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Abstract: Thin films of strontium titanate, which reveal high structure quality and tunable properties
prospective for microwave applications at room temperature, were grown on a semi-insulating silicon
carbide substrate using magnetron sputtering for the first time. The films’ growth mechanisms were
studied using medium-energy ion scattering, and the films’ structures were investigated using X-ray
diffraction. The electrical characteristics of planar capacitors based on strontium titanate films were
measured at a frequency of 2 GHz using a high-precision resonance technique. It is shown that
the tendency to improve the crystalline structure of strontium titanate film with an increase in the
substrate temperature is most pronounced for films deposited at elevated working gas pressure
under low supersaturation conditions. Planar capacitors formed on the basis of oriented SrTiO3 films
on silicon carbide showed tunability n = 36%, with a loss tangent of 0.008–0.009 at a level of slow
relaxation of capacitance, which is significantly lower than the data published currently regarding
planar tunable ferroelectric elements. This is the first successful attempt to realize a planar SrTiO3

capacitor on a silicon carbide substrate, which exhibits a commutation quality factor more than 2500
at microwaves.

Keywords: strontium titanate; silicon carbide; thin films; nonlinear dielectric properties; microwave
applications

1. Introduction

Electrically tunable devices such as varactors, phase shifters, and delay lines are
key elements of modern microwave communication systems. Today, the main materials
on the basis of which these devices are implemented are semiconductors, ferrites, and
ferroelectrics (FE). All of them have their advantages and disadvantages determined by
their physical nature; therefore, the search for the “optimal for microwave applications”
material is still an urgent task.

Following is a list of the main desirable characteristics of an “ideal” electrically tunable
microwave element: high tunability, low losses, thermal stability of properties, high operat-
ing power, and fast response. It is easy to see that a device with such a set of characteristics
is not implemented currently. Thus, semiconductor elements operate at low power and
significantly lose Q-factor at frequencies above 10 GHz; ferrite elements are characterized
by high-energy consumption and dimensions and low speed; the properties of FE devices
depend on temperature [1].

It should be noted that FE materials exhibit properties that make them attractive for use
in electrically tunable microwave devices, namely a strong dependence on the permittivity
on the external electric field [2], relatively low dielectric losses at microwaves [3], the ability
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to operate at a high power level [4–7], and fast responses [8]. The above-mentioned proper-
ties of FE materials are most effectively realized in film structures on dielectric substrates
due to the possibility of forming oriented layers with low microwave losses, the possibility
of reaching a high intensity in the control electric field in the film, and the perspective of
integration into microwave microelectronic devices [4,8]. Today, laboratory prototypes of
electrically tunable capacitors, phase shifters, delay lines, and other microwave elements
based on ferroelectric films have been implemented [9–14].

The most studied FE material for microwave applications today is a solid solution of
barium and strontium titanates, BaxSr1-xTiO3 (BST), the nonlinear properties of which vary
widely with changes in the component composition [15,16]. Compositions with a barium
content of 50–60%, for which the temperature of the phase transition from ferroelectric to
paraelectric state is close to room temperature, exhibit pronounced nonlinear properties,
with a low Q–factor and high temperature dependence of the properties [17]. The best
combination of tunability and losses, determined by the commutation quality factor [18],
is demonstrated by solid solutions with 30% Ba content [15]. A further decrease in the
concentration of barium in the solid solution significantly improves the quality factor and
reduces the nonlinearity of the material. Pure SrTiO3 (STO) has the lowest microwave loss
in this series of solid solutions [19].

Single-crystal strontium titanate is a centrosymmetric paraelectric material with a
cubic perovskite structure (a = 3.905 Å), which does not transform into a ferroelectric state
when the temperature decreases down to 0 K. The dielectric permittivity ε of the STO crystal
increases from 300 at room temperature to 24,000 at 4 K [20]. Strontium titanate is a bright
representative of functional oxides. The electrical, optical, thermoelectric, and supercon-
ducting properties of SrTiO3 can be used in various electronic devices [21–25]. Strontium
titanate films are of interest for strain engineering [26–28], in the development of infrared
radiation sensors [29], and for photocatalytic, biosensor [30], and energy-storage [31] appli-
cations. Based on strontium titanate films, the epitaxial heterostructures of a “dielectric-
semiconductor” [32,33], and multilayer structures for use in photodetectors, memory [34]
and other devices [35,36] can be realized. The electrical properties of strontium titanate,
which make it a promising material for tunable microwave elements, are considered in [37].
Summarizing the conclusions of this work, it should be noted that in addition to high ε and
low dielectric losses, tunable elements based on STO films exhibit a nonlinear dependence
of the permittivity on the electric field, high response speed, and a weak temperature
dependence of the properties at room temperature.

