by 0.08 MW and
0.35 MW, respectively, compared to the KAN-Transformer model. Additionally, the
R2 improved by 0.12%. This demonstrates that when incorporating multiple variables,
using EWMA to remove noise can mitigate the impact of noise in wind power data
on the model’s predictive accuracy.

3. When comparing the proposed model with three types of models, the EWMA-KAN-
Transformer model demonstrated the highest prediction accuracy, with MAE and
RMSE values of 4.38 MW and 7.37 MW, respectively, and an R2 value of 98.73%. This
confirms that the proposed model is more advantageous compared to other wind
power forecasting models.

4. The proposed model uses EWMA for noise reduction, which has the advantage of
denoising without altering the data trend by adjusting the decay factor. However,
finding the optimal decay factor requires ongoing experimentation to enhance the
model’s prediction accuracy. In future research, employing a rational optimization
method to determine the most suitable decay factor could potentially further improve
the model’s prediction accuracy.
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Nomenclature
Abbreviations
ADAM Adaptive moment estimation method
ARIMA Auto-regressive integrated moving average
ARMA Auto-regressive and moving average
BP Backpropagation
CEEMD Complementary ensemble empirical mode decomposition
CNN-MC Convolutional neural network multi-channel
EWMA Exponential weighted moving average
GRU Gated recurrent units
KAN Kolmogorov–Arnold networks
KART Kolmogorov–Arnold representation theorem
LSTM Long short-term memory networks
MAE Mean absolute error
MSE Mean squared error
NWP Numerical weather prediction
PE Positional encoding
RMSE Root mean squared error
Symbols
ci The learnable parameters
dmodel The expanded dimension
E(t−1) The exponential moving average value at the previous time point (t − 1)
E(t) The exponential moving average value for the current time point t
H The number of rows in the original input matrix
i Dimension
K Key matrix
Kn The width of the convolutional kernel
n The sample size
p The number of input units
P The padding dimension
pr Model prediction results
pos Position
q The number of unit functions
Q Query matrix
R2 The coefficient of determination
spline(x) The b-spline function
V Value matrix
w The learnable parameters
X(t) The current observation value at time t
Yi The actual values
Ŷi The predicted values
ϕq,p(xp) The unary function of the first layer in the KART network
ϕq The unary function of the second layer in the KART network
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