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Abstract: The development of autonomous vessels and unmanned surface vehicles (USVs) has gener-
ated great interest in the scientific community due to their potential and advantages for use in various
environments and applications. Several literature review papers have been produced from different
perspectives, contributing to a better understanding of the topic and to the analysis of advances, challenges,
and trends. We hypothesize that the greatest attention has been focused on the development of high-impact
applications in the maritime sector. Additionally, we depart from the need to investigate the potential and
advances of USVs in fluvial environments, which involve particular operating conditions, where there
are different socio-environmental conditions and restrictions in terms of access to conventional energy
sources and communication systems. In this sense, the main objective of this work is to study USVs in
the particular context of small craft. The search for records was conducted in Scopus and Web of Science
databases, covering studies published from 2000 to May 16, 2024. The methodology employed was based
on the PRISMA 2020 guidelines, which is a widely recognized protocol that ensures quality and rigor in
systematic reviews and bibliometric analyses. To optimize the data collection and selection process, the
semaphore technique was additionally implemented, allowing for an efficient categorization of the studies
found. This combined methodological approach facilitated a systematic and transparent evaluation of the
literature. This study was developed based on three research questions about the evolution of research
topics, areas of application, and types of algorithms related to USVs. The study of the evolution of works
on USVs was carried out based on the results of the meta-analysis generated with the Bibliometrix tool. The
study of applications and developments was carried out based on information obtained from the papers
for six study categories: application environment, level of autonomy, application area, algorithm typology,
methods, and electronic devices used. For each of the 387 papers identified in the databases, labeling was
performed for the 359 screened papers with six study categories according to the availability of information
in the title and abstract. In the categories application sector, autonomy level, application area and algorithm
type/task, it was identified that most studies are oriented toward the maritime sector, the developments to
achieve full autonomy for USVs, the development of designs or algorithms at the modeling and simulation
level, and the development and implementation of algorithms for the GNC subsystems. Nevertheless, this
research has revealed a much wider range of environments and applications beyond maritime, military,
and commercial sectors. In addition, from the mapping of the types of algorithms used in the GNC
architecture, the study provides information that can be used to guide the design of the subsystems that
enable USV autonomy for civilian use in restricted environments.
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1. Introduction

The development of autonomous vessels and unmanned surface vehicles (USVs) has
generated a significant amount of research due to their potential applications in the naval
sector and the maritime, fluvial, and lacustrine industries as well as in studies associated
with environmental monitoring. Additionally, the development of these types of systems in-
volves addressing aspects related to route planning, navigation systems, automatic control,
object and environment recognition, communications, safety, and regulation. According
to [1], the growth period of studies related to autonomous and unmanned surface vehicles
began in 2010 with a substantial increase in recent years.

Although previous advances in aerial and ground vehicles have provided a funda-
mental basis for the development of USVs, there are various challenges linked to the
particularities of the different types of vehicles as well as to the complexity of the envi-
ronments, contexts, and applications [2]. Numerous studies have contributed to the field
of USVs, covering topics including literature reviews, bibliometric analysis, applications,
vessel design, GNC system development, communications, risk management, cooperative
systems, and regulatory and normative frameworks.

This work has been developed within the framework of the project “BERCO—Development
of a boat focused on remote-controlled electromobility for the transport of logistic supplies
from TRL 3 to TRL 5, as a strategy to validate the functionality of charging stations that
use second-life batteries”, which is part of the program “TULATO—Technologies for the
adoption of efficient energy and mobility systems that promote sustainable development
oriented towards regions with high biosocial and energy potential such as Tumaco, Nariño”.
Our hypothesis is that most of the research and industry efforts on USVs are concentrated
on maritime, military, and commercial applications. This study seeks to explore the
development of USVs for civilian use in confined environments, especially rivers. The main
objective of this work is to identify the evolution of studies related to USVs, focusing on
advancements in algorithms for achieving USV autonomy and the applications related to
small craft, to guide the development of future USV technologies for the specific context
of interest. The autonomy capabilities of the USV are highly dependent on the guidance,
navigation, and control (GNC) architecture. While several literature reviews on USVs focus
on specific subsystems or task, a comprehensive mapping of the entire GNC architecture
remains lacking. Our review aims to address this gap. The review works presented in [1,3]
are mainly focused on the bibliometric analysis of the identified documents. The authors
present the main topics of the state of the art and establish future research directions based
on the analysis performed. In our work, in addition to bibliometric analysis, the collected
information is organized in such a way that it is possible to map the selected works within
the framework of the GNC architecture. In addition, while the work presented in [4] focuses
on civilian USV applications in disaster management, our study presents a wider range of
both civilian and military applications.

To achieve the goals of this research, the study is developed based on the following
research questions:

RQ1: What has been the evolution of studies on unmanned surface vehicles regarding
the applications and the achievement of autonomous capabilities?

RQ2: What are the general areas in the civil and military fields in which unmanned
surface vehicles are used?

RQ3: What types of algorithms have been the subject of research for achieving un-
manned surface vehicles autonomy?

The main contributions made in this work, achieved through the development of these
three research questions, are the following:

• A perspective of the evolution of USV studies is presented based on the information
obtained with the bibliometrix analysis tool. The bibliometric analysis shows the
evolution over time of academic production from 2004. Trends are identified in terms
of the number of papers published per year, academic production in the five most
relevant journals in which the topic has been published, and the most relevant topics.
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• A mapping of the different areas of application in the civil and military fields is
carried out.

