Enhanced Crashworthiness Parameters of Nested Thin-Walled Carbon Fiber-Reinforced Polymer and Al Structures: Effect of Using Expanded Polypropylene Foam
Abstract
:1. Introduction
2. Materials and Experimental Studies
3. Crashworthiness Parameters
4. Results and Discussion
4.1. Single Tubes
4.2. Nested Tubes
4.3. The Interaction Occurred in the Nested Sample
4.4. Nested Tube-Reinforced EPP Foams
4.5. Crashworthiness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tran, T.; Hou, S.; Han, X.; Nguyen, N.; Chau, M. Theoretical prediction and crashworthiness optimization of multi-cell square tubes under oblique impact loading. Int. J. Mech. Sci. 2014, 89, 177–193. [Google Scholar] [CrossRef]
- Nia, A.A.; Chahardoli, S. Mechanical behavior of nested multi-tubular structures under quasi-static axial load. Thin-Walled Struct. 2016, 106, 376–389. [Google Scholar] [CrossRef]
- Usta, F.; Türkmen, H.S. Experimental and numerical investigation of impact behavior of nested tubes with and without honeycomb filler. Thin-Walled Struct. 2019, 143, 106256. [Google Scholar] [CrossRef]
- Wang, Y.; He, Q.; Li, L.; Jiang, Y. Mechanical properties of a novel nested tube and its application as anti-explosion layer. Mater. Today Commun. 2022, 31, 103242. [Google Scholar] [CrossRef]
- Yang, K.; Chen, Y.; Liu, S.; Qiao, C.; Yang, J. Internally nested self-locked tube system for energy absorption. Thin-Walled Struct. 2017, 119, 371–384. [Google Scholar] [CrossRef]
- Baroutaji, A.; Sajjia, M.; Olabi, A.-G. On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments. Thin-Walled Struct. 2017, 118, 137–163. [Google Scholar] [CrossRef]
- Magliaro, J.; Altenhof, W.; Alpas, A.T. A review of advanced materials, structures and deformation modes for adaptive energy dissipation and structural crashworthiness. Thin-Walled Struct. 2022, 180, 109808. [Google Scholar] [CrossRef]
- Dehghanpour, S.; Safari, K.H.; Barati, F.; Attar, M.M. Comparative Analysis of Energy Absorption Capacity of Single and Nested Metal Matrix Composite Tubes Under Quasi-Static Lateral and Axial Loading. J. Solid Mech. 2021, 13, 134–143. [Google Scholar] [CrossRef]
- Yao, R.; Pang, T.; Zhang, B.; Fang, J.; Li, Q.; Sun, G. On the crashworthiness of thin-walled multi-cell structures and materials: State of the art and prospects. Thin-Walled Struct. 2023, 189, 110734. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Liu, H.; Sun, Y.; Xu, T.X. Internally nested circular tube system subjected to lateral impact loading. Thin-Walled Struct. 2015, 91, 72–81. [Google Scholar] [CrossRef]
- Xu, B.; Wang, C.; Xu, W. An efficient energy absorber based on fourfold-tube nested circular tube system. Thin-Walled Struct. 2019, 137, 143–150. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, X.; Liu, S.; Lu, J.; Zhou, H. Energy absorption performance of a new circular–triangular nested tube and its application as sacrificial cladding. Thin-Walled Struct. 2020, 157, 106992. [Google Scholar] [CrossRef]
- Ying, L.; Wang, S.; Gao, T.; Dai, M.; Hu, P.; Wang, Y. Crashworthiness analysis and optimization of multi-functional gradient foam-aluminum filled hierarchical thin-walled structures. Thin-Walled Struct. 2023, 189, 110906. [Google Scholar] [CrossRef]
- Al Galib, D.; Limam, A. Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes. Thin-Walled Struct. 2004, 42, 1103–1137. [Google Scholar] [CrossRef]
- Mahdi, E.-S.; El Kadi, H. Crushing behavior of laterally compressed composite elliptical tubes: Experiments and predictions using artificial neural networks. Compos. Struct. 2008, 83, 399–412. [Google Scholar] [CrossRef]