A separate challenge is the development of high-power tunable FE microwave ele-
ments. One of the most important characteristics of these elements is their ability to operate
at a high level of microwave power without distortion of the capacitance and quality factors.
These distortions occur under the influence of electrical and thermal effects. Electrical
distortions caused by the nonlinearity of the FE material are inevitable in ferroelectric
microwave devices. They are successfully used in nonlinear devices or can be minimized
in tunable filters and phase shifters [38,39]. The scale of thermal distortions caused by
microwave power dissipation is determined by the thermal conductivity of the dielectric
substrate [40]. Today, high-quality strontium titanate films are grown on various mono-
and polycrystalline substrates such as MgO [41], LaAlO3 [19], sapphire [42], alumina [37],
and DyScO3 [26–28]. Magnesium and aluminum oxides have the best heat-conducting char-
acteristics of the above materials [43,44]. The thermal conductivity coefficients of MgO and
Al2O3 are between the order of 60 and 40 W·m−1·K−1, respectively, which does not allow
them to avoid overheating ferroelectric microwave elements on these substrates [11,38,39].

Semi-insulating silicon carbide (SiC) appears to be a promising substrate material
that can significantly improve the power characteristics of FE elements. The material
has a thermal conductivity coefficient of 500 W·m−1·K−1, high strength, low dielectric
losses [45,46], and proven production technology. Thus, tunable high Q-factor elements
based on strontium titanate films on silicon carbide substrates are potentially promising for
high-power microwave applications.
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Today, a number of works devoted to the growth of FE films on silicon carbide have
been published [47–50]. All of these works consider elements based on BST films, the
highest quality factor of which does not exceed 50 at microwaves. Publications devoted
to strontium titanate films on silicon carbide are absent in the modern literature. In
connection with the above, the objective of this work is to synthesize strontium titanate
films of high structural quality on semi-insulating silicon carbide substrates for their
further use in powerful high-Q-factor microwave tunable devices. For this purpose, we
investigated the relationships between the technological conditions of film deposition, the
mechanisms of their nucleation and growth on SiC substrates, and their structural and
electrical characteristics. Studies on the growth mechanisms of strontium titanate films
were carried out on island structures sensitive to changes in technological parameters. The
relationship between the structural characteristics and key technological factors, namely
substrate temperature and working gas pressure, was studied using X-ray structural
analysis. The electrical characteristics of the films with the best crystal structure were
studied using resonance techniques using planar capacitors at microwaves.

2. Experimental
2.1. Synthesis of Thin Films

Thin films of strontium titanate were deposited on substrates of semi-insulating
silicon carbide using high-frequency magnetron sputtering. SiC substrates of hexagonal
polytype 6H with a diameter of 76 mm and lattice parameters a = 0.308 nm, c = 1.512 nm
of “epi-ready” quality were manufactured at “Svetlana Electronpribor” St. Petersburg.
The dimensions of the substrate for film growth were 10 × 10 mm with a thickness of
0.4 mm. A ceramic target of stoichiometric composition SrTiO3 with a diameter of 76 mm
was manufactured using the method of single-stage solid-phase synthesis from a mixture of
chemically pure SrCO3 and TiO2 powders at the St. Petersburg Institute “Ferrite-Domain”.

Before the film deposition process, the vacuum chamber was pumped out to a residual
pressure of 10−3 Pa. The films were synthesized at substrate temperatures Ts in the range
of 600–900 ◦C. A mixture of Ar:O2 (3:1) was used as the working gas during deposition,
the pressure of the working gas P varied in the range of 3–10 Pa. To study the mechanisms
of STO film growth on SiC substrates, island films with a thickness of several nanometers
were made. These films were deposited for 20–100 s at working gas pressures of between 6
and 10 Pa and at substrate temperatures of between 800 and 900 ◦C. The deposition time of
the solid films varied from 120 to 360 min, depending on the pressure of the working gas,
in order to obtain films with thicknesses of 500–800 nm. The process of growing continuous
films began at a pressure of 10 Pa; then, if necessary, the pressure was lowered to the
required value during the first 30 min of the process.