• A mapping of the different task and types of algorithms used to achieve USV autonomy
is carried out.

• A labeled dataset, comprising papers indexed in Scopus and Web of Science, that
features six study categories: application sector, autonomy level, application case
or area, algorithm type or task, methods developed or implemented, and electronic
devices used in the system implementation. This dataset enables a variety of analyses
of USV literature.

This document is organized as follows. Section 2 describes relevant works of literature
review and bibliometric analysis, published in the last six years. Section 3 describes the
methodology used for the development of the systematic literature review (SLR). Section 4
presents the results of the SLR through the development of each research question. Section 5
presents the discussion of the results obtained. Section 6 presents some study limitations
ans draw the lines of future work. Finally, Section 7 presents the conclusions.

2. Previous Works of Bibliometric Analysis and Literature Review

The volume of publications in the literature on USV is quite extensive, and the topics
are very varied. Several authors have contributed valuable literature review and bibliomet-
ric analysis works, which have allowed the establishment of concepts and the identification
of trends and taxonomies, facilitating the study and understanding of the subject. Two
types of literature review works can be identified. One group of works develops the current
state of developments and trends in ASV and USV. The other group consists of studies that
address specific topics related to USV. A summary of some literature reviews conducted in
recent years for USV-relevant topics is provided in Table 1, outlining the respective topic
and publication year.

Table 1. Literature reviews for USV-relevant topics.

Review Topics References Year

Current state and trends of
autonomous vessels and USV

[1,3] 2024
[2] 2023
[5] 2022

Path planning
[6] 2024
[7] 2023
[8] 2021

Path-following control
systems [9] 2023

Adaptive control [10] 2024

Autonomous docking [11] 2024

Deep learning in Maritime
Autonomous Surface Ships

(MASSs)
[12] 2023

Decision making in MASS
operations [13] 2024

Regulation of remotely
controlled and autonomous

commercial vessels
[14] 2023

2.1. Literature Reviews on the Current State and Trends of USV

Several literature reviews address the developments and trends of USV in general,
as in [1–3,5]. In [1], the authors present an analysis of the advances in the development of
autonomous and unmanned vessels based on a search of papers conducted in the Scopus
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database and using the bibliometric analysis tools VOSviewer and CiteSpace. For each of
these tools, the data analysis is presented, describing the divisions of the field obtained in
each case. In [2], the topic of USVs is developed within the framework of a broader review
on unmanned maritime vehicles (UMVs), which also includes unmanned underwater
vehicles (UUVs). The authors present for each type of UMV the fields of application,
developments carried out in different countries, and technologies used in the navigation
system. In addition to addressing the past and present challenges of UMVs, the authors
present an analysis of the current state and trends focused on the use of artificial intelligence
for the development of autonomy and cooperation in multi-vehicle systems. The work
presented in [3] describes the results of a systematic literature review on USVs with papers
published between 2000 and 2023 found in the Web of Science (WoS) database. The authors
used the VOSviewer tool to perform the corresponding bibliometric analysis. As part of the
results, six future research lines were identified. In [5], the topic of USVs is approached by
presenting a context of the needs and levels of automation, the applications, the advantages
and implications of their use, and some of the main technologies used in the development
of USVs and their applications.

2.2. Literature Reviews on Specific Topics Related to USV

Several review papers focus on specific aspects associated with different tasks or
components of the vessel’s control architecture, such as path planning [6–8], path-following
control systems [9], adaptive control [10], autonomous docking [11], deep learning in Mar-
itime Autonomous Surface Ships (MASSs) [12], decision making in MASS operations [13],
and the regulation of remotely controlled and autonomous commercial vessels [14].

Path planning is fundamental in the context of USVs and has been widely studied.
Various review papers on path planning can be found in the literature. In [6], the authors
provide a chronological overview of eight previous literature review papers related to
path planning, which were published from 2006 to 2023. They also present a taxonomy
of path planning, categorizing algorithms into global path planning and local path plan-
ning. This article also presents a state-of-the-art review of path-planning algorithms in
chronological order, which were divided into four time intervals starting from the year
2000, specifying whether the implementation was in simulated conditions or validated
in real-world scenarios. The work presented in [7] conducts a state-of-the-art review of
global and local planning algorithms using the same taxonomy found in [6]. Additionally,
it includes the state of the art of algorithms for proximity risk avoidance and cluster path
planning. The authors state that their contribution lies mainly in including aspects related
to complex maritime environmental conditions in their analysis. In [8], the authors present
various aspects related to autonomous surface vehicles (ASVs). This article provides a
context for ASVs, the conceptual elements associated with path planning, and a timeline
of literature reviews on path planning and collision avoidance. Furthermore, sections
are dedicated to the regulatory framework, the architecture of the guidance, navigation,
and control (GNC) system, and the path planning algorithms classified into classical,
advanced, and hybrid approaches.

Path following is related to the component that various authors define as the central
element for the autonomy of USVs and ASVs, which is known as the guidance, navigation,
and control system [8,9]. In the literature review presented in [9], the authors explain
the trajectory-tracking problem, focusing on the vessel’s guidance and control subsys-
tems. They also present the state of the art of guidance laws and motion control systems.
An important contribution of this article is the comparison of algorithms found in the
literature based on the architecture structure, simulation or experimental results, guidance
law used, consideration of environmental disturbances, type of controller, consideration of
vessel dynamics, type of stability analysis, and consideration of degrees of freedom for the
control problem.

