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Abstract: Breast cancer is the most common cancer in the world. With a 5-year survival rate of
over 90% for patients at the early disease stages, the management of side-effects of breast cancer
treatment has become a pressing issue. Observational, real-world data such as electronic health
records, insurance claims, or data from wearable devices have the potential to support research on
the quality of life (QoL) of breast cancer patients (BCPs), but care must be taken to avoid errors
introduced due to data quality and bias. This paper proposes a causal inference methodology for
using observational data to support research on the QoL of BCPs, focusing on the osteopenia of
patients undergoing treatment with aromatase inhibitors (AIs). We propose a machine learning-
based pipeline to estimate the average and conditional average treatment effects (ATE and CATE).
For evaluation, we develop a Structural Causal Model for the osteopenia of BCPs and rely on
synthetically generated data to study the effectiveness of the proposed methodology under various
data challenges. A set of studies were designed to estimate the effect of high-intensity exercise on bone
mineral density loss using synthetic datasets of BCPs under AI treatment. Four observational study
scenarios were evaluated, corresponding to synthetically generated data of 1000 BCPs with (a) no bias,
(b) sampling bias, (c) hidden confounder bias, and (d) bias due to unobserved mediator. In all cases,
evaluations were performed under both complete and missing data scenarios. In particular, machine
learning-based models based on tree ensembles and neural networks achieved a lower estimation
error by 23.8–51.3% and 32.4–89.3% for ATE and CATE, respectively, compared to direct estimation
using sample averages. The proposed approach shows improved effectiveness in treatment effect
estimation in the presence of missing values and sampling bias, compared to a “traditional” statistical
analysis workflow. This suggests that the application of causal effect estimation methods for the
study of BCPs’ quality of life using real-world data is promising and worth pursuing further.

Keywords: causal inference; treatment effect estimation; osteopenia; breast cancer

1. Introduction

Breast cancer is one of the most common malignancies affecting women worldwide.
Several effective treatment options have become available during the past years, which sig-
nificantly improve the disease outlook, depending on tumor subtype and disease stage [1].
Despite their proven effectiveness, cancer treatments and especially long-term adjuvant
therapies can negatively impact the quality of life of breast cancer patients (BCPs) [2],
including physical and emotional side-effects. One particular example is hormone receptor-
positive BCPs undergoing adjuvant endocrine therapy, such as aromatase inhibitor (AI)
treatment [3,4]. It has been shown that these treatments lead to bone mineral density
(BMD) loss [5], significantly increasing the incidence of fractures in this patient group. Non-
pharmacological exercise- and lifestyle-based preventive strategies are preferred, since
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these do not affect the patients’ outcomes; however, their effectiveness is not clear and
further study has been suggested [6]. Real-world data (RWD) offer a rich and valuable
information source that can help support clinical research in this direction, especially when
considering the effect of non-pharmacological and lifestyle factors on the quality of life
of patients.

RWD refers to data produced and collected for non-research purposes, which can
also be exploited for providing valuable insights into patients’ characteristics, possible
treatment patterns, progression of diseases as well as treatment outcomes. Additionally,
RWD provide researchers, clinicians and policymakers with the opportunity to identify
patterns, trends and associations, which may not be evident in controlled settings, enabling
the generation of real-world evidence [7]. This is especially relevant when it comes to
research questions related to the quality of life of patients suffering from chronic diseases,
as the outcome is determined by multiple interacting variables that are difficult to control.

The most common sources of RWD include information from electronic health records
(EHRs) of patients’ interaction with the healthcare system, insurance claims, population
health surveys, registry and biobank data as well as data obtained via wearable and
Internet-of-Things devices, which are used for lifestyle or telehealth purposes [8–10]. It is
worth mentioning that such RWD are observational by nature, since they are acquired from
existing records, with researchers having no control over the interventions performed on
the subjects (if any), in contrast to data generated in controlled clinical trials [11]. On the
other hand, RWD present the opportunity to study larger populations, including diverse
patient groups.

Over the last years, the potential of RWD has been increasingly explored for inferring
causal relationships and measuring treatment effects between variables of interest (see [12]
as well as the overviews [13,14]). Despite the wealth of information offered by RWD,
they are also subject to several types of bias and quality issues that present challenges
in drawing safe and trustworthy inferences. Examples include representation bias (i.e.,
underrepresentation of certain population subgroups in the available data), measurement
bias, missing data, variations in data collection practices, coding errors and inconsistencies
across different sources, which are some of the challenges that may affect the validity of the
analysis results. Another challenge when using RWD for causal inference is the presence
of confounding factors (observed or unobserved), which affect both the outcome and the
treatment variables and can lead to incorrect treatment effect estimation if they are not
properly handled. Thus, ensuring data quality through data curation processes [15] is a
necessary step for reliable analysis and causal inference drawn from RWD.

The REBECCA project (https://rebeccaproject.eu/, accessed on 1 April 2021 ) aims
at leveraging different types of RWD to facilitate research on the quality of life of breast
cancer patients (BCPs). This also includes the study of osteopenia and osteoporosis from AI
treatment in BCPs, as previously mentioned. In this work, we present the REBECCA data
analysis workflow, a general methodology for handling real-world and observational data
for research on breast cancer-induced chronic conditions as well the quality of life of BCPs
and use the study of osteopenia in BCPs undergoing AI treatment as a use case. The goal is
to develop a process for estimating causal effects from observational data suffering from
data quality issues, as is the case with RWD.