- Elahi, S.A.; Rouzegar, J.; Niknejad, A.; Assaee, H. Theoretical study of absorbed energy by empty and foam-filled composite tubes under lateral compression. Thin-Walled Struct. 2017, 114, 1–10. [Google Scholar] [CrossRef]
- Niknejad, A.; Elahi, S.A.; Liaghat, G.H. Experimental investigation on the lateral compression in the foam-filled circular tubes. Mater. Des. 2012, 36, 24–34. [Google Scholar] [CrossRef]
- Ding, H.; Zhu, G.; Xiang, C.; Pei, F.; Chen, J.; Wang, Y.; Chen, Q. Excellent combination of plasticity and ultra-high strength in a low-alloy automotive steel treated by conventional continuous annealing. Mater. Sci. Eng. A 2020, 791, 139694. [Google Scholar] [CrossRef]
- Adanur, Ö.; Varol, F. Investigation of the effect of friction force on the energy absorption characteristics of thin-walled structures loaded with axial impact force. Mater. Today Commun. 2023, 36, 106420. [Google Scholar] [CrossRef]
- Dubey, P.P.; Rex, A.V.; Raj, A.; Paul, S.K. Influence of pre-strain on tensile response of extra deep drawing (EDD) steel under varying strain rates and crash performance. J. Alloy. Met. Syst. 2023, 4, 100036. [Google Scholar] [CrossRef]
- Shabani, B.; Rad, S.G.; Alijani, A.; Darvizeh, A.; Rajabiehfard, R. Dynamic plastic behavior of single and nested rings under lateral impact. Thin-Walled Struct. 2021, 160, 107373. [Google Scholar] [CrossRef]
- Olabi, A.G.; Morris, E.; Hashmi, M.S.J.; Gilchrist, M.D. Optimised design of nested circular tube energy absorbers under lateral impact loading. Int. J. Mech. Sci. 2008, 50, 104–116. [Google Scholar] [CrossRef]
- Baroutaji, A.; Gilchrist, M.D.; Olabi, A.G. Quasi-static, impact and energy absorption of internally nested tubes subjected to lateral loading. Thin-Walled Struct. 2016, 98, 337–350. [Google Scholar] [CrossRef]
- Kahraman, Y.; Akdikmen, O. Experimental investigation on deformation behavior and energy absorption capability of nested steel tubes under lateral loading. Eng. Sci. Technol. Int. J. 2021, 24, 579–588. [Google Scholar] [CrossRef]
- Atxaga, G.; Arroyo, A.; Canflanca, B. Hot stamping of aerospace aluminium alloys: Automotive technologies for the aeronautics industry. J. Manuf. Process. 2022, 81, 817–827. [Google Scholar] [CrossRef]
- Hatzigeorgiou, G.D.; Beskos, D.E. Minimum cost design of fibre-reinforced concrete-filled steel tubular columns. J. Constr. Steel Res. 2005, 61, 167–182. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Li, J.; Lai, X.; Duan, N. Energy absorption characteristics of nested corrugated-elliptical tubes subjected to a lateral crushing load. Compos. Struct. 2022, 297, 115926. [Google Scholar] [CrossRef]
- Yang, X.; Ma, J.; Sun, Y.; Yang, J. An internally nested circular-elliptical tube system for energy absorption. Thin-Walled Struct. 2019, 139, 281–293. [Google Scholar] [CrossRef]
- Altin, M.; Acar, E.; Güler, M.A. Foam filling options for crashworthiness optimization of thin-walled multi-tubular circular columns. Thin-Walled Struct. 2018, 131, 309–323. [Google Scholar] [CrossRef]
- Altin, M.; Güler, M.A.; Mert, S.K. The effect of percent foam fill ratio on the energy absorption capacity of axially compressed thin-walled multi-cell square and circular tubes. Int. J. Mech. Sci. 2017, 131–132, 368–379. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Pei, W.; Yu, F.; Jiang, Y. Energy-absorbing mechanism and crashworthiness performance of thin-walled tubes diagonally filled with rib-reinforced foam blocks under axial crushing. Compos. Struct. 2022, 299, 116149. [Google Scholar] [CrossRef]
- Xu, B.; Wang, C.; Yuen, S.C.K. Deformation Pattern and Energy Absorption Characteristics of A Four-Tube Nested System Under Lateral and Oblique Loadings. Lat. Am. J. Solids Struct. 2021, 18, e388. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Liu, S.; Zhai, X.; Zhi, X. Energy absorption behaviour of an aluminium foam-filled circular-triangular nested tube energy absorber under impact loading. Structures 2021, 34, 95–104. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J. Advanced lightweight materials for Automobiles: A review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Fontana, M.; Araujo, A.L.; Madeira, J.F.A. Optimization of a thin-walled composite crash absorber. Thin-Walled Struct. 2020, 155, 106826. [Google Scholar] [CrossRef]
- Sun, G.; Chen, D.; Zhu, G.; Li, Q. Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook. Thin-Walled Struct. 2022, 172, 108760. [Google Scholar] [CrossRef]
- Patel, V.; Tiwari, G.; Dumpala, R. Review of the crushing response of collapsible tubular structures. Front. Mech. Eng. 2020, 15, 438–474. [Google Scholar] [CrossRef]
- Magliaro, J.; Rahimidehgolan, F.; Altenhof, W.; Alpas, A.T. Superior energy dissipation mechanisms compounded within composite AA6061/H130 foam structures. Int. J. Mech. Sci. 2023, 238, 107843. [Google Scholar] [CrossRef]
- Gupta, N.K.; Sekhon, G.S.; Gupta, P.K. Study of lateral compression of round metallic tubes. Thin-Walled Struct. 2005, 43, 895–922. [Google Scholar] [CrossRef]
- Zhang, Z. Theoretical prediction of cross-sectional deformation of circular thin-walled tube in large elastic–plastic deformation stage under lateral compression. Thin-Walled Struct. 2022, 180, 109957. [Google Scholar] [CrossRef]
- Kumar, A.P.; Nagarjun, J.; Ma, Q. Potentiality of MWCNT fillers on the lateral crashworthiness behaviour of polymer composite cylindrical tubes under quasi-static loading. J. Ind. Text. 2022, 51, 7014S–7033S. [Google Scholar] [CrossRef]
- Sun, G.; Guo, X.; Li, S.; Ruan, D.; Li, Q. Comparative study on aluminum/GFRP/CFRP tubes for oblique lateral crushing. Thin-Walled Struct. 2020, 152, 106420. [Google Scholar] [CrossRef]
- Wazeer, A.; Das, A.; Abeykoon, C.; Sinha, A.; Karmakar, A. Composites for electric vehicles and automotive sector: A review. Green Energy Intell. Transp. 2022, 2, 100043. [Google Scholar] [CrossRef]
- Tran, T.N.; Le, D.H.; Baroutaji, A. Theoretical and numerical crush analysis of multi-stage nested aluminium alloy tubular structures under axial impact loading. Eng. Struct. 2019, 182, 39–50. [Google Scholar] [CrossRef]
- Bhutada, S.; Goel, M.D. Crashworthiness parameters and their improvement using tubes as an energy absorbing structure: An overview. Int. J. Crashworthiness 2021, 1–32. [Google Scholar] [CrossRef]
- Alagesan, P.K.; Dirgantara, T.; Jusuf, A.; Gladys, A.K.; Ma, Q. Comparison of the lateral crushing response of thin-walled aluminum-thermoplastic polymer composite cylindrical shells. Mech. Adv. Mater. Struct. 2024. [Google Scholar] [CrossRef]
- Yang, H.; Guo, X.; Wang, H.; Qu, J.; Ma, Y.; Lei, H.; Chen, H. Low-velocity impact performance of composite-aluminum tubes prepared by mesoscopic hybridization. Compos. Struct. 2021, 274. [Google Scholar] [CrossRef]
- Yang, H.; Ren, Y. On energy absorption capability and controllable failure modes of CFRP circular tube using numerical simulation. Thin-Walled Struct. 2024, 205. [Google Scholar] [CrossRef]
NT2-TS | |||
NT2-TM | |||
NT3-TS+TS | |||
NT3-TM+TS | |||
NT2-TS | |||
NT2-TM | |||
NT3-TS+TS | |||
NT3-TM+TS | |||
FF_NT2-TS | ||||
FF_NT2-TM | ||||
FF_NT3-TS+TS | ||||
FF_NT3-TS+TM | ||||
FF_NT2-TS | ||||
FF_NT2-TM | ||||
FF_NT3-TS+TS | ||||
FF_NT3-TS+TM | ||||
Sample Combination | Crushability Ratio, eg, (mm/mm) | Sample Weight (g) | Fmean (N) | Fmax (N) | Absorbed Energy, EA, (J) | Specific Energy Absorption, SEA, (J/g) | Crush Force Efficiency, CFE, (%) | Work Effectiveness, Weff, (J/g) | ||
---|---|---|---|---|---|---|---|---|---|---|
Aluminum based samples | Single rings | TB | 0.82 | 46.5 | 812 | 1491 | 51.1 | 1.10 | 54 | 0.90 |
TM | 0.81 | 39.2 | 1150 | 1640 | 55.7 | 1.42 | 70 | 1.15 | ||
TS | 0.78 | 23.3 | 1952 | 4141 | 56.4 | 2.42 | 47 | 1.89 | ||
Nested tube samples | NT2-TS | 0.78 | 69.8 | 1420 | 3865 | 85.7 | 1.23 | 37 | 0.96 | |
NT2-TM | 0.78 | 85.7 | 1649 | 2884 | 99.5 | 1.16 | 57 | 0.91 | ||
NT3-TS+TS | 0.75 | 93.1 | 2772 | 5219 | 160.2 | 1.72 | 53 | 1.29 | ||
NT3-TS+TM | 0.75 | 109 | 2484 | 5799 | 143.6 | 1.32 | 43 | 0.99 | ||
Nested tube reinforced EPP foam | FF_TB | 0.82 | 59.2 | 1105 | 2550 | 103.8 | 1.75 | 43 | 1.43 | |
FF_NT2-TS | 0.78 | 82.5 | 1692 | 4781 | 154.6 | 1.87 | 35 | 1.47 | ||
FF_NT2-TM | 0.78 | 98.4 | 1990 | 4058 | 181.8 | 1.85 | 49 | 1.45 | ||
FF_NT3-TS+TS | 0.75 | 105.8 | 2292 | 4774 | 203.5 | 1.92 | 48 | 1.44 | ||
FF_NT3-TS+TM | 0.75 | 121.8 | 2427 | 7148 | 215.5 | 1.77 | 34 | 1.33 | ||
CFRP based samples | Single rings | TB | 0.82 | 25.3 | 515 | 1367 | 32.4 | 1.28 | 38 | 1.05 |
TM | 0.81 | 20.5 | 607 | 1544 | 29.4 | 1.43 | 39 | 1.16 | ||
TS | 0.78 | 10.6 | 765 | 1858 | 22.1 | 2.08 | 41 | 1.63 | ||
Nested tube samples | NT2-TS | 0.78 | 35.9 | 931 | 2234 | 56.2 | 1.57 | 42 | 1.23 | |
NT2-TM | 0.78 | 45.8 | 958 | 2087 | 57.8 | 1.26 | 46 | 0.99 | ||
NT3-TS+TS | 0.75 | 46.5 | 1514 | 2113 | 87.5 | 1.88 | 72 | 1.41 | ||
NT3-TS+TM | 0.75 | 56.4 | 1521 | 3886 | 87.9 | 1.56 | 39 | 1.17 | ||
Nested tube reinforced EPP foam | FF_TB | 0.82 | 38 | 1000 | 1925 | 93.9 | 2.47 | 52 | 2.02 | |
FF_NT2-TS | 0.78 | 48.6 | 1477 | 3295 | 134.9 | 2.78 | 45 | 2.18 | ||
FF_NT2-TM | 0.78 | 58.5 | 1548 | 3233 | 141.4 | 2.42 | 48 | 1.89 | ||
FF_NT3-TS+TS | 0.75 | 59.2 | 1727 | 3128 | 153.4 | 2.59 | 55 | 1.95 | ||
FF_NT3-TS+TM | 0.75 | 69.1 | 1908 | 4718 | 169.4 | 2.45 | 40 | 1.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yalçın, M.M.; Özsoy, M.İ. Enhanced Crashworthiness Parameters of Nested Thin-Walled Carbon Fiber-Reinforced Polymer and Al Structures: Effect of Using Expanded Polypropylene Foam. Appl. Sci. 2024, 14, 9635. https://doi.org/10.3390/app14219635
Yalçın MM, Özsoy Mİ. Enhanced Crashworthiness Parameters of Nested Thin-Walled Carbon Fiber-Reinforced Polymer and Al Structures: Effect of Using Expanded Polypropylene Foam. Applied Sciences. 2024; 14(21):9635. https://doi.org/10.3390/app14219635
Chicago/Turabian StyleYalçın, Muhammet Muaz, and Mehmet İskender Özsoy. 2024. "Enhanced Crashworthiness Parameters of Nested Thin-Walled Carbon Fiber-Reinforced Polymer and Al Structures: Effect of Using Expanded Polypropylene Foam" Applied Sciences 14, no. 21: 9635. https://doi.org/10.3390/app14219635
APA StyleYalçın, M. M., & Özsoy, M. İ. (2024). Enhanced Crashworthiness Parameters of Nested Thin-Walled Carbon Fiber-Reinforced Polymer and Al Structures: Effect of Using Expanded Polypropylene Foam. Applied Sciences, 14(21), 9635. https://doi.org/10.3390/app14219635