Impact of High-Intensity Interval Training on Different Slopes on Aerobic Performance: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Registration
2.2. Subjects
2.3. Withdrawal Criteria
2.4. Experimental Approach
2.5. Procedures
2.5.1. Anthropometry and Body Composition
2.5.2. Estimation of VO2max and vVO2max
2.5.3. Time to Exhaustion (TLim)
2.5.4. Training Program
2.5.5. Analysis of Rate of Perceived Exertion (RPE)
2.5.6. Randomization
2.5.7. Blinding and Data Analysis and Treatment
2.6. Statistical Analysis
3. Results
Unintentional Harm
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gillen, J.B.; Little, J.P.; Punthakee, Z.; Tarnopolsky, M.A.; Riddell, M.C.; Gibala, M.J. Acute High-intensity Interval Exercise Reduces the Postprandial Glucose Response and Prevalence of Hyperglycaemia in Patients with Type 2 Diabetes. Diabetes Obes. Metab. 2012, 14, 575–577. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; McGee, S.L. Metabolic Adaptations to Short-Term High-Intensity Interval Training. Exerc. Sport Sci. Rev. 2008, 36, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Burgomaster, K.A.; Heigenhauser, G.J.F.; Gibala, M.J. Effect of Short-Term Sprint Interval Training on Human Skeletal Muscle Carbohydrate Metabolism during Exercise and Time-Trial Performance. J. Appl. Physiol. 2006, 100, 2041–2047. [Google Scholar] [CrossRef]
- Burgomaster, K.A.; Hughes, S.C.; Heigenhauser, G.J.F.; Bradwell, S.N.; Gibala, M.J. Six Sessions of Sprint Interval Training Increases Muscle Oxidative Potential and Cycle Endurance Capacity in Humans. J. Appl. Physiol. 2005, 98, 1985–1990. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Soto-Hermoso, V.M.; Latorre-Román, P.A. How Does High-Intensity Intermittent Training Affect Recreational Endurance Runners? Acute and Chronic Adaptations: A Systematic Review. J. Sport Health Sci. 2017, 6, 54–67. [Google Scholar] [CrossRef]
- Gibala, M.J.; Little, J.P.; Van Essen, M.; Wilkin, G.P.; Burgomaster, K.A.; Safdar, A.; Raha, S.; Tarnopolsky, M.A. Short-term Sprint Interval versus Traditional Endurance Training: Similar Initial Adaptations in Human Skeletal Muscle and Exercise Performance. J. Physiol. 2006, 575, 901–911. [Google Scholar] [CrossRef]
- Gibala, M.J.; Little, J.P.; MacDonald, M.J.; Hawley, J.A. Physiological Adaptations to Low-volume, High-intensity Interval Training in Health and Disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef]
- Burgomaster, K.A.; Howarth, K.R.; Phillips, S.M.; Rakobowchuk, M.; MacDonald, M.J.; McGee, S.L.; Gibala, M.J. Similar Metabolic Adaptations during Exercise after Low Volume Sprint Interval and Traditional Endurance Training in Humans. J. Physiol. 2008, 586, 151–160. [Google Scholar] [CrossRef]
- Gillen, J.B.; Percival, M.E.; Skelly, L.E.; Martin, B.J.; Tan, R.B.; Tarnopolsky, M.A.; Gibala, M.J. Three Minutes of All-Out Intermittent Exercise per Week Increases Skeletal Muscle Oxidative Capacity and Improves Cardiometabolic Health. PLoS ONE 2014, 9, e111489. [Google Scholar] [CrossRef]
- Gillen, J.B.; Gibala, M.J. Is High-Intensity Interval Training a Time-Efficient Exercise Strategy to Improve Health and Fitness? Appl. Physiol. Nutr. Metab. 2014, 39, 409–412. [Google Scholar] [CrossRef]
- Gibala, M.J.; Little, J.P. Just HIT It! A Time-Efficient Exercise Strategy to Improve Muscle Insulin Sensitivity. J. Physiol. 2010, 588, 3341–3342. [Google Scholar] [CrossRef] [PubMed]
- Paavolainen, L.; Häkkinen, K.; Hämäläinen, I.; Nummela, A.; Rusko, H. Explosive-Strength Training Improves 5-Km Running Time by Improving Running Economy and Muscle Power. J. Appl. Physiol. 1999, 86, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Damasceno, M.; Cruz, R.; Silva-Cavalcante, M.D.; Lima-Silva, A.E.; Bishop, D.J.; Bertuzzi, R. Effects of a 4-Week High-Intensity Interval Training on Pacing during 5-Km Running Trial. Braz. J. Med. Biol. Res. 2017, 50, e6335. [Google Scholar] [CrossRef] [PubMed]