To facilitate the evaluation of the proposed methodology, it is important to know the
data generating process and have access to ’ground truth’ data. For this reason, the method-
ology presented in this paper is evaluated on synthetically generated data. In detail, we
generated a synthetic dataset of BCPs under AI treatment using a model developed based
on the bibliography, in collaboration with experts from the INCLIVA Health Research
Institute in Valencia, Spain.

The main contributions of this work include the following:

• A proposal and detailed presentation of a workflow for handling noisy observational
data (such as RWD) to facilitate research on BCPs’ quality of life, including machine
learning-based (ML) methods for causal effect estimation.

https://rebeccaproject.eu/
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• A causal graph associated with determinants of osteopenia and osteoporosis in pa-
tients undergoing AI treatment, which is used for synthetic data generation in the
experiments.

• A set of experiments simulating different data analysis challenges, to demonstrate the
application and effectiveness of the proposed workflow.

The remainder of this paper is organized as follows: Section 2 introduces the necessary
background and a summary of relevant research, while Section 3 provides a description of
all stages of the proposed REBECCA data analysis workflow. Section 4 outlines the causal
directed acyclic graph on osteopenia/osteoporosis, including the development process.
Section 5 provides a thorough presentation of numerical experiments based on a set of
use case scenarios for the demonstration of the proposed data analysis workflow. Finally,
Section 6 summarizes and discusses the main contributions and limitations of the present
paper, along with several interesting directions for future work.

2. Background and Relevant Research
2.1. Causal Effects

The main objective of the proposed methodology is to provide accurate estimations
of causal effects from RWD. In detail, we are interested in calculating the effect of an
intervention or a treatment on the outcome of interest. For the purpose of our study, we
consider the case of a binary treatment variable.

Formally, let xi ∈ X be the covariates in the covariate space, ti ∈ {0, 1} the (bi-
nary) treatment assignment and y(xi, ti) the outcome of interest for subject or unit i, with
i = 1, 2, . . . , n. Each unit can be assigned into a control or treatment group, denoted as ti = 0
and ti = 1, respectively. Under the Neyman–Rubin potential outcome framework [16] and
depending on the unit’s assigned group, we can either measure the outcome y(xi, 0) or the
outcome y(xi, 1), which stands for the factual outcome for i. The fundamental problem of
causal inference is that we cannot observe and measure what the outcome would have been
if unit i had been assigned to the other group. This outcome is known as the counterfactual
outcome, or simply counterfactual, and needs to be estimated to calculate the effect of the
treatment on an individual level. Specifically, the individual treatment effect (ITE) for unit i
is defined as the difference of the outcomes in the treatment and control groups,

ITE = y(xi, 1)− y(xi, 0) (1)

The challenge in this case lies in providing an accurate estimate, ŷ(xi, ti), of the
unobserved counterfactual outcome. For measuring the accuracy of the estimated ITE,
we use the Precision in Estimation of Heterogeneous Effect (PEHE), which is defined as
follows:

PEHE =
1
n

n

∑
i=1

[(y(xi, 1)− y(xi, 0))− (ŷ(xi, 1)− ŷ(xi, 0))]2 (2)

Given that each sample in the dataset is represented by its covariates, this problem
can be approximated via the conditional average treatment effect (CATE), that is

CATE(x) = E[y(X, 1)− y(X, 0) | X = x] (3)

where X is a random variable corresponding to the vector of covariates for each sample.
If estimators ŷ(x, 0) and ŷ(x, 1) are available, then the CATE can be estimated as

ˆCATE(x) =
1
n

n

∑
i=1

(ŷ(xi, 1)− ŷ(xi, 0)) (4)

Additionally, when interested in measuring the causal effects on a population level,
the average treatment effect (ATE) is defined by

ATE = E[y(X, 1)− y(X, 0)] (5)
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which can be estimated as

˜ATE =
1
n1

n1

∑
i=1

y(xi, 1)− 1
n0

n0

∑
i=1

y(xi, 0) (6)

where n1 and n0 are the number of samples in the treatment and the control group, respec-
tively. After the estimation of the missing counterfactual outcomes, the average treatment
effect is estimated as

ˆATE =
1
n

n

∑
i=1

[ŷ(xi, 1)− ŷ(xi, 0)] (7)

To quantify the effectiveness of causal effect estimation at the population level (assum-
ing both outcomes are available in the evaluation data), we use the absolute error on the
ATE, defined by

|ϵATE| =
∣∣∣∣∣ 1
n

n

∑
i=1

[y(xi, 1)− y(xi, 0)]− 1
n

n

∑
i=1

[ŷ(xi, 1)− ŷ(xi, 0)]

∣∣∣∣∣ (8)

2.2. Randomized Controlled Trials for Causal Inference

Randomized Controlled Trials (RCTs) are considered to be the gold standard for
inferring cause-and-effect relationships between a treatment or an intervention and an
outcome of interest [17], since the randomization of participants in the control and treatment
group cancels out the effects of confounding variables. This ensures that any observed
differences between the two groups are due to the applied intervention.