Among the many challenges associated with the development and operation of USVs,
selecting an appropriate control strategy to respond to the complexities of the environment
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in real-world applications is crucial. Among the approaches found in the literature, ref. [10]
presents a review of Model-Free Adaptive Control (MFAC). The article provides a con-
text for MFAC, highlighting its characteristics and advantages over conventional control
schemes. The authors describe and present the state of the art of three data-driven ap-
proaches, which use neural networks, reinforcement learning, and fuzzy logic.

Autonomous docking is essential for the development of fully autonomous USVs.
The developments and challenges of this specific aspect of USV operation are studied
in [11]. The authors provide a description of the process and components of the architecture
for autonomous docking. Additionally, the article presents a state-of-the-art review of
existing methods for autonomous docking, considering aspects such as sensors, decision
making, path planning and collision avoidance, and control. Based on the study conducted,
the authors present the opportunities and challenges of the technology for autonomous
docking, including the development of control algorithms, operation in complex envi-
ronments, hardware/software integration, vessel modeling, multi-USV cooperative work,
and efficient use of the existing knowledge and development framework for advancing
future developments.

Artificial intelligence is a field that plays a significant role in developing autonomy for
vessels and surface vehicles. Among its most notable contributions is the implementation of
GNC systems that do not require complex models for vessel control and adapt to operation
in dynamic environments. In [12], a literature review on the use of deep learning in MASS
is presented. The authors develop a comprehensive state-of-the-art review of the works
that have used deep learning in control and navigation systems, identifying the advantages
and types of applications. Additionally, reference is made to works related to transport
and logistics, a comparison with traditional methods developed for autonomous vessels is
made, and the trends of deep learning in autonomous vessels are analyzed.

The analysis of factors involved in decision making and the role of the human compo-
nent in MASS operations is addressed in the systematic literature review presented in [13].
The authors use the PRISMA methodology to select papers obtained from the Google
Scholar, Research Gate, Scopus, and Web of Science databases, which is related to decision
making in teams composed of autonomous systems and humans. The authors identify
seven themes associated with decision making, for each of which they present the state of
the art. Based on these themes, a series of design recommendations for MASSs is made,
and a decision-making model based on the interaction of these seven factors is proposed.
This model is validated through its application to a UAV accident situation as a case study.

One of the issues that has received less attention in the context of autonomous vessels
is the regulatory and normative framework for the commercial operation of such systems.
In [14], the authors present a systematic quantitative literature review on the regulatory
framework applicable to autonomous vessels, using a hybrid methodology that combines
traditional narrative review and the PRISMA method. The selection of papers used in
this work is based on searching scientific literature in the Google Scholar, HeinOnline,
and Scopus databases. The authors develop this work based on three research questions
aimed at investigating the regulatory framework for autonomous vessels in Australia and
other countries. Additionally, the article outlines the main lessons learned and open topics
as input for future research developments.

3. Methodology

We followed the PRISMA 2020 guidelines for conducting this systematic review.
PRISMA is a reporting guideline for systematic reviews and meta-analyses that is designed
to ensure transparency, integrity, and accuracy in literature review or bibliometric stud-
ies [15]. The steps taken for the development of this methodology are shown in the flow
chart in Figure 1.
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Figure 1. Flow chart for the development of the methodology.

3.1. Databases

For the search, the indexed academic databases Scopus and Web of Science (WOS)
were chosen due to their ease of generating search equations and being processed jointly
through analysis tools such as Bibliometrix. The databases were consulted on 16 May 2024.
The databases and access information are shown in Table 2.

Table 2. Databases consulted for the development of the literature review.

Data Source URL

Scopus www.scopus.com (accesed on 16 May 2024)
Web of Science access.clarivate.com (accesed on 16 May 2024)

3.2. Search Strategy

During this phase, the keyword groups to be used in the search equations were defined.
In line with the research objective, keywords were classified into 2 groups, which are de-
scribed in Table 3. The first group consists of keywords that refer to the product: small craft.
The second group describes the characteristics and types of use expected in this product:
unmanned surface vehicles. In this way, the search is aimed at retrieving documents that
contain information about unmanned surface vessels, leaving the search open to the sectors
of application of these vessels and the different algorithms and technologies employed.

Table 3. Groups of keywords for the search.

Group Keywords

Group 1 boats, boat, small boats, riverboat, small boat, small craft

Group 2

Unmanned Surface Vehicles, Unmanned Surface Vehicle, Autonomous
Vehicles, Autonomous Surface Vehicles, Unmanned Surface Craft,
Unmanned Maritime Vehicle, Remotely Operated Surface Vehicles,

Unmanned Surface Vessels, USV

Once the keyword groups were defined, search equations were constructed using
the Boolean operators available in the databases. Given the research objective of focusing
on unmanned surface vessels within the context of small craft, the decision was made to
combine both groups using the “AND” operator. This operator narrows down the search
results as it moves through the keyword clusters, as detailed in Table 4 for each database.

www.scopus.com
access.clarivate.com
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Search terms were applied to the “title, keywords, and abstract” fields in Scopus and “all
fields” in WOS.

Table 4. Database search equations.