- Pringle, J.; Carter, H.; Doust, J.; Jones, A. Oxygen Uptake Kinetics during Horizontal and Uphill Treadmill Running in Humans. Eur. J. Appl. Physiol. 2002, 88, 163–169. [Google Scholar] [CrossRef]
- Paradisis, G.P.; Bissas, A.; Cooke, C.B. Combined Uphill and Downhill Sprint Running Training Is More Efficacious Than Horizontal. Int. J. Sports Physiol. Perform. 2009, 4, 229–243. [Google Scholar] [CrossRef]
- Townshend, A.D.; Worringham, C.J.; Stewart, I.B. Spontaneous Pacing during Overground Hill Running. Med. Sci. Sports Exerc. 2010, 42, 160–169. [Google Scholar] [CrossRef]
- Touron, J.; Costes, F.; Coudeyre, E.; Perrault, H.; Richard, R. Aerobic Metabolic Adaptations in Endurance Eccentric Exercise and Training: From Whole Body to Mitochondria. Front. Physiol. 2021, 11, 596351. [Google Scholar] [CrossRef]
- Gottschall, J.S.; Kram, R. Ground Reaction Forces during Downhill and Uphill Running. J. Biomech. 2005, 38, 445–452. [Google Scholar] [CrossRef]
- Prieto-González, P.; Sedlacek, J. Effects of Running-Specific Strength Training, Endurance Training, and Concurrent Training on Recreational Endurance Athletes’ Performance and Selected Anthropometric Parameters. Int. J. Environ. Res. Public Health 2022, 19, 10773. [Google Scholar] [CrossRef]
- Hottenrott, K.; Ludyga, S.; Schulze, S. Effects of High Intensity Training and Continuous Endurance Training on Aerobic Capacity and Body Composition in Recreationally Active Runners. J. Sports Sci. Med. 2012, 11, 483–488. [Google Scholar]
- Atakan, M.M.; Li, Y.; Koşar, Ş.N.; Turnagöl, H.H.; Yan, X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. Int. J. Environ. Res. Public Health 2021, 18, 7201. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, M.; Djordjevic, D.; Trajkovic, N.; Milanovic, Z. Effects of High-Intensity Interval Training (HIIT) on Physical Performance in Female Team Sports: A Systematic Review. Sports Med. Open 2023, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Abdullah, B.B.; Abu Saad, H.B. Effects of High-Intensity Interval Training on Strength, Speed, and Endurance Performance among Racket Sports Players: A Systematic Review. PLoS ONE 2024, 19, e0295362. [Google Scholar] [CrossRef]
- Ferley, D.D.; Osborn, R.W.; Vukovich, M.D. The Effects of Uphill vs. Level-Grade High-Intensity Interval Training on VO2max, Vmax, VLT, and Tmax in Well-Trained Distance Runners. J. Strength Cond. Res. 2013, 27, 1549–1559. [Google Scholar] [CrossRef]
- Jackson, A.S.; Pollock, M.L. Generalized Equations for Predicting Body Density of Men. Br. J. Nutr. 1978, 40, 497–504. [Google Scholar] [CrossRef]
- Siri, W.E. Body composition from fluid spaces and density: Analysis of methods. Tech. Meas. Body Compos. 1961, 61, 223–244. [Google Scholar]
- Swain, D.P.; Parrott, J.A.; Bennett, A.R.; Branch, J.D.; Dowling, E.A. Validation of a New Method for Estimating VO2max Based on VO2 Reserve. Med. Sci. Sports Exerc. 2004, 36, 1421–1426. [Google Scholar] [CrossRef]
- Santos, T.M.; Viana, B.F.; Sá Filho, A.S. Reprodutibilidade Do VO2Máx Estimado Na Corrida Pela Frequência Cardíaca e Consumo de Oxigênio de Reserva. Rev. Bras. Educ. Física Esporte 2012, 26, 29–36. [Google Scholar] [CrossRef]
- Billat, V.L.; Flechet, B.; Petit, B.; Muriaux, G.; Koralsztein, J.-P. Interval Training at VO2max: Effects on Aerobic Performance and Overtraining Markers. Med. Sci. Sports Exerc. 1999, 31, 156–163. [Google Scholar] [CrossRef]
- Bacon, A.P.; Carter, R.E.; Ogle, E.A.; Joyner, M.J. VO2max Trainability and High Intensity Interval Training in Humans: A Meta-Analysis. PLoS ONE 2013, 8, e73182. [Google Scholar] [CrossRef]