2.2. Investigation Techniques

The structure of island films formed at the initial stages of growth was studied using
the medium-energy ion scattering (MEIS) method. The samples were bombarded with
helium ions with an initial energy of 227 keV. The ion energy after interaction with atoms
of the film was registered using an electrostatic analyzer. The crystal structure and phase
composition of continuous films were controlled using X-ray phase analysis (XRD) on a
DRON-6 diffractometer at the Cu Kα1 emission spectral line (λ = 1.54 Å). Measurements
were carried out in continuous mode at diffraction angles from 20◦ to 60◦ with a scanning
speed of 2◦/min. Crystal phases were identified using the PDF-2 powder diffractometry
database. To calculate the unit cell parameters of STO films investigated, the angular
positions of their reflections were used, taking the peak from the substrate as a reference.
The surface morphology was investigated using the atomic force microscopy method (AFM)
on a scanning probe microscope NTEGRA PRIMA from NT-MDT in semi-contact mode.
The scanning resolution was 512 × 512 pixels. Cantilevers of the NSG01 type with an
average resonant frequency of 150 kHz and an average radius of curvature of the tip of
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6 nm were used. Before the measurements, the device was calibrated using NT-MDT TGS1
test grids.

The electrical properties of STO films were investigated using planar capacitors with a
gap width of 6 µm. Copper electrodes were applied on the surface of the STO film using
the thermal evaporation technique using an adhesive chromium sublayer, followed by
lithography and chemical etching. The capacitance C and quality factor Q = 1/tan δ of the
capacitors were measured at a frequency of 2 GHz using a half-wave stripline resonator and
an HP 8719C vector analyzer. The resonator design provides an unloaded quality factor
of 1000, which ensures the accuracy of capacitance and quality factor measurements of 1
and 5%, respectively. A control voltage of up to 300 V was applied directly to the capacitor
plates, providing a field strength E in the capacitor gap of up to 50 V/µm. The tunability of
the capacitors was calculated as the ratio of capacitances at zero and maximum applied
control voltage n = (Cmax − Cmin)/Cmax.

3. Results and Discussion
3.1. Initial Stages of STO Film Growth

The structure, phase composition, and electrical properties of multicomponent films
depend on the conditions under which the initial stages of layer growth are realized—
nucleation and coalescence. The mechanisms of nucleation are determined by the competi-
tion of desorption, surface diffusion, and nucleation processes, the intensity of which, in
turn, depends on the substrate temperature and the working gas pressure. It is known [51,52]
that the formation of highly oriented multicomponent film is realized during the deposition
of vapors with low supersaturation. In this case, the free energy of formation of oriented
islands is lower than the free energy of formation of unoriented three-dimensional nuclei.
Consequently, in order to grow oriented films, at the stage of their nucleation, it is advisable
to create conditions that ensure weak supersaturation.

The effect of technological parameters on the growth mechanisms of strontium titanate-
like BST films on silicon carbide was studied in [53]. In this work, it was shown that the
deposition of FE films on silicon carbide at working gas pressures of about 10 Pa makes
it possible to realize low condensation rates determined using supersaturation, while a
substrate temperature of 900 ◦C ensures active diffusion of adatoms before their attachment
to the islands. Thus, oriented crystallization processes on the substrate’s surface are
stimulated, which can lead to the formation of predominantly oriented films. In this
regard, in this work, the initial stages of STO film growth on silicon carbide were studied at
temperatures of 800–900 ◦C and pressures of 6–10 Pa.

When studying the mechanisms of nucleation of strontium titanate films on silicon
carbide substrates, the analysis of the energy spectra of backscattered ions from STO island
films makes it possible to determine the geometric dimensions of the islands, the spread of
their heights, and the degree of filling of the substrate with islands [54]. Figure 1 shows the
spectra of helium ions after their interaction with island films deposited at different working
gas pressures and substrate temperatures. It can be seen from the graph that the spectra
of films deposited at pressures of 6 and 10 Pa are similar to each other, which indicates
similar mechanisms of film formation in this pressure range. The peaks corresponding
to ion scattering on the heavy elements of the film have an asymmetric triangular shape
with an overextended low-energy front. A comparison of the model and experimental
spectra obtained from films deposited at pressures of between 6 and 10 Pa allows us to
conclude that the height of the islands is 3–4 nm and the degree of filling of the substrate
with islands is 75% at the same amount of substance on the surface of the substrate. The
shape of the spectra indicates an island height spread of about 50%, which corresponds to
the film growth mechanism of Volmer–Weber.
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Figure 1. MEIS spectra of STO films obtained at pressures of 6 and 10 Pa and at substrate temperatures
of 800–900 ◦C.