Database Algorithm Search

Scopus

( TITLE-ABS-KEY ( “boats” OR “boat” OR “small boats” OR “riverboat” OR
“small boat” OR “small craft” ) AND TITLE-ABS-KEY ( “Unmanned Surface

Vehicles” OR “Unmanned Surface Vehicle” OR “Autonomous Surface
Vehicles” OR “Unmanned Surface Craft” OR “Unmanned Maritime Vehicle”
OR “Remotely Operated Surface Vehicles” OR “Unmanned Surface Vessels”

OR “USV” ) )

WOS

“boats” OR “boat” OR “small boats” OR “rivercat” OR “small boat” OR
“small craft” (All Fields) and “Unmanned Surface Vehicles” OR “Unmanned

Surface Vehicle” OR “Autonomous Surface Vehicles” OR “Unmanned
Surface Craft” OR “Unmanned Maritime Vehicle” OR “Remotely Operated
Surface Vehicles” OR “Unmanned Surface Vessels” OR “USV” (All Fields)

The bibliographic data were consolidated and analyzed using Bibliometrix 4.3.3 in
the R environment, supplemented by Microsoft Excel. The database of the papers is in
spreadsheet format, containing information on authors, abstract, article type, DOI, journal,
title and year of publication. Duplicate records were eliminated to maintain data integrity.
Table 5 presents the number of papers retrieved from each database and the total number
of academic papers obtained after duplicate removal.

Table 5. Number of papers found in the databases with the equation “group 1 AND group 2”.

Data Source Number of Papers

Scopus 377
Web of Science 85

Total after duplicates removing 387

3.3. Selection Criteria

In order to select the appropriate papers to address the questions and contribute to
the objective, inclusion and exclusion criteria were established for the documents to be
reviewed. The main inclusion criterion pertains to academic documents (journal papers,
book chapters, and conference papers).

Two main approaches were considered for defining the inclusion/exclusion criteria:
classification based on hull length and the primary architecture components required for
autonomy and the USV application. The distinction criterion between small craft and
larger vessels/ships is primarily based on the length of hull (LH), as established by the
ISO 8666 standard [16]. This standard defines small craft as those with a hull length not
exceeding 24 m. Consequently, if a craft exceeds this measurement, it is considered a
vessel or ship, according to its length. Through this differentiation, applicable regulations,
safety requirements, and technical specifications that various vessels must comply with
are determined. In most cases, information regarding hull length is unavailable, and the
identified studies are considered consistent with the context of small craft based on the
search criteria.

To establish the components of interest, we relied on the architecture description
presented in [17], as shown in Figure 2. The guidance, navigation, and control (GNC)
subsystem is a critical component for autonomous maritime vehicles [8,9]. Moreover,
the specific application of a USV is heavily influenced by the modules and equipment
used for data acquisition in a given environment, upon which various types of studies are
conducted or specific sector-based problems are solved. In this regard, the GNC subsystem
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and data acquisition are considered the key components for this study on the evolution of
USV development.

Figure 2. USV architecture components.

Given the aforementioned considerations, the following exclusion criteria were applied
according to the corresponding stage of the methodology:

• Identification: duplicate records.
• Screening: literature reviews, conference reviews, short surveys and weekly magazines.
• Eligibility: items with the following conditions.

– Labeled for the design of USV, hull, propulsion or power supply.
– Works in the field of major vessels.
– Conference or journal papers that are published in other conference or journal

with updated or extended versions.
– Items that do not address the focus of the study or do not provide relevant

information. This criterion includes works in the preconceptual phase with no
clear indication of technological maturity level scaling.

3.4. Data Collection Process

This work studies the thematic areas and algorithms employed in the development of
unmanned surface vehicles, aiming to consolidate existing literature, identify research gaps,
and propose future research directions. The data collection process is performed in the
eligibility stage, after having excluded duplicate items in the identification stage and items
corresponding to conference reviews, short surveys and weekly magazines in the screening
stage. To explore environments, application areas and algorithm types, six columns were
added to the database spreadsheet to extract relevant information from papers titles and
abstracts. These columns were used to label each of the papers considering the following
six categories: application sector (maritime, riverine, or lacustrine), IMO autonomy level,
application case or area, algorithm type or task, methods developed or implemented,
and electronic devices used in the system implementation. The labeling was carried out by
two members of the work team. This process also included a review and validation stage by
one of the labeling managers. In cases where doubts arose, the validation was carried out
with all the members of the team considering the selection criteria established for this work.
Due to insufficient information in most cases, complete categorization was challenging.
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Nevertheless, the extracted data enabled the formulation of the proposed research questions.
Table 6 summarizes the number of papers categorized by study category.

Table 6. Number of papers labeled by category.

Category Number of Labeled Papers

Application Environment 239
Level of Autonomy 198
Application Area 359
Algorithm Type 338

Method Used 174
Electronic Devices 127

Some of the defined study categories do not directly contribute to the development of
the research questions. However, they provide relevant information about the context of the
reviewed works and can contribute to the identification of approaches for the development
of future works.

3.5. Selection Process

As part of the paper labeling process, a color-coded system was employed to categorize
papers based on their perceived contribution to the current study, specifically regarding
USV application fields and the guidance, navigation, and control architecture. Papers were
assigned colors as follows: green for clear and direct contributions, yellow for potential
contributions, and red for those with no apparent relevance. This categorization was
determined by analyzing the title and abstract of the papers. A summary of the number of
papers labeled according to the contribution to the object of study is shown in the Table 7.

Table 7. Number of items prioritized using the semaphore technique.

Color Number of Papers % Over Screened Papers

Green 238 66.30
Yellow 28 7.80

Red 93 25.91

The 238 papers assigned with the green color are selected for inclusion in the literature
review. The distribution of papers across the categories, within this subset of the database,
is presented in the Table 8. In light of research questions 2 and 3, it is noteworthy that the
categories related to application area and algorithm type exhibit labeling rates of 100% and
94.54%, respectively.

Table 8. Number of papers included in the review labeled by category.

Category Number of Labeled Papers % over Included Papers

Application Environment 160 67.23
Level of Autonomy 141 59.24
Application Area 238 100.00
Algorithm Type 225 94.54

Method Used 147 61.76
Electronic Devices 107 44.96

4. Results

This section presents the results of the systematic literature review (SLR) to answer
the research questions posed. Initially, Section 4.1 presents the results obtained for the
study categories “Application Environments”, “Autonomy Levels”, “Application Areas”,
and “Algorithm Typology”. Subsequently, Section 4.2 shows the results of the review in
terms of the three research questions.
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4.1. Classification of Papers According to Study Categories

This subsection presents the results of five categories considered to be the most generic,
corresponding to application environments, level of autonomy, application area, algorithm
typology, and methods. For each of these categories, the number of labeled items and the
different subcategories identified in the study are presented for the 238 selected papers.

4.1.1. Application Environments

In the “Application Environment” category, 191 papers were labeled from the selected
papers. Most papers refer to the marine environment with 89 papers. Applications for
lacustrine and coastal environments are in second and third place with 22 and 20 papers,
respectively. The fluvial environment occupies the fourth place with 18. Finally, there is
a group of papers that refers to applications in environments such as ponds, reservoirs,
and wetlands, which contributes 42 papers. In 28 papers, two or more application envi-
ronments were identified. On the other hand, a total of 78 papers were not tagged, as the
environment information was not found explicitly. In this case, it is considered that most
of these works are carried out on topics applicable to any of the environments. However,
further in-depth study is required to perform an adequate classification. The distribution
of the number of categorized papers according to the application environment is shown
in Table 9.

Table 9. Number of papers labeled in the category “Application Environments”.

Application Environments Number of Papers

Maritime 89
Lacustrine 22

Coastal 20
Fluvial 18

Other (ponds, pools, reservoirs) 42

4.1.2. Autonomy Levels

In the “Autonomy Levels” category, 141 papers were tagged, of which 126 were
classified as “IMO: fully autonomous vessel” and 23 as “IMO: remotely controlled uncrewed
vessel”. The remaining 97 papers lacked explicit information on autonomy levels. It is
assumed that most of these studies contribute to developing fully autonomous USVs,
but further research is needed for a more accurate classification. Table 10 presents the
distribution of papers by autonomy level.

Table 10. Number of papers labeled in the category “Autonomy Levels”.

Level of Autonomy (IMO) Number of Papers

Fully autonomous vessel 126
Remotely controlled uncrewed vessel 23

4.1.3. Application Areas

In the “Application Areas” category, the 238 selected papers were tagged based on
information extracted from their titles and abstracts. This category directly provides the
data needed to address the research question concerning the general civil and military
application areas of unmanned surface vehicles. The identified areas were classified into
10 groups, as presented in Table 11. Firstly, there is a group of 128 papers categorized as
purely academic works. These papers focus on designs or algorithms at the modeling and
simulation level without specifying a particular application field. Furthermore, the lower
construction and operational costs of USVs, coupled with their ability to access restricted
areas, have driven the development of studies with practical real-world applications, such
as data acquisition for environmental monitoring, bathymetry, oceanography, and hydrog-
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raphy. Additional practical applications are directed toward the naval, fishing, disaster
management, and transportation sectors.

Table 11. Number of papers labeled in the “Application Areas” category.

Application Area Number of Papers

Academic 128
Environmental Monitoring 30

Naval/Security 24
Bathymetry/Cartography 22

Risk and Disaster Management 13
Aquaculture/Fishing 8

Oceanography 8
Hydrography/Hydrology 5

Transportation/Tourism/Ports 3

4.1.4. Algorithm Typologies

The “Algorithm Typologies” category was assigned to 194 of the selected papers based
on information extracted from their titles and abstracts. This category directly provides the
data needed to address the research question concerning the types of algorithms used in the
development and operation of unmanned surface vehicles. The works are mostly related
to path-planning algorithms. In total, 24 types of algorithms were identified, as shown in
Table 12. The information obtained indicates that the tagged papers can be grouped based
on the USV architecture. This grouping is developed in Section 4.2.3, which addresses the
research question about the types of algorithms used in USVs.

Table 12. Types of algorithms identified.

Algorithm Type Number of Papers

Data collection 40
Path planning 32

Cooperative robotics systems 26
Obstacle avoidance 17

Environment perception 16
Trajectory tracking 16
Collision avoidance 15
Obstacle detection 15

Path following 14
USV state estimation 13

Control 11
Object detection 9
Position control 8
Target tracking 8

Heading control 6
Motion control 6
Course control 5

Autonomous docking 4
Trajectory planning 3

Target detection 3
Sensor fusion 2

Remote control 2
Heading and speed control 2

Mission planning 2
Target localization 2

Application-specific task 8
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4.2. Research Questions Results

In this subsection, the results for the development of the three research questions are
presented, which are based on the information obtained from the papers labeled in the
database according to the study categories. To address research questions 1 and 2, we
analyzed all labeled articles. For research question 3, given the specific selection criteria
related to USV autonomy algorithms, the analysis was centered on the selected articles.
This focused approach allowed us to identify the different approaches used in studies
within the GNC architecture framework.

4.2.1. What Has Been the Evolution of Studies on USV Regarding the Applications and the
Achievement of Autonomous Capabilities?

The results obtained show that the topic is relatively recent. The first documents in the
databases are recorded from the year 2004. Starting in the year 2015, they began to increase
significantly, and most of the production has occurred in the last 5 years (2019–2024)
with 54.43% of the total as shown in Figure 3. The trend is expected to continue in 2024.

Figure 3. Production of documents over time.

The produced documents have been published through various sources, as shown
in Figure 4. Initially, the journal dedicated to strategic and military security issues, Jane’s
Defence Weekly, was the only one; in 2007, production on this topic ceased. Subsequently,
in 2010, The IEEE International Conference of Intelligent Robots and Systems, a journal on
robotics, began publishing and has since maintained relevance, with a higher cumulative
total compared to the rest, along with Ocean Engineering, which is dedicated to research
and development in naval engineering. Based on this, it is pertinent to appreciate that
unmanned vehicles encompass a broad scope of interest that includes the naval industry,
intelligent systems, and strategic military purposes.

The thematic evolution confirms the aforementioned. Figure 5 shows that initially,
the trending topic was military operations. Subsequently, hulls, navigation systems, and un-
manned vehicles gained relevance along with the introduction of the term “ocean engi-
neering” to categorize the research carried out in this field. Since 2008, remotely operated
vehicles have maintained their presence in the thematic, alluding to the importance of
these vehicles being able to operate without an onboard crew. For the years 2011–2015,
robotics in this area began to be discussed as well as oceanography and autonomous navi-
gation. Finally, for the years 2015–2017, the term “unmanned surface vehicles/vessels” was
introduced, and with it, terms such as “obstacle avoidance”, “maneuverability”, “object de-
tection”, “controllers”, and others, indicating evidence of the growing interest in achieving
autonomy in these vehicles through navigation and control technologies.



Appl. Sci. 2024, 14, 9693 13 of 30

Figure 4. Production from the most relevant sources over time.

Figure 5. Most relevant topics over the years.

The evolution of academic production, considering the document type, shows an
increasing trend in the number of articles, both journal and conference papers, with a more
pronounced growth starting from 2010. Figure 6 shows the chronological evolution of the
quantity of journal and conference articles. It can be observed that in most years, more
conference papers have been published than journal articles. Additionally, fluctuations
in both cases are evident. In this systematic review, starting from the screening stage,
according to the document type, 206 conference papers, 150 journal articles, 2 book chapters,
and 1 editorial were used.
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Figure 6. Document type over the years.

4.2.2. What Are the General Areas in the Civil and Military Environments Where
Unmanned Surface Vehicles Are Used?

Hydrodynamic modeling technology and marine vehicle control systems have pro-
gressed significantly in recent years. In particular, USVs have found a number of fields
where their application is highly useful [18]. In fact, they have gone from being consid-
ered as heavy and expensive equipment to viable instruments for multiple scientific and
commercial applications [19].

In this sense, based on the bibliographic review carried out, it is identified that civil
applications are more widely disseminated in the scientific field; in fact, more than 80%
of the reviewed works, which corresponds to approximately 334 references, present ap-
plications of unmanned vehicles in the civil environment, while only 51 works describe
applications in the military or defense field. Figure 7 illustrates the percentages of the
identified applications.

Figure 7. Scope of application of autonomous and unmanned surface vehicles.

When reviewing applications in the civil field, it was identified that the largest pro-
portion of works related to USVs has been developed in the academic field, which is
followed by works in the areas of environmental monitoring and bathymetry. Some mi-
nor applications correspond to the areas of disaster management [4,20], fishing [21] and
hydrography [22]. Figure 8 presents the percentage distribution of the main application
areas of USV technologies in the civil field.
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Figure 8. Application areas of autonomous and unmanned surface vehicles in the civil field.

Within the applications in the academic area, works related to target tracking [23,24]
and trajectory tracking [25], obstacle avoidance [26], path planning [27–29] and control
techniques [30,31] stand out.

On the other hand, in the environmental area, works stand out in the lines of water
sampling/water quality [32,33], nuclear/oceanic radiation [34,35], current studies [36] and
ecological protection [37], among others.

Likewise, as part of the main applications of bathymetry, some works developed in
the Arctic environment [38], in lakes [39,40] and in the marine/coastal environment [41–43]
stand out.

In the military field, the largest proportion of works developed are related to ap-
plications focused on security and defense, surveillance and reconnaissance, intercep-
tion/interdiction, and intruder detection. Figure 9 presents a summary of the main applica-
tion areas of USVs in the military environment.

Figure 9. Application areas of unmanned vehicles.

In the area of security and defense, works related to maritime border security [44],
port security [45] and merchant escort [46] stand out. As part of the works in the area of
surveillance and reconnaissance, some are focused on patrolling hostile environments with
civilian traffic [47] and coastal surveillance [48], among others.

The distribution of applications identified in the selected articles is presented in Figure 10.
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Figure 10. General application areas of unmanned surface vehicles .

For applications related to monitoring and data collection, the studies shown in
Table 13 were identified, according to their application areas in the civil environment.

Table 13. References for the papers labeled in the ”Application Areas“ category related to data
acquisition for specific applications.