- Hill, D.W.; Rowell, A.L. Responses to Exercise at the Velocity Associated with VO2max. Med. Sci. Sports Exerc. 1997, 29, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Renoux, J.C.; Petit, B.; Billat, V.; Koralsztein, J.P. Calculation of Times to Exhaustion at 100 and 120% Maximal Aerobic Speed. Ergonomics 2000, 43, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.P.; McNaughton, L.R.; Marshall, K.J. Effects of 4-Wk Training Using Vmax/Tmax on VO2max and Performance in Athletes. Med. Sci. Sports Exerc. 1999, 31, 892–896. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.W.; Poole, D.C.; Smith, J.C. The Relationship between Power and the Time to Achieve VO2max. Med. Sci. Sports Exerc. 2002, 34, 709–714. [Google Scholar] [CrossRef]
Variables | GT1% | GT10% | CON |
---|---|---|---|
(n = 9) | (n = 8) | (n = 8) | |
Age years (SD) | 26 (5) | 28 (3) | 26 (3) |
Anthropometry and Body Composition | |||
Body mass kg (SD) | 79.5 (9.8) | 84.0 (13.6) | 82.2 (10.5) |
Height cm (SD) | 178.0 (7.4) | 175.1 (5.9) | 177.3 (6.5) |
BF % (SD) | 13.5 (4.3) | 14.7 (3.6) | 12.5 (4.2) |
Physiologic variables | |||
VO2max mL∙kg−1∙min−1 (SD) | 52.6 (4.4) | 54.1 (4.1) | 54.7 (5.6) |
HRmax bpm (SD) | 193 (7) | 191 (10) | 193 (10) |
Characteristics | Pre-Training | Post-Training | |||||
---|---|---|---|---|---|---|---|
GT1% (n = 9) | GT10% (n = 8) | CON (n = 8) | GT1% (n = 9) | GT10% (n = 8) | CON (n = 8) | (Time/Interaction) | |
VO2max (mL·kg−1·min−1) | 52.6 (4.4) | 54.1 (4.1) | 54.7 (5.6) | 56.0 (4.6) * | 57.1 (5.5) * | 54.0 (4.2) | p = 0.000; p = 0.002 |
VPeak (km·h−1) | 15.8 (1.5) | 16.3 (1.9) | 16.9 (1.3) | 16.8 (1.6) | 17.7 (1.9) * | 16.9 (1.1) | p = 0.000; p = 0.001 |
TLim1% | |||||||
Time (min) | 6.1 (1.2) | 6.2 (2.1) | 6.6 (2.6) | 5.8 (1.6) | 6.0 (3.2) | 6.0 (2.3) | no difference |
Velocity (km·h−1) | 14.1 (1.3) | 14.5 (1.2) | 14.7 (1.6) | 15.1 (1.3) * | 15.4 (1.6) * | 14.5 (1.5) | p = 0.001; p = 0.000 |
VO2 demand (mL·kg−1) | 324 (75) | 329 (122) | 368 (172) | 329 (109) | 333 (176) | 324 (121) | p = 0.884; p = 0.680 |
TLim10% | |||||||
Time (min) | 3.6 (0.5) | 4.5 (1.4) | 4.3 (1.2) | 3.6 (0.7) | 4.0 (1.9) | 3.7 (1.6) | no difference |
Velocity (km·h−1) | 9.9 (1.0) | 10.0 (1.0) | 10.1 (1.2) | 10.9 (1.0) * | 11.1 (1.1) * | 10.4 (1.1) | p = 0.001; p = 0.000 |
VO2 demand (mL·kg−1) | 192 (40) | 235 (82) | 237 (65) | 200 (50) | 223 (106) | 198 (57) | p = 0.884; p = 0.680 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sá Filho, A.S.; Bittar, R.D.; Inacio, P.A.; Mello, J.B.; Oliveira-Silva, I.; Leonardo, P.S.; Chiappa, G.R.; Lopes-Martins, R.A.B.; Santos, T.M.; Sales, M.M. Impact of High-Intensity Interval Training on Different Slopes on Aerobic Performance: A Randomized Controlled Trial. Appl. Sci. 2024, 14, 9699. https://doi.org/10.3390/app14219699
Sá Filho AS, Bittar RD, Inacio PA, Mello JB, Oliveira-Silva I, Leonardo PS, Chiappa GR, Lopes-Martins RAB, Santos TM, Sales MM. Impact of High-Intensity Interval Training on Different Slopes on Aerobic Performance: A Randomized Controlled Trial. Applied Sciences. 2024; 14(21):9699. https://doi.org/10.3390/app14219699
Chicago/Turabian StyleSá Filho, Alberto Souza, Roberto Dib Bittar, Pedro Augusto Inacio, Júlio Brugnara Mello, Iransé Oliveira-Silva, Patricia Sardinha Leonardo, Gaspar Rogério Chiappa, Rodrigo Alvaro Brandão Lopes-Martins, Tony Meireles Santos, and Marcelo Magalhães Sales. 2024. "Impact of High-Intensity Interval Training on Different Slopes on Aerobic Performance: A Randomized Controlled Trial" Applied Sciences 14, no. 21: 9699. https://doi.org/10.3390/app14219699
APA StyleSá Filho, A. S., Bittar, R. D., Inacio, P. A., Mello, J. B., Oliveira-Silva, I., Leonardo, P. S., Chiappa, G. R., Lopes-Martins, R. A. B., Santos, T. M., & Sales, M. M. (2024). Impact of High-Intensity Interval Training on Different Slopes on Aerobic Performance: A Randomized Controlled Trial. Applied Sciences, 14(21), 9699. https://doi.org/10.3390/app14219699