There are several limitations and disadvantages to conducting RCTs. They require
significant cost in terms of resources and time [18], introducing limitations on the number of
enrolled participants as well as on the total duration of the studies. Furthermore, RCTs are
often conducted in controlled settings, which may not reflect real-world conditions, leading
to unrepresentative results for the whole population [19]. Finally, ethical restrictions are
also a significant barrier for conducting RCTs, especially if the assignment of participants
in the control group could result in mistreatment [17] (e.g., if the intervention already has a
known benefit for participants).

Such limitations are particularly pronounced in studies related to the quality of life of
BCPs, since they largely depend on the behavior of patients in their daily lives, e.g., their
physical activity habits and the available psychosocial support [2], which cannot be easily
controlled. Therefore, researchers seek ways to leverage readily available observational
RWD to study factors affecting the quality of life of BCPs and to estimate the effects
of interventions.

2.3. Real-World Data

RWD are often accompanied by various challenges and complications, spanning from
data quality management to data analysis methods. A characteristic of RWD is that they are
observational, in contrast to data gathered from RCTs, and we are able to induce various
forms of bias in the analyses.

2.3.1. RWD and Bias

RWD can suffer from several types of biases including (but not limited to) systematic,
sampling/representation and confounding bias.

A representative example of systematic bias is the underestimation of physical activity
if monitoring devices (such as mobile phones and smartwatches) are not used continuously.
Sampling or representation bias may also be included in the data, since subgroups of
patients in the underlying population are often under-represented or over-represented.

An additional type of bias commonly encountered in observational RWD is confound-
ing bias [20]. A confounder is a variable which affects both the intervention or treatment
variable as well as the study variable and, hence, there is a distortion in the measure of
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association between the variables of interest due to the additional effect of the confounder.
It is also important to be aware of possible unobserved confounders, which might affect
the causal relationship of the intervention and study variables.

To address these issues, several methods for bias estimation have been proposed
in the literature [21]. Through bias estimation, the sources of bias can be identified and
appropriate mitigation measures can be considered. These methods enable us to quantify
bias in an inference model and assess the reliability of the model.

2.3.2. RWD and Data Quality

Another big challenge in working with RWD is missing data, which can occur due
to both human (e.g., omission, neglect, and lack of time) and technical limitations or
deficiencies (e.g., device communication and stopped recordings). A common example
in the case of research on BCP quality of life includes patients who choose to not answer
quality of life questionnaires, or answer only a subset of the questions. These types of errors
are often handled using statistical and machine learning imputation strategies.

Another common issue is data heterogeneity, where data originating from different
structured or unstructured sources do not use the same encoding, even when referring to
the same variables. Such data need to be mapped to a common representation format for
analysis. Data heterogeneity may also originate from the use of different measurement
methods and/or devices, creating the need for robust and reliable frameworks [22]. For ex-
ample, IMU sensors of commercial smartwatches have different sampling rates, which may
lead to differences in physical activity estimates.

2.4. Structural Causal Models

One approach to the analysis of observational data, including RWD, is the use of Struc-
tural Causal Models (SCMs) [23]. SCMs are mathematical models that answer questions
of causality and conceptualize the hidden underlying “causal story” of a dataset. SCMs
consist of two sets of variables, the exogenous variables U, whose values are determined
by external factors, and the endogenous variables V, whose values are determined by the
model. Moreover, SCMs include a set of functions f that assigns each variable in V a value,
based on the values of the other variables in the model [24]. SCMs correspond to directed
acyclic graphs (DAGs), where each node of the SCM represents a variable and each edge
connecting two nodes represents a causal relationship between the variables. Using a
SCM, a practitioner or a researcher can translate how and which features for a specific case
interact with each other.

SCMs have been previously applied for the analysis of observational data in various
disciplines. For example, Arif and MacNeil [25] used SCMs as a framework to overcome
the limitations of inferring causality from observational data in the field of ecology. They
highlighted that the use of statistical analysis of observational data leads to biased esti-
mation of causal effects and instead proposed the use of DAGs to represent the causal
structure of each problem. By applying graphical rules, such as the backdoor and frontdoor
criteria [23], researchers can determine the necessary statistical adjustments for establishing
causal relationships from observational data. Finally, they present simulated examples in
which they demonstrate how the use of these criteria can provide accurate causal estimates
in the field of ecology, without relying on randomized experiments.

Reinhold et al. [26] presented the application of SCMs in precision medicine. In par-
ticular, they highlighted the necessity of answering causal questions (e.g., what is the
response of a patient when different treatments are issued) and mentioned that SCMs can
be leveraged for causal reasoning. The authors focused on the development of a SCM
that captures the interactions between demographic information, disease covariates and
magnetic resonance (MR) images of the brain in patients with multiple sclerosis. Using the
SCM, the authors generated counterfactual images depicting how an MR image of the brain
would appear if certain demographic or disease factors were altered. These counterfactual
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images have applications in modeling disease progression and can be utilized in down-
stream image processing tasks where it is necessary to control for confounding variables.

Petersen and van der Laan [27] highlighted the importance of asking causal questions
in the field of epidemiology and underlined the potential benefits of using formal frame-
works for causal inference. In particular, the significance of causality lies in the fact that
we can identify and intervene with the best way in the root cause of something, rather
than simply spotting a pattern or a behavior. Following this reasoning, the authors focused
on using SCMs, since their flexibility enables them to state valid assumptions and, thus,
lead to the development of a causal model which can describe the true data-generating
process. Overall, they aimed to emphasize the utility of causal thinking when conducting a
statistical analysis, to clarify the capabilities and limitations of SCMs as well as to provide
an overview of SCMs as a powerful tool offered to be used in the field of epidemiology.
Finally, it is clearly stated that the judicious use of a causal framework can significantly
enhance the quality of epidemiological research and improve research in various disciplines
relying on statistics to understand how the world functions.