The spectrum of backscattered ions from the film deposited at a temperature of 900 ◦C
demonstrates the most prolonged low-energy front, which indicates a greater dispersion of
islands in size. Analysis of the graphs for films deposited at different substrate temperatures
allows us to draw conclusions similar to the previous ones, with the difference being that
the amount of substance on the substrate heated to 900 ◦C is two times less than in the
case of Ts = 800 ◦C (the height of the islands is about 3–5 nm, but the degree of coverage
decreases from 75 to 50%). It is obvious that at Ts = 900 ◦C, the intensity of re-evaporation
of adatoms from the substrate surface increases.

Figure 2 shows the dependence of the height of the islands and the degree of filling of
the substrate with islands on the deposition time of the films. The dynamics of changes
in the thickness of the film and the area of the substrate occupied by the islands allow
us to conclude that under these conditions, at deposition times from 20 to 50 s, the stage
of the formation of islands as a result of the fusion of small nuclei, the so-called primary
coalescence, is realized. At this stage, the main mass transfer is carried out by diffusion of
the substance over the substrate in the spaces between the islands. After 50 c of deposition,
the island formation stage is replaced by a secondary coalescence stage, when the fusion of
the islands begins to form a single structure in the form of a grid. At this stage, the degree
of coating of the substrate surface with a condensed substance increases sharply due to a
change in the shape of the islands to a flatter one. This stage of film growth is characterized
by significant mass transfer over the surface of the accreting island grains [52].

The study of the stages of nucleation and coalescence of strontium titanate films on
silicon carbide allows us to draw the following conclusions. In the considered ranges of
substrate temperatures and working gas pressures, which ensure condensation at low
supersaturation, the process of STO phase nucleation on the SiC surface occurs according
to the Volmer–Weber island mechanism. The implementation of this growth mechanism
in the STO-SiC system is determined by the mismatch between the hexagonal substrate
structure and the cubic film one, and their weak interphase bond [50]. At the same time,
weak supersaturation provides conditions for the formation of oriented STO islands, which
allows us to expect the growth of a highly oriented film in the future.



Appl. Sci. 2024, 14, 9672 6 of 14
Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 14 
 

2.28

3.09 3.31

4.51

32

52

74

68

20 40 60 80
0

1

2

3

4

5

6

7

8

9

10

 h, nm

t, sec

h
, 
n
m

0

10

20

30

40

50

60

70

80

90

100

 С, %

 С
 (

%
)

 

Figure 2. The height of the islands and the degree of coating of the substrate with islands for STO 

films grown at Ts = 800 °C. 

The study of the stages of nucleation and coalescence of strontium titanate films on 

silicon carbide allows us to draw the following conclusions. In the considered ranges of 

substrate temperatures and working gas pressures, which ensure condensation at low su-

persaturation, the process of STO phase nucleation on the SiC surface occurs according to 

the Volmer–Weber island mechanism. The implementation of this growth mechanism in 

the STO-SiC system is determined by the mismatch between the hexagonal substrate 

structure and the cubic film one, and their weak interphase bond [50]. At the same time, 

weak supersaturation provides conditions for the formation of oriented STO islands, 

which allows us to expect the growth of a highly oriented film in the future. 

3.2. Structure Characterization of STO Films 

Figure 3 shows the diffraction patterns of STO films on silicon carbide deposited at 

different substrate temperatures and working gas pressures. The positions of reflections 

for bulk strontium titanate (PDF 35–734) are marked with vertical dotted lines, and the 

reflections of the substrate are marked with diamonds. The diffraction patterns for all the 

studied samples confirm the formation of pure strontium titanate with a perovskite struc-

ture. The films formed at a low substrate temperature are polycrystalline and strained—

the diffraction patterns contain reflections (110) and (200), the position of which differs 

from the positions of reflections of an unstrained STO crystal. With an increase in the dep-

osition temperature, the intensity of the reflection (200) increases and the angular posi-

tions of the peaks shift toward larger angles, which means a decrease in the unit cell pa-

rameter from 3.95 to 3.907 Å. These trends are typical for all the considered working gas 

pressures, and indicate a significant improvement in the crystal structure of STO films and 

a decrease in internal stresses in the lattice. 

Figure 2. The height of the islands and the degree of coating of the substrate with islands for STO
films grown at Ts = 800 ◦C.

3.2. Structure Characterization of STO Films

Figure 3 shows the diffraction patterns of STO films on silicon carbide deposited at
different substrate temperatures and working gas pressures. The positions of reflections
for bulk strontium titanate (PDF 35–734) are marked with vertical dotted lines, and the
reflections of the substrate are marked with diamonds. The diffraction patterns for all
the studied samples confirm the formation of pure strontium titanate with a perovskite
structure. The films formed at a low substrate temperature are polycrystalline and strained—
the diffraction patterns contain reflections (110) and (200), the position of which differs from
the positions of reflections of an unstrained STO crystal. With an increase in the deposition
temperature, the intensity of the reflection (200) increases and the angular positions of the
peaks shift toward larger angles, which means a decrease in the unit cell parameter from
3.95 to 3.907 Å. These trends are typical for all the considered working gas pressures, and
indicate a significant improvement in the crystal structure of STO films and a decrease in
internal stresses in the lattice.
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Figure 3. Diffractograms of films obtained at different substrate temperatures and different working
gas pressures.

Let us compare the diffraction patterns of STO films deposited at Ts = 900 ◦C, but
at different pressures. The films exhibit a single-phase predominantly oriented structure
(h00) at the absence of internal stresses in the lattice. The high temperature of the substrate
ensures the active surface diffusion of particles before their incorporation into the STO
lattice, which leads to the formation of an unstressed defect-free film. In addition, the
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intensity of the (200) reflex of the film deposited at a pressure of 10 Pa is half an order
of magnitude higher than the intensity of similar peaks of films formed at low pressures.
Thus, the tendency to improve the structure is most pronounced for films deposited at
elevated working gas pressure, which confirms the thesis of oriented crystallization at low
supersaturation. Figure 4 shows comparative diffractograms of films of various thicknesses
deposited under optimal conditions from the structure point of view (Ts = 900 ◦C, P = 10 Pa).
With an increase in the thickness of the STO film, a significant improvement in its crystal
structure is observed—the intensity of the (200) reflex increases significantly, and the peak
width (FWHM ∼= 0.6

◦
) decreases to values close to those for a single crystal (FWHM ∼= 0.3

◦
).

Trends in improving the structural quality of strontium titanate films with an increase in
their thickness are noted in [55,56].
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Figure 5 shows a typical image of the surface of an STO film on silicon carbide obtained
using atomic force microscopy. The surface is a homogeneous granular structure without
visual defects with grain sizes of about 100–150 nm and a surface roughness of 10–20 nm.
The films under study have similar surface morphology, which is determined by the island
growth mechanism in the considered technological regimes.
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Figure 5. AFM image of a STO film surface on a SiC substrate.

3.3. Electrical Properties of STO Planar Capacitive Structures

The electrical properties of STO films were studied on the samples that demonstrated
the best structural characteristics. Figures 6 and 7 show the normalized capacitance,
response time parameter, and quality factors of planar capacitors formed on the base of
STO films on silicon carbide, depending on the control field strength. For comparison, the
figures also show the characteristics of the capacitors based on the STO film deposited
at Ts = 650 ◦C and which had a significantly worse structure. The graphs show that the
nonlinearity and microwave losses of the capacitors correlate with the structural quality of
the films under study. Capacitors formed on the basis of films deposited at P = 10 Pa and
having a minimum number of structural defects and internal stresses exhibit a tunability
of 36% at a quality factor of 120–105, while capacitive structures on films deposited at
3 Pa—32.7% at a quality factor of 85–115. Noteworthy are the dynamics of decreasing
capacitance with increasing control field strength and the absence of a flat section of the C-V
characteristic at a field strength of more than 30 V/µm. This indicates that the tunability of
the studied capacitors is far from saturation and that the nonlinearity of the structures can
be increased by increasing the level of control action. The best combination of tunability
and losses of capacitive elements can be determined based on the commutation quality
factor CQF. According to [1], for effective use in microwaves, a capacitive element should
demonstrate a CQF of at least 1000. Table 1 shows the comparative electrical characteristics
of the studied capacitors—capacitance, quality factor, tunability, and the CQF calculated on
their basis. A CQF value of more than 2500 allows us to expect the promising characteristics
of controlled microwave elements based on STO/SiC films.
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Table 1. Comparative electrical characteristics of capacitors based on STO films on silicon carbide.

Ts, ◦C; P, Πa Tunability, % tgδ (U0) tgδ (Umax) CQF (2 GHz)

900

3 32.7 0.009 0.01 1725

6 33.4 0.012 0.0085 1684

10 36 0.008 0.009 2565

650 10 26.5 0.012 0.016 470

One of the most important parameters of microwave device operation is its response
speed, i.e., the reaction rate of the permittivity to the application and removal of the control
action. For tunable elements based on FE films in the paraelectric state (in the absence of
spontaneous polarization), a decrease in ε under the action of the control field occurs in
times of the order of 10−9 s [57], which is due to the fundamental properties of ferroelectrics.
However, when the control voltage is removed, a slow relaxation of the capacitance to the
initial value can be observed in FE capacitive elements. This relaxation is associated with
the formation and redistribution of space charge, which significantly reduces the response
speed of FE devices and can be an obstacle to pulse control of the FE element. The main
reason for the formation of space charge in a film in the paraelectric phase is considered
to be the injection of charge carriers from the electrodes and their capture by defects in
the volume of the film [57]. Figure 6 shows the response time parameter ∆C/C0 of the
studied STO capacitors, which reflects the capacitance 100 ms after the control voltage is
removed. It is evident that the tunability of 36% is accompanied by the non-return of the
capacitance by a value not exceeding 7.5%, which is a promising result for use in devices
with fast switching. Regarding the response time characteristics of strontium titanate, two
important points should be noted. Firstly, until now, the response time of capacitors based
on STO films has been estimated only at cryogenic temperatures and only for elements on
Al2O3 and GaNdO3 substrates [58,59]. Thus, this paper presents, for the first time, data on
the slow relaxation of the capacitance of controlled elements based on STO films on silicon
carbide at room temperature. Secondly, the scale of slow relaxation of the capacitance of
FE elements depends significantly on the capacitor design. For planar BST structures at
room temperature, it is estimated at 12% at a control field strength of 10 V/µm [57]. The
results obtained in this work ∆C/C0 < 7.5% at a field strength of 50 V/µm are explained by
the high structural quality of STO films, and are a significant improvement in the level of
non-return of the capacitance of FE planar structures.

4. Conclusions

Predominantly oriented, unstrained strontium titanate films of high structural quality
were grown for the first time on semi-insulating silicon carbide substrates using magnetron
sputtering. Investigations of the initial stages of STO film growth on silicon carbide
showed that in the considered ranges of substrate temperatures and working gas pressures,
the nucleation of the STO phase on the SiC surface occurs via the Volmer–Weber island
mechanism, caused by the structural mismatch between the substrate and the film and
their weak interphase bond. According to the X-ray diffraction analysis, with an increase
in the deposition temperature, there is a significant improvement in the crystal structure
and minimization of internal stresses in the STO film lattice. The tendency to improve the
structure is most pronounced for films deposited at elevated working gas pressure under
low supersaturation conditions. Planar capacitors formed on the basis of oriented STO
films on silicon carbide showed tunability n = 36% at the level of microwave losses and
response time parameters, which are significantly better than the data published today
for planar BST elements. A CQF value of more than 2500 allows us to expect promising
characteristics in high-power tunable microwave elements based on STO films on SiC. The
results obtained show that tunable capacitors and phase shifters for high-power microwave
systems can be implemented based on SrTiO3/SiC planar structures. The development of
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designs and implementation of phased antenna arrays based on high-Q phase shifters in
the frequency range of 1–15 GHz seems promising. To achieve this goal, the next step of
our research is planned to be the search for technological ways to increase the tunability of
STO capacitors, studying them at elevated levels of microwave power, with the purpose of
their further application as lumped tunable elements in microwave phase shifters.
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