Emission Factors for Biochar Production from Various Biomass Types in Flame Curtain Kilns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flame Curtain Construction
2.2. Feedstocks, Moisture and Carbon Content
2.3. Kiln Operation
2.4. Emission Measurements
3. Results and Discussion
3.1. Biochar Yields and CH Contents
3.2. Gas Emission Factors
3.3. Consequences
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmidt, H.P.; Anca-Couce, A.; Hagemann, N.; Werner, C.; Gerten, D.; Lucht, W.; Kammann, C. Pyrogenic carbon capture and storage. GCB Bioenergy 2019, 11, 573–591. [Google Scholar] [CrossRef]
- Lehmann, J.; Rondon, M. Bio-char soil management on highly weathered soils in the humid tropics. Biol. Approaches Sustain. Soil Syst. 2006, 113, e530. [Google Scholar]
- Silvani, L.; Cornelissen, G.; Smebye, A.B.; Zhang, Y.; Okkenhaug, G.; Zimmerman, A.R.; Thune, G.; Sævarsson, H.; Hale, S.E. Can biochar and designer biochar be used to remediate per-and polyfluorinated alkyl substances (PFAS) and lead and antimony contaminated soils? Sci. Total Environ. 2019, 694, 133693. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Taylor, P. Kon-Tiki flame curtain pyrolysis for the democratization of biochar production. Biochar. J. 2014, 1, 14–24. [Google Scholar]
- Collins, D.; Morduch, J.; Rutherford, S.; Ruthven, O. Portfolios of the Poor: How the World's Poor Live on $2 a Day; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Scholz, S.B.; Sembres, T.; Roberts, K.; Whitman, T.; Wilson, K.; Lehmann, J. Biochar Systems for Smallholders in Developing Countries: Leveraging Current Knowledge and Exploring Future Potential for Climate-Smart Agriculture; World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Cornelissen, G.; Pandit, N.R.; Taylor, P.; Pandit, B.H.; Sparrevik, M.; Schmidt, H.P. Emissions and Char Quality of Flame-Curtain "Kon Tiki" Kilns for Farmer-Scale Charcoal/Biochar Production. PLoS ONE 2016, 11, e0154617. [Google Scholar] [CrossRef]
- Jayakumar, A.; Morrisset, D.; Koutsomarkos, V.; Wurzer, C.; Hadden, R.M.; Lawton, L.; Edwards, C.; Mašek, O. Systematic evaluation of pyrolysis processes and biochar quality in the operation of low-cost flame curtain pyrolysis kiln for sustainable biochar production. Curr. Res. Environ. Sustain. 2023, 5, 100213. [Google Scholar] [CrossRef]
- Kalderis, D.; Tsuchiya, S.; Phillipou, K.; Paschalidou, P.; Pashalidis, I.; Tashima, D.; Tsubota, T. Utilization of pine tree biochar produced by flame-curtain pyrolysis in two non-agricultural applications. Bioresour. Technol. Rep. 2020, 9, 100384. [Google Scholar] [CrossRef]
- Karananidi, P.; Som, A.M.; Loh, S.K.; Bachmann, R.T. Flame curtain pyrolysis of oil palm fronds for potential acidic soil amelioration and climate change mitigation. J. Environ. Chem. Eng. 2020, 8, 103982. [Google Scholar]
- Namaswa, T.; Burslem, D.F.; Smith, J. Emerging trends in appropriate kiln designs for small-scale biochar production in low to middle income countries. Bioresour. Technol. Rep. 2023, 24, 101641. [Google Scholar]
- Wilson, K.J.; Bekker, W.; Feher, S.I. Producing, Characterizing and Quantifying Biochar in the Woods Using Portable Flame Cap Kilns. J. Vis. Exp. 2024, 203, e65543. [Google Scholar] [CrossRef]
- Tsubota, T.; Tsuchiya, S.; Kusumoto, T.; Kalderis, D. Assessment of biochar produced by flame-curtain pyrolysis as a precursor for the development of an efficient electric double-layer capacitor. Energies 2021, 14, 7671. [Google Scholar] [CrossRef]
- Aquije, C.; Schmidt, H.-P.; Draper, K.; Joseph, S.; Ladd, B. Low tech biochar production could be a highly effective nature-based solution for climate change mitigation in the developing world. Plant Soil 2021, 479, 1–7. [Google Scholar] [CrossRef]
- Boucher, O.; Friedlingstein, P.; Collins, B.; Shine, K.P. The indirect global warming potential and global temperature change potential due to methane oxidation. Environ. Res. Lett. 2009, 4, 044007. [Google Scholar] [CrossRef]
- Lashof, D.A.; Ahuja, D.R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529–531. [Google Scholar] [CrossRef]
- Daniel, J.S.; Solomon, S. On the climate forcing of carbon monoxide. J. Geophys. Res. Atmos. 1998, 103, 13249–13260. [Google Scholar] [CrossRef]
- Rosenthal, J.; Quinn, A.; Grieshop, A.P.; Pillarisetti, A.; Glass, R.I. Clean cooking and the SDGs: Integrated analytical approaches to guide energy interventions for health and environment goals. Energy Sustain. Dev. 2018, 42, 152–159. [Google Scholar] [CrossRef]
- Cornelissen, G.; Sørmo, E.; de la Rosa, R.K.A.; Ladd, B. Flame curtain kilns produce biochar from dry biomass with minimal methane emissions. Sci. Total. Environ. 2023, 903, 166547. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Conversion of biomass to biofuels and life cycle assessment: A review. Environ. Chem. Lett. 2021, 19, 4075–4118. [Google Scholar]
- Tabuti, J.R.S.; Adoch, E.P.; Mawa, C.; Whitney, C. Priority Species and Management Approaches for Woody Species: A Case Study of Awach Sub-county, Gulu District, Uganda. Hum. Ecol. 2022, 50, 1115–1127. [Google Scholar] [CrossRef]
- Braga, R.M.; Costa, T.R.; Freitas, J.C.; Barros, J.M.; Melo, D.M.; Melo, M.A. Pyrolysis kinetics of elephant grass pretreated biomasses. J. Therm. Anal. Calorim. 2014, 117, 1341–1348. [Google Scholar] [CrossRef]
- Martin, A.R.; Thomas, S.C. A reassessment of carbon content in tropical trees. PLoS ONE 2011, 6, e23533. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, M.A.; Adetifa, B.O.; Adekomaya, S.O.; Lawal, N.S.; Adama, O.O. Experimental characterization of maize cob and stalk based pellets for energy use. Eng. J. 2019, 23, 117–128. [Google Scholar] [CrossRef]
- Khairy, M.; Amer, M.; Ibrahim, M.; Ookawara, S.; Sekiguchi, H.; Elwardany, A. The influence of torrefaction on the biochar characteristics produced from sesame stalks and bean husk. Biomass-Convers. Biorefinery 2023, 14, 17127–17148. [Google Scholar] [CrossRef]
- Hidayat, E.; Afriliana, A.; Gusmini, G.; Taizo, M.; Harada, H. Evaluate of coffee husk compost. Int. J. Food Agric. Nat. Resour. 2020, 1, 37–43. [Google Scholar] [CrossRef]
- Sparrevik, M.; Adam, C.; Martinsen, V.; Jubaedah, J.; Cornelissen, G. Emissions of gases and particles from charcoal/biochar production in rural areas using medium-sized traditional and improved “retort” kilns. Biomass Bioenergy 2015, 72, 65–73. [Google Scholar] [CrossRef]
- Bosch, H.; Janssen, F. Formation and control of nitrogen oxides. Catal. Today 1988, 2, 369–379. [Google Scholar]
- Bailis, R. Modeling climate change mitigation from alternative methods of charcoal production in Kenya. Biomass Bioenergy 2009, 33, 1491–1502. [Google Scholar] [CrossRef]
- Pennise, D.M.; Smith, K.R.; Kithinji, J.P.; Rezende, M.E.; Raad, T.J.; Zhang, J.; Fan, C. Emissions of greenhouse gases and other airborne pollutants from charcoal making in Kenya and Brazil. J. Geophys. Res. Atmos. 2001, 106, 24143–24155. [Google Scholar] [CrossRef]
- Azzi, E.S.; Li, H.; Cederlund, H.; Karltun, E.; Sundberg, C. Modelling biochar long-term carbon storage in soil with harmonized analysis of decomposition data. Geoderma 2023, 441, 116761. [Google Scholar] [CrossRef]
- Yang, Q.; Mašek, O.; Zhao, L.; Nan, H.; Yu, S.; Yin, J.; Li, Z.; Cao, X. Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation. Appl. Energy 2021, 282, 116275. [Google Scholar] [CrossRef]
- Mereb, J.B.; Wendt, J.O. Air staging and reburning mechanisms for NOx abatement in a laboratory coal combustor. Fuel 1994, 73, 1020–1026. [Google Scholar] [CrossRef]
- Zhang, Y.; Obrist, D.; Zielinska, B.; Gertler, A. Particulate emissions from different types of biomass burning. Atmos. Environ. 2013, 72, 27–35. [Google Scholar] [CrossRef]
- Flatabø, G.Ø.; Cornelissen, G.; Carlsson, P.; Nilsen, P.J.; Tapasvi, D.; Bergland, W.H.; Sørmo, E. Industrially relevant pyrolysis of diverse contaminated organic wastes: Gas compositions and emissions to air. J. Clean. Prod. 2023, 423, 138777. [Google Scholar] [CrossRef]
- Sørmo, E.; Silvani, L.; Thune, G.; Gerber, H.; Schmidt, H.P.; Smebye, A.B.; Cornelissen, G. Waste timber pyrolysis in a medium-scale unit: Emission budgets and biochar quality. Sci. Total. Environ. 2020, 718, 137335. [Google Scholar] [CrossRef]
- Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 2004, 30, 219–230. [Google Scholar] [CrossRef]
- Demirbas, A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 2004, 72, 243–248. [Google Scholar] [CrossRef]
- Börcsök, Z.; Pásztory, Z. The role of lignin in wood working processes using elevated temperatures: An abbreviated literature survey. Eur. J. Wood Wood Prod. 2021, 79, 511–526. [Google Scholar]
- Demirbas, A.; Kucuk, M. Kinetic study on the pyrolysis of hazel nut shell. Cellul. Chem. Technol. 1994, 28, 85–94. [Google Scholar]
- Oliveira, D.M.; Mota, T.R.; Grandis, A.; de Morais, G.R.; de Lucas, R.C.; Polizeli, M.L.; Marchiosi, R.; Buckeridge, M.S.; Ferrarese-Filho, O.; dos Santos, W.D. Lignin plays a key role in determining biomass recalcitrance in forage grasses. Renew. Energy 2020, 147, 2206–2217. [Google Scholar] [CrossRef]
- Su, X.; Wang, D.; Wei, L.; Gao, T.; Wang, D.; Li, F.; Tian, Y.; Wei, S. Analysis and Evaluation of Chemical Composition of Stem for Different Types of Sesame. J. Henan Agric. Sci. 2020, 49, 54. [Google Scholar]
- Mtambanengwe, F.; Kirchmann, H. Litter from a tropical savanna woodland (miombo): Chemical composition and C and N mineralization. Soil Biol. Biochem. 1995, 27, 1639–1651. [Google Scholar] [CrossRef]
- de Almeida, M.N.; Halfeld, G.G.; da Costa, I.B.; Guimarães, L.G.d.L.; Cordeiro, B.; Guimarães, V.M. Exploring the Potential of Coffee Husks as a Raw Material for Second-Generation Ethanol Production. BioEnergy Res. 2024, 17, 281–293. [Google Scholar] [CrossRef]
- Jansen, C.; Lübberstedt, T. Turning maize cobs into a valuable feedstock. BioEnergy Res. 2012, 5, 20–31. [Google Scholar] [CrossRef]
- Mbanjo, E.G.N.; Rabbi, I.Y.; Ferguson, M.E.; Kayondo, S.I.; Eng, N.H.; Tripathi, L.; Kulakow, P.; Egesi, C. Technological innovations for improving cassava production in sub-Saharan Africa. Front. Genet. 2021, 11, 623736. [Google Scholar] [CrossRef]
- Martinsen, V.; Mulder, J.; Shitumbanuma, V.; Sparrevik, M.; Børresen, T.; Cornelissen, G. Farmer-led maize biochar trials: Effect on crop yield and soil nutrients under conservation farming. J. Plant Nutr. Soil Sci. 2014, 177, 681–695. [Google Scholar] [CrossRef]
Feedstock | Feedstock Moisture | Biomass In | Biochar Out | Duration | Biochar Mass Yield | Feedstock C | Biochar C | Biochar H | Biochar N | H/C Ratio | Biochar pH |
---|---|---|---|---|---|---|---|---|---|---|---|
% | kg dw | kg dw | min | % | % | % | % | % | wt/wt | ||
Grass | 8.0 ± 1.0 | 60.1 | 13.0 | 35 | 21.7 | 41.6 a | 48.8 ± 0.5 | 2.17 ± 0.04 | 0.53 ± 0.02 | 0.04 | 10.01 ± 0.01 |
Grass + twigs | 9.6 ± 1.5 | 63.6 | 14.4 | 52 | 22.6 | 44.5 b | 67.9 ± 0.3 | 3.00 ± 0.05 | 0.77 ± 0.02 | 0.04 | 9.84 ± 0.03 |
Maize cobs | 11.2 ± 2.5 | 19.0 | 4.8 | 96 | 25.2 | 48.6 c | 81.6 ± 0.6 | 2.94 ± 0.05 | 0.74 ± 0.02 | 0.04 | 9.55 ± 0.01 |
Sesame stems | 10.0 ± 1.5 | 35.2 | 9.1 | 33 | 25.8 | 44.5 d | 54.5 ± 0.6 | 2.48 ± 0.05 | 1.10 ± 0.03 | 0.05 | 9.91 ± 0.02 |
Coffee husk | 12.1 ± 1.1 | n.d. e | n.d. e | 10 | n.d. e | 46.3 f | n.d. e | n.d. e | n.d. e | n.d. e | n.d. e |
Twigs and leaves (10% moisture) g | 14.7 ± 3.4 | Literature | 24.8 | 47.4 h | 81.2 ± 1.6 | 2.62 ± 0.30 | n.d. | 0.03 | n.d. | ||
Twigs with 25% moisture i | 25.0 | Literature | 22.0 | 40.3 i | 75.4 ± 9.3 | 1.89 ± 0.46 | 0.69 ± 0.16 | 0.03 | n.d. |
Feedstock | n a | CO2 | CO | CH4 | TSP | NOx | CO2-eq. b |
---|---|---|---|---|---|---|---|
g kg−1 Biochar | |||||||
Grass | 17 | 5122 | 39 (33–47) | <5.5 c | 16 (13–24) | 0.13 (0.00–0.19) | 78 |
Grass + twigs | 19 | 4576 | 33 (27–60) | <5.5 c | 45 (31–72) | <0.006 d | 66 |
Maize cobs | 21 | 3933 | 68 (56–107) | <5.5 c | 27 (17–40) | 0.07 (0.00–0.16) | 136 |
Sesame stems | 17 | 1197 | 28 (25–41) | 17 e | 14 (12–18) | 0.04 (0.00–0.07) | 481 |
Coffee husk | 4 | 2782 | n.d. f | 179 (134–274) | 331 (287–356) | <0.006 d | 4500 |
Twigs and leaves (10% moisture) g | 25 | 3633 | 101 (60–181) | <5.5 c | 62 (29–97) | 0.01 (0.00–0.03) | 202 |
Twigs (25% moisture) h | 190 | 3944 | 32 | 28.5 | 9.3 | 0.55 | 777 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornelissen, G.; Makate, C.; Mulder, J.; Janssen, J.; Trimarco, J.; Obia, A.; Martinsen, V.; Sørmo, E. Emission Factors for Biochar Production from Various Biomass Types in Flame Curtain Kilns. Appl. Sci. 2024, 14, 9649. https://doi.org/10.3390/app14219649
Cornelissen G, Makate C, Mulder J, Janssen J, Trimarco J, Obia A, Martinsen V, Sørmo E. Emission Factors for Biochar Production from Various Biomass Types in Flame Curtain Kilns. Applied Sciences. 2024; 14(21):9649. https://doi.org/10.3390/app14219649
Chicago/Turabian StyleCornelissen, Gerard, Clifton Makate, Jan Mulder, Jente Janssen, Jon Trimarco, Alfred Obia, Vegard Martinsen, and Erlend Sørmo. 2024. "Emission Factors for Biochar Production from Various Biomass Types in Flame Curtain Kilns" Applied Sciences 14, no. 21: 9649. https://doi.org/10.3390/app14219649
APA StyleCornelissen, G., Makate, C., Mulder, J., Janssen, J., Trimarco, J., Obia, A., Martinsen, V., & Sørmo, E. (2024). Emission Factors for Biochar Production from Various Biomass Types in Flame Curtain Kilns. Applied Sciences, 14(21), 9649. https://doi.org/10.3390/app14219649