2.5. Machine Learning Models for Treatment Effect Estimation

Alongside SCMs, purely data-driven machine learning models have been proposed in
the bibliography to directly estimate the various types of treatment effects, introduced in
Section 2.1, without the use of DAGs.

Following a Bayesian non-parametric approach, Chipman et al. [28] developed a
Bayesian “sum-of-trees” model, named Bayesian Additive Regression Trees (BART). The
BART approach fits a parameter-rich model by using a strongly influential prior distribution.
Specifically, the model uses the sum of trees to approximate the average value of the
outcomes given a set of covariates, E[Y | x]. The main idea behind BART is to impose
a prior, which regularizes the fit by keeping the individual tree effects small in order to
elaborate the sum-of-trees model. Additionally, BART uses a tailored version of Bayesian
back-fitting Markov Chain Monte Carlo [29] for fitting the sum-of-trees model.

Künzel et al. [30] proposed two methodologies, named S-learner and T-learner, for the
accurate estimation of treatment effects. S-learner estimates the outcomes by using all the
features of the dataset, along with the treatment as an additional feature. Notice that the
treatment indicator is handled by the base learner like any other feature; hence, it does
not play any special role in the estimation of the effects. In contrast, T-learner utilizes
two independent models: one trained on the treated data to predict outcomes under
treatment and the other one on the control data to predict outcomes without treatment.
Next, the treatment effect is then estimated by subtracting the predicted outcome for the
control model from the predicted outcome for the treatment model. In the literature,
a variety of causal inference models were proposed based on T-learner and S-learner
methodologies using a variety of ML models as base learners, providing some interesting
results [30,31].

Shalit at al. [32] proposed a new framework for estimating individual treatment effects,
named Counterfactual Regression (CFR). This framework uses a prediction model, focusing
on learning a balanced representation of the control and treatment groups. Under this
balanced representation, the distributions of the two groups are considered to be similar.
Specifically, the authors used two different integral probability metrics, Wasserstein (Wass)
distance [33] and Maximum Mean Discrepancy (MMD) [34], for calculating the distances
between the treatment and control distributions, as well as proposed a generalization
bound for estimating the individual treatment effect. In addition, the authors demonstrated
the performance of the proposed models, CFR (MMD) and CFR (Wass), which stand for
MMD and Wass distances, respectively, and compared their performance with state-of-the-
art models. Finally, they proposed a variant without balance regularization, the neural
network-based model TARNet.

Shi et al. [35] proposed a neural network-based model for the estimation of treatment
effects, named Dragonnet. The authors mainly focused on the use of observational data
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for treatment effect estimation, giving special attention to the average and individual level.
The proposed model aimed to improve these estimations by exploiting the propensity
score’s sufficiency. Additionally, the authors proposed targeted regularization, which
is based on non-parametric estimation theory and focuses on reducing the bias of the
estimator, therefore further improving the estimation of treatment effects. The presented
experiments provided evidence about the superiority of Dragonnet over TARNet, CFR
(MMD) and CFR (Wass) on a variety of challenging causal inference benchmark datasets.

In more recent works, Kiriakidou and Diou [36,37] proposed NN-Dragonnet for es-
timating treatment effects, which consists of a modification of the neural network-based
model Dragonnet. The rationale behind the development of this model is to capture infor-
mation not only from the covariates of the samples, but also from the average outcomes of
neighboring instances from both treatment and control groups. In simple words, the pro-
posed model utilizes the average of the nearest outcomes of each instance from both control
and treatment groups along with the covariates as inputs. The authors evaluated the perfor-
mance of NN-Dragonnet on three collections of datasets using three different Minkowski
distance metrics (i.e., Euclidean, Manhattan and Chebyshev) for the calculation of nearest
neighboring instances. Their numerical experiments demonstrated that NN-Dragonnet
achieves lower PEHE values than Dragonnet and TARNet models, which implies that it
can be used for improved estimation of the CATE.

3. Proposed Methodology

To address the limitations and challenges underlined in Section 2, we propose a
methodology for using data collected in uncontrolled settings, as is the case with RWD,
for clinical research purposes. This methodology has been developed in the context of the
REBECCA project and is summarized in Figure 1.

Figure 1. REBECCA data analysis workflow.

3.1. Stage 1: Collection of Real-World Data

The first stage of the proposed data workflow is “RWD collection”. Data sources include
case report forms, smartwatch and smartphone measurements as well as elements of online
activity data collected from BCPs.

Specifically, the case report forms consist of clinical variables providing background
information for each patient, including demographic data, tumor characteristics and the
associated treatment, medication information, additional medical and immunization history
and finally results of clinical and medical examinations. In addition, data can include
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questionnaires, which are used to measure multidimensional aspects of BCPs’ quality of
life, including their physical, social, emotional as well as functional well-being.

Regarding the smartwatch, smartphone and online activity monitoring data, these are
used along with indicator extraction algorithms [38–40] to provide objective measurements
of the individual physical and online behavior of the patients.