Application Area Number of Papers References

Environmental Monitoring 30 [12,32,35,37,41,49–73]
Bathymetry/Cartography 22 [38–43,74–89]

Risk and Disaster Management 13 [20,34,52,88,90–97]
Aquaculture/Fishing 8 [21,98–104]

Oceanography 8 [36,105–111]
Hydrography/Hydrology 5 [112–116]

Transportation/Tourism/Ports 3 [117–121]

4.2.3. What Types of Algorithms Have Been the Subject of Research for Achieving
USV Autonomy?

In the process of labeling the papers according to the algorithm type, 22 subcategories
were identified. However, some of them can be grouped considering the relationship
between them in terms of the USV development stage, the type of task, or the component
of the USV GNC system architecture. Table 14 presents the references related to GNC
architecture systems, which are categorized by subsystem.

Table 14. References of the identified types of algorithms grouped according to the GNC architecture
subsystems.

Algorithm Type Papers References Subsystem

Environment perception 16 [25,49,82,118,122–133]
Obstacle detection 15 [26,49,122,134–145]

USV state estimation 13 [56,70,119,146–155]
Object detection 9 [44,150,156–162] Navigation
Target tracking 8 [23,24,160,163–167] (69)
Target detection 3 [24,168,169]

Sensor fusion 2 [170,171]
Target localization 2 [99,172]

Path planning 32 [20,28,29,36,37,45,47,76,118,128,129,132,141,
150,164,173–189]

Obstacle avoidance 17 [25,31,45,121,139,140,156,160,167,181–
183,186,190–193] Guidance

Collision avoidance 15 [27,164,174,179,180,187,190,194–201] (71)
Trajectory planning 3 [165,193,202]
Mission planning 2 [203,204]
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Table 14. Cont.

Algorithm Type Papers References Subsystem

Trajectory tracking 16 [25,31,62,98,118,165,193,203–211]
Path following 14 [56,76,77,84,187,189,201,212–218]

Control 11 [42,97,104,116,128,150,219–223]
Position control 8 [23,31,39,112,221,224–226]
Heading control 6 [36,62,227–230] Control
Motion control 6 [119,204,212,231–233] (74)
Course control 5 [66,173,217,234,235]

Autonomous docking 4 [156,236–238]
Remote control 2 [146,239]

Heading and speed control 2 [43,240]

The control subsystem emerged as the most prevalent research topic with 74 papers
primarily focused on trajectory tracking. Guidance systems constituted the second category,
encompassing 71 studies. Path-planning algorithms were the core focus of nearly half
of these papers. While obstacle and collision avoidance was addressed in 32 papers,
it is inherently linked to path planning. Trajectory planning, considering both spatial
and temporal dimensions, was explored in a smaller subset of four papers. Navigation
subsystem research comprised the third category with 69 studies predominantly focused
on environment perception.

The developed database also provides information about the methods used to address
the corresponding tasks. This information was identified for 147 articles. Table 15 presents
information on articles related to environment perception and obstacle detection. The re-
maining information is available in the database and is not included in this article due to
its length and quantity.

Table 15. Methods implemented for environment perception and obstacle detection.

Task Method/Algorithm Reference

Waterline detection/Obstacle detection Image segmentation [49]
Wind speed and direction estimation Neural networks–Perceptron [124]

Estimation of meander parameters Gaussian filters/Restricted interval
Kalman filter [125]

Navigable waterway detection
Deep learning-based semantic

segmentation/Planar
homography/Line detection

[128]

Background segmentation and change
detection Background subtraction [130]

Coastline-water detection and
recognition

Line segment detection/coarse-to-fine
strategy [133]

Obstacle detection Sensor fusion/Weighted ELM binary
classifier [134]

Miltimodal perception for obstacle
detection CNN–YOLO V7 [135]

LiDAR-based ambient detection Sensor data fusion/Voxel filtering [136]
Hallucinating hidden obstacles Compositional model [137]

Temporal context for obstacle detection Temporal context extraction from image
sequences for ambiguity reduction [138]

Obstacle avoidance system CNN–YOLO V4/Vector Field
Histogram (VFH) [139]

Obstacle detection/Obstacle distance
ranging Fuzzy Kohonen Network (FKN) [140]

Obstacle detection Segmentation [141]
Stereo obstacle detection Semantic segmentation [26]

Real-time stationary obstacle detection
and localization

Robust two-step outlier rejection
method [143]
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Table 15. Cont.

Task Method/Algorithm Reference

Real-time obstacle detection SKIP-ENET segmentation model [144]

Small obstacle segmentation/Obstacle
map estimation

Efficient semantic segmentation
networks/Efficient Multi-Feature

Aggregation (MFA) module/Gaussian
mixture model-based Feature Separation

(FS) loss function/FASNET

[145]

5. Discussion

This literature review examines the evolution and development of two key aspects
of USVs: applications and algorithms used for achieving USV autonomy. While the work
presented in [4] is focused on civilian USV applications in disaster management, our
study presents a wider range of both civilian and military applications. Other review
works, presented in [1,3], provide a comprehensive overview of the main topics of the
state of the art and the future research directions based on the bibliometric analysis. In our
work, the collected information is organized in such a way that it is possible to map
the selected works within the framework of the applications and the GNC architecture.
The state of the art is further enriched by analyzing data collected from the review based
on our three research questions and six study categories. The results of this systematic
literature review on USVs in the context of small craft allow us to identify several relevant
aspects for defining guidelines oriented toward the development of USVs and applications
for the specific context of fluvial environments in areas with technological and socio-
environmental constraints. The methodology used, in addition to obtaining relevant
bibliometric information, allowed us to identify key information to support needs in terms
of research and development. To answer the three research questions, six study categories
were proposed, of which three were used as the main input. The remaining three categories
provided complementary information or can be used in future work to expand the present
study and identify potential lines of future work. In general terms, based on these categories,
it was identified that most of the reviewed works are oriented toward developments for
marine environments and systems to achieve the full autonomy of vessels. In addition,
applications in the civilian field are identified, which are focused mainly on data acquisition
for environmental scientific studies. Furthermore, there is a marked interest in developing
path-planning algorithms, particularly those related to obstacle and collision avoidance.
The discussion related to each of the research questions follows.

5.1. Evolution of USV Studies

Research in the field of USV is a relatively recent development, gaining significant
interest in the last 10 years. In review papers such as the one presented in [1], the authors
identify a period of growth in academic production related to autonomous and unmanned
vessels starting in 2010. In our study, this growth stage is clearly evident from 2014 onwards.
This trend is more similar to the phase of rapid growth between 2014 and 2019 reported
in [3]. There is a coincidence of these years with some critical points observed in the
graph of production of the most relevant sources over time shown in Figure 4. According
to the trends shown in Figure 5, it is identified that in the early years, there are mainly
reports of applications in the military field. Subsequently, in 2016, there are applications
in the civil field related to oceanography and three years later with bathymetry. On the
other hand, the trend in terms of focus allows us to identify the following order of trend
topics in terms of the GNC architecture: navigation system between 2011 and 2018, control
system in 2019 and guidance systems from 2021 onwards. With respect to the level of
autonomy, remotely controlled unmanned vessels appear in 2009 and 2021, while the term
autonomous navigation appears from 2016 onwards.
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5.2. Areas of Application in the Military and Civilian Fields

The majority of the reviewed papers focus on designing or implementing algorithms to
achieve vessel autonomy. Consequently, these papers were classified as primarily academic.
Such works can contribute to both naval and civilian applications. While these studies
have the potential to significantly advance real-world applications, many remain at the
simulation or early prototype stage. Conversely, this study reveals a substantial body
of literature where the specific application of the USV is explicitly identified. Civilian
applications significantly outnumber military ones, with a primary focus on data collection
for environmental monitoring and aquatic ecosystem studies. Bathymetry has emerged
as a recent trend, as illustrated in Figure 5 around 2019. The extensive use of USVs in
bathymetric surveys, as well as other environmental and oceanographic studies, is primarily
due to their cost-effectiveness, operational safety, and ability to access restricted areas.

5.3. Types of Algorithms Used for USV Development and Operation

The review results show the navigation system addresses different challenges asso-
ciated with data acquisition and environmental perception, having a considerable partic-
ipation among the studies found. On the other hand, works related to guidance system
and control systems have a greater development related to path-planning and collision
avoidance algorithms, which is followed by control strategies associated with path or
trajectory tracking. In addition to the works that involve the different components of the
GNC architecture, two more groups related to applications stand out. On the one hand,
there are works related to missions that address general aspects such as planning and
others more specific such as target detection and tracking. Due to their characteristics,
these developments are associated with the military field. On the other hand, cooperative
systems constitute the other group, where systems with multiple unmanned vehicles are
proposed that can be homogeneous or heterogeneous. In these collaborative robotics works,
algorithms for formation control are found and have applicability in both the civilian and
military fields.

6. Limitations and Future Work

This systematic literature review has resulted in a database of scientific papers on
USVs, focusing on applications and algorithms for small craft. In addition to the cor-
responding bibliometric information, the elaborated database contains information on
environments and application areas, level of autonomy, algorithms, and electronic devices.
In the present article, some of these categories are analyzed to answer the research questions,
but the different relationships that may exist between them are not explored. Furthermore,
the database could be enriched by a more in-depth review of the selected papers due to
limitations in abstract information. Given the significant amount of papers in the database,
automated tools can be valuable for extracting and validating information. In addition,
the scope of this study is limited to the Scopus and Web of Science databases. The database
and analysis could be expanded by applying the methodology to other scientific databases.

The volume of research dedicated to maritime applications is substantial compared to
other domains. A promising avenue for future research involves a more in-depth analysis
of works focusing on riverine, lacustrine, and other confined aquatic environments. This
analysis aims to identify the unique needs, challenges, and distinct requirements of these
settings compared to maritime environments.

7. Conclusions

This systematic literature review investigates the evolution of Unmanned Surface
Vehicle (USV) developments and applications in small craft. Employing the PRISMA
methodology, the study analyzes scientific publications retrieved from Scopus and Web of
Science. Three research questions guide the investigation: the evolution of USV research,
civil and military applications, and the algorithms used in USV development and operation.
Bibliometric analysis and manual categorization were used to answer these questions.
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The results identify trends in USV research, map applications, and analyze the algorithms
used in USV guidance, navigation, and control (GNC) systems. Numerous civil applica-
tions, particularly data acquisition for environmental and oceanographic studies, were
identified. Additionally, the study highlights the significant development of path-planning
and collision avoidance algorithms. This research contributes to the state-of-the-art in au-
tonomous and unmanned vessels, providing a baseline for researchers seeking to develop
USVs for applications in technologically and socio-environmentally constrained contexts.
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