Data collection may include different sources with different data representations. All
data are mapped to a common data model and representation format, which includes all
variables of interest.

3.2. Stage 2: Data Curation

The second stage of the proposed data workflow is the “Data curation” stage. This
is an essential step in the process of data handling, since it involves removing errors and
inconsistencies in the data to ensure that they are accurate and reliable so the analysis
can be continued. These errors may include typos, missing values and outliers, while
inconsistencies can include duplicate data or an inconsistent data format. Many of these
issues can be addressed in an automated way. The following functionalities can facilitate
this stage:

1. Missing data imputation: Several machine learning-based imputation strategies exist
that attempt to estimate the missing values, such as Bayesian Ridge Regression [41],
k-Nearest Neighbors [42], Random Forests [43] and Extra-Trees [44].

2. Outlier detection: These methods identify data anomalies, which significantly differ
from other observations or data trends and can be attributed to measurement errors or
data entry errors. In the literature, the Isolation Forest [45], Local Outlier Factor [46]
and One-Class Support Vector Machine [47] algorithms constitute some of the most
popular outlier detection methods.

3. Partial measurement estimation: In several cases, the overall behavior of an individual
needs to be inferred from partial measurements. For instance, users may provide
measurements through smartwatches for only part of the day, or may not use their
smartwatch for some activities, thus requiring estimation of overall physical activity.

4. Measurement error and bias quantification: This component augments measurements
with metadata related to the possible error and bias of the measurements. This
information will assist in subsequent data analysis tasks, e.g., by providing confidence
intervals through sensitivity analysis.

The outcome of the “Data curation” stage is curated datasets, which can be used for
data analysis and statistical and causal inference.

3.3. Stage 3: Model Development

The third stage of the REBECCA workflow is “Model Development”, which is focused
on encoding existing domain knowledge into a directed acyclic graph (DAG), which in
turn represents the causal associations between the variables under consideration in the
study. The developed DAG is then used in combination with the data available from the
previous stage to develop a Structural Causal Model (SCM). The resulting SCM quantifies,
in a functional way, the causal variable relations.

This stage may also incorporate purely data-driven ML models, which are trained for
estimating the ATE and CATE, using the available collected data.

3.3.1. SCM for Osteopenia and Osteoporosis

Figure 2 presents the developed DAG for the “Osteopenia and Osteoporosis” use case,
which aims to study various factors contributing to bone mineral density (BMD) loss (and
increased risk of fractures) in BCPs, especially for those who undergo AI treatment. For
measuring the variable BMD loss, we consider the T-score. The value of the T-score [48] on
a patient’s bone density report suggests the difference, in standard deviations, from the
bone mineral density of the average of healthy 30-year-old women. According to the World
Health Organization (WHO), normal ranges are between −1.0 and +4, while a T-score
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between −2.5 and −1.0 is considered to indicate low bone density, or else osteopenia.
Finally, a T-score below −2.5 indicates that the patient has osteoporosis. The functional
relationships between the linked variables are learned from the available data, resulting in
a model that can be used to assess the effect of various QoL-related parameters on BMD
loss. Details regarding the DAG are provided in Section 4.1 and in the Appendix A. In this
paper, the DAG is used for data generation purposes, to synthesize the dataset used in
the experiments.

Figure 2. Causal DAG for osteopenia/osteoporosis. A causal directed acyclic graph (DAG) is a
graphical tool used for visually representing the causal connections between a set of variables. In our
case, the set of variables are relevant to the clinical study for osteopenia/osteoporosis, as a result of
treating breast cancer with aromatase inhibitors, in the context of the REBECCA project.

3.3.2. Data-Driven Causal Inference Models

Besides the SCMs, the proposed workflow also includes ML-based approaches for
treatment effect estimation, ranging from traditional linear models to tree-based (R-Forest
and BART) and neural network-based models (TARNet, Dragonnet and NN-Dragonnet).
In contrast to SCMs, ML models do not directly encode any knowledge about the causal
relationships between variables and aim at directly estimating the values of the outcome
with and without treatment, given a set of known covariates. Depending on the level of
existing knowledge about the underlying causal mechanisms, these values may prove
to be more accurate than SCMs for the estimation of causal effects, at the cost of lower
interpretability. The decision on the approach to use (SCM, possibly with model training
to learn the function at each node vs purely data-driven models) depends on the specific
problem and on data availability.
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3.4. Stage 4: Treatment Effect Estimation

The fourth stage of the REBECCA workflow is the “Treatment Effect Estimation” stage.
In this stage, the trained models developed in Stage 3 are used to estimate the ATE (at
population level) or CATE (for specific patients or patient subgroups).

3.5. Stage 5: Presentation of Results

The fifth and final stage of the REBECCA workflow is the “Presentation of results”. We
distinguish between the following cases:

• Clinical research: In this case, the models are used directly to provide estimates of
the ATE/CATE. Additional information may also be presented to the researcher, such
as descriptive and inferential statistics for different population subgroups based on
the available data.

• Patient management: In this case, the models’ estimations can support clinicians in
identifying patients who are in need of provider contact (e.g., have a high estimated
BMD loss), as well as to identify optimal treatments for those patients (e.g., lifestyle
changes or pharmacological interventions). Offering such resources regarding patients
for review to clinicians was proposed by several researchers [49–51].

4. Use Case: Breast Cancer-Related Osteopenia and Osteoporosis

As a representative use case of the proposed RWD analysis workflow, we focus on the
issues of osteopenia and osteoporosis as a result of adjuvant breast cancer treatment with
AIs [52]. This treatment, commonly provided to postmenopausal women with breast cancer,
lowers their estrogen levels and leads to decreased bone density [52,53]. Consequentially,
such patients have more fragile bones compared to women who do not receive AI treatment
and are therefore susceptible to bone fractures. The use case of osteopenia and osteoporosis
in breast cancer has been discussed in several research works as in [54–57].

4.1. Directed Acyclic Graph

Figure 2 presents the developed DAG for the use case of osteopenia/osteoporosis.
For the development of the DAG, both researchers and specialized clinicians collaborated
to model existing knowledge regarding the interactions between the studied variables.

Firstly, a literature review was performed regarding the comorbidity of osteopenia
and osteoporosis in BCPs treated with AIs. Next, an interdisciplinary team of technical
and clinical research scientists participating in the REBECCA project discussed the main
findings of this review and defined the variables that should be considered for studying
BMD loss.

All the information and knowledge discussed between the technical and clinical
partners of REBECCA were transformed into the DAG presented in Figure 2. Each node
in the DAG represents a variable and each edge indicates the direction of its relationship.
The reader can refer to Appendix A for a detailed description of the links between the
connected variables.

It is worth emphasizing that the underlying mechanism of bone turnover, which is the
ratio of bone formation to bone resorption, is not fully understood. Therefore, the proposed
model is a simplified representation aimed to act as a decision support and analysis tool
and not as a model offering a detailed depiction of reality. Finally, the developed DAG
is used only for the generation of the datasets used in Section 5 and not as a tool for the
analysis in the presented experiments.

4.2. Synthetic Datasets

In the context of the REBECCA project, we developed a synthetic data generator (SDG)
for the generation of synthetic but realistic real-world datasets.

To generate data, the first step is to define the functional relationships between the
variables of the DAG of Figure 2. By taking into account the causal connections between
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the variables of the DAG and by defining their functional relationship, the generator yields
datasets, which can simulate RWD distributions and observational data.

One of the basic functionalities of the SDG is that each dataset entry, which corresponds
to a simulated individual, is associated with the patient’s “personal graph”. By storing
the values of each variable in a personal graph, we are able to simulate and generate
counterfactual data. This functionality also enables us to intervene on an arbitrary number
of variables, which in turn triggers the recalculation of each value connected to and affected
by the intervention.

5. Experimental Analysis

In this section, we present a series of experiments for evaluating the ability of the
proposed approach for supporting the QoL of patients with osteopenia undergoing treat-
ment with AIs. Our scope is to compare the performance of state-of-the-art ML models,
ranging from traditional linear models to tree-based and neural network-based models, in
estimating treatment effects.

For conducting the experiments, we use synthetic datasets, which were produced in
a completely controlled setting by the SDG, based on the causal DAG developed in the
“Model Development” stage (see Section 4.2), for the case of osteopenia and osteoporosis
studied as a comorbidity of breast cancer treatment with aromatase inhibitors.

At this point, it is worth recalling that the primary reason for utilizing synthetic
datasets in our research is that it is impossible to observe the causal effect of a single
unit, since only the factual outcome can be measured, which constitutes the fundamental
problem of causal inference [16]. In detail, a BCP can either receive or not receive a specific
treatment or an intervention and, thus, we cannot calculate the real causal effect of the
particular treatment on the patient. Therefore, when using RWD for causal inference, we
cannot observe but only estimate the missing counterfactual outcomes and then estimate
the causal effects [58,59].

Next, we present the models, which are included and evaluated in the REBECCA
workflow and are characterized as some of the most effective and widely used models for
the estimation of causal effects:

• “LR1”, which stands for the ”S-learner” methodology proposed by Künzel et al. [30],
using Linear Regression as a base learner [60].

• “LR2”, which stands for the ”T-learner” methodology proposed by Künzel et al. [30],
using Linear Regression as a base learner [60].

• “R-Forest”, which stands for the ”S-learner” methodology proposed by Künzel et al. [30],
using Random Forest as a base learner [43].

• “BART”, which stands for the model proposed by Chipman et al. [28].
• “TARNet”, which stands for the model proposed by Shalit et al. [32].
• “Dragonnet”, which stands for the Dragonnet model proposed by Shi et al. [35].
• “NN-Dragonnet (C)”, which stands for the model proposed by Kiriakidou et al. [36,37],

using Chebyshev distance for calculating the average of the nearest instances’ outcomes.
• “NN-Dragonnet (E)”, which stands for the model proposed by Kiriakidou et al. [36,37],

using Euclidean distance for calculating the average of the nearest instances’ outcomes.
• “NN-Dragonnet (M)”, which stands for the model proposed by Kiriakidou et al. [36,37],

using Manhattan distance for calculating the average of the nearest instances’ outcomes.

The implementation code was written in Python 3.10 and executed on a PC (3.2 GHz
Quad-Core processor, 32 GB RAM) using the Windows operating system. We experimented
with several configurations of each causal inference model through a grid hyperparameter
search. For example, all neural network-based models (i.e., TARNet, Dragonnet and NN-
Dragonnet) were evaluated using a varying number of neurons in the hidden layers as
well as different learning rates. In addition, all versions of NN-Dragonnet were evaluated
with several values of parameter k (number of neighboring instances) ranging from 5 to
15, while R-Forest was evaluated with different values of the “number of trees” and “max
depth” hyperparameters, which are reported in Appendix C.
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The performance of all causal inference models was measured using the absolute
error of the ATE |ϵATE| and the Precision in Estimation of Heterogeneous Effect (PEHE)
metrics, which are, respectively, defined by (2) and (8). It is worth noticing that the PEHE
assesses the precision of the causal inference models for estimating the ITE by measuring
the accuracy of individualized predictions. A lower value indicates that the model has
better precision in predicting the benefits of a treatment on an individual; hence, clinicians
are able to provide more informed decisions for targeted personalized care.

The primary aim is to provide an answer to the following research question: “What is
the effect of exercising with high intensity on the bone mineral density loss of BCPs?”. By taking
into consideration the concept of treatment effect estimation for the above statement, we
consider the variable “Exercise” as the treatment variable T and the variable “BMD loss” as
the outcome variable Y.

Notice that since we generated synthetic datasets for studying the case of osteopenia
and osteoporosis, it is possible to calculate the real causal effect, as the counterfactual
outcome of each individual is calculated using the SDG (see Section 4.2).

This is referenced as ground truth throughout the section. Following the ground truth
calculation, we conduct several experiments simulating different use case scenarios that
include ideal datasets, with either biases in the data, as well as consider hidden confounders
or a hidden mediator.

5.1. Experimental Setup

Using the synthetic data generator described in Section 4.2, we generated synthetic
datasets consisting of 500 patients and also calculated the corresponding counterfactual
outcomes of those BCPs. Notice that for calculating the counterfactual outcome of each
sample, we re-calculated all of its variable values by assigning a change in the intensity of
their physical activity, which is the treatment variable, while keeping the same value of the
noise variables. In detail, we changed from high-intensity exercise to low-intensity exercise
and vice versa, depending on the initial assignment of each individual. The ground truth
effect of high-intensity exercise on the BMD loss of BCPs is calculated as 0.58, i.e., intense
physical activity inhibits the loss of BMD, as has been underlined in the literature [61–63].

We direct the reader to Appendix B for a detailed description of the implemented func-
tional relationships of the variables as well as to https://github.com/kiriakidou/A-Causal-
Inference-Methodology-to-Support-Research-on-Osteopenia-for-Breast-Cancer-Patients
(accessed on 1 April 2021), for the generated datasets. At this point, it is worth men-
tioning that since no RWD are available, the utilized noises in our research were defined
using input from domain experts in the REBECCA project.

For each generated dataset, we consider two cases: (a) a non-imputed dataset in which
no missing values exists and (b) an imputed dataset in which 30% of entries from the
“estrogens” and “calcitonin” variables were randomly removed for simulating the case of
the missing data problem, commonly encountered in practice when working with RWD.
Lacking any additional evidence, we did not make any assumptions about the mechanisms
underlying missingness in the generated data, so the data are Missing Completely at
Random (MCAR) [64], i.e., the likelihood of a data point being missing is independent of
both observed and unobserved data. This approach is commonly used when evaluating
ML models with missing data [65].

As regards data imputation, we experimented with several imputation techniques
such as utilization of the mean value for each feature, k-NN for various values of parameter
k and Random Forest; nevertheless, Extra-Trees was selected, since it provided the best
overall performance for all causal inference models. In addition, the employment of
any imputation technique does not affect the obtained findings in our experiments since
similar conclusions could be made from the employment of any of the utilized imputation
techniques (“Data Curation” stage of the proposed workflow). Finally, we highlight that
80% of the data were used for training the models (in-sample), while the rest 20% was used
as a hold-out for evaluation (out-of-sample) [66].

https://github.com/kiriakidou/A-Causal-Inference-Methodology-to-Support-Research-on-Osteopenia-for-Breast-Cancer-Patients
https://github.com/kiriakidou/A-Causal-Inference-Methodology-to-Support-Research-on-Osteopenia-for-Breast-Cancer-Patients
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In the following text, we design and perform experiments considering four different case
studies for highlighting the complications that occur when using RWD for causal inference.

5.1.1. Case 1: Unbiased Sampling

For the design of this experiment, we generated two similar groups of BCPs and
randomly assigned them into control and treatment groups. This assignment resembles
an RCT study, where the first group consists of 500 individuals with no exercise or low-
intensity exercise habits, while the second group consists of 500 individuals who are
performing high-intensity exercise sessions.

Apart from the physical activity level, all variables follow the same distribution across
the two groups. Additionally, for this unbiased case the value of the ATE is calculated to be
0.58, which is identical to the ground truth effect and, hence, |ϵATE| = 0.

Finally, the PEHE of the average is 3.42 and 4.25 for the train and the test set of
the non-imputed dataset and 2.67 and 3.56 for the train and the test set of the imputed
dataset, respectively.

5.1.2. Case 2: Observational Study with Bias

This case simulates a common scenario, in which data suffer from selection bias.
For the generation of the dataset, we created two groups of patients, each one comprising
500 individuals. The difference compared to the unbiased scenario is that 80% of the patients
that belong to the high-intensity exercise group (i.e., treatment group) have been prescribed
calcium supplementation. In contrast, only 20% of the patients who belong to the low-
intensity exercise group (i.e., control group) receive calcium supplementation. In general,
clinicians and medical researchers suggest that a reasonable proportion of patients who
should receive calcium supplementation is typically between 50% and 80% [67], especially
in populations at higher risk of bone density loss, such as older adults or postmenopausal
women. The clinical experts from the REBECCA project suggested that in the generated
synthetic data, 80% of the patients that belong to the high-intensity exercise group (i.e.,
treatment group) should be receiving calcium supplementation, as this aligns with current
guidelines and practices aimed at maximizing bone health outcomes in these vulnerable
populations [68].

In this case, the direct calculation of the ATE is 0.87, which is an overestimation of the
ATE compared to the real 0.58 value; hence, |ϵATE| = 0.29. This result is reasonable, since
in this case the ATE measures the combined effect of a higher concentration of calcium
in the blood along with high-intensity physical activity, leading to a higher reduction in
BMD loss.

Finally, the PEHE is 2.74 and 2.72 for the train and the test set for both non-imputed
and imputed datasets, respectively.

For the selection of the variables used to conduct the experiments based on Cases 1 and
2, we use the DAG in Figure 2, developed for the use case of osteopenia and osteoporosis.
In detail, our decision rests on the condition that the selected variables should satisfy the
backdoor criterion [23].

The subset of the selected variables are as follows: “Exercise”, “PTH” , “Age”, “Cal-
cium in blood”, “C-Telopeptides”, “Alcohol consumption”, “Calcium supplement”, “Calci-
tonin”, “Nutrition rich in calcium”, “Vit.D in Blood” as well as “Cigarettes per day”.

Finally, the target variable is the Bone Turnover, which directly leads to BMD loss.

5.1.3. Case 3: Observational Study with Hidden Confounders

With regard to the third experiment, we use the biased dataset produced for the
previous case (Case 2), but with the main difference that we do not measure the variables
“Calcium supplementation”, “Nutrition rich in calcium”, “Alcohol consumption” and “Vit.
D in Blood”.
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As shown in Figure 2, all these variables directly affect the variable “Calcium in blood”,
but since they are not measured they are considered to be hidden confounders. The result
of direct computation of the ATE equals 0.87 and therefore, |ϵATE| = 0.29.

5.1.4. Case 4: Observational Study with Unobserved Mediator

Regarding this experiment, we are not measuring the variable “Calcium in Blood”,
which is a mediator between the variable “Bone Turnover” and “Calcium supplement”,
“Alcohol consumption”, “Calcitonin”, “Vit. D in Blood” as well as “Nutrition rich in
calcium”. These variables can be proxies for “Calcium in blood” and, therefore, can be
used to capture the bias present in the dataset. The direct estimation of the ATE equals 0.87,
which implies that |ϵATE| = 0.29.

5.2. Numerical Experiments

Tables 1 and 2 report the performance of the ML models in terms of |ϵATE| and the
PEHE in both in-sample (i.e., counterfactual estimation of the training samples) and out-of-
sample (i.e., factual and counterfactual estimation on the held-out test data), respectively,
relative to the four different cases presented in the experimental setup.

Table 1. Experimental results on train set. Top results are specified in bold, while second best are
underlined. The calculated ground truth ATE of “intense exercise” on “BMD loss” is 0.58.

Model
Case 1 Case 2 Case 3 Case 4

|ϵATE| = 0 |ϵATE| = 0.29 |ϵATE| = 0.29 |ϵATE| = 0.29
|ϵATE| PEHE |ϵATE| PEHE |ϵATE| PEHE |ϵATE| PEHE

LR1 0.154 3.506 0.141 2.727 0.155 2.727 0.189 2.727
LR2 0.007 3.305 0.150 2.342 0.158 2.386 0.194 2.653
R-Forest 0.066 3.062 0.175 2.186 0.177 2.183 0.118 2.265
BART 0.427 3.221 0.160 2.490 0.165 2.435 0.169 2.727
TARnet 0.055 3.295 0.166 2.262 0.150 2.281 0.095 2.641
Dragonnet 0.050 3.041 0.221 2.334 0.196 2.249 0.079 2.645
NN-Dragonnet (C) 0.159 3.263 0.106 2.260 0.140 2.240 0.093 2.734
NN-Dragonnet (E) 0.246 3.389 0.104 2.261 0.208 2.216 0.110 2.740
NN-Dragonnet (M) 0.257 3.390 0.094 2.261 0.126 2.242 0.031 2.656

(a) Non-Imputed Dataset

Model
Case 1 Case 2 Case 3 Case 4

|ϵATE| = 0 |ϵATE| = 0.29 |ϵATE| = 0.29 |ϵATE| = 0.29
|ϵATE| PEHE |ϵATE| PEHE |ϵATE| PEHE |ϵATE| PEHE

LR1 0.154 2.750 0.143 2.727 0.157 2.727 0.191 2.727
LR2 0.019 2.328 0.152 2.341 0.160 2.386 0.196 2.648
R-Forest 0.064 2.103 0.175 2.183 0.174 2.190 0.141 2.292
BART 0.462 2.508 0.147 2.378 0.169 2.477 0.150 2.727
TARnet 0.059 2.338 0.164 2.252 0.148 2.271 0.087 2.624
Dragonnet 0.048 2.091 0.223 2.320 0.233 2.289 0.077 2.63
NN-Dragonnet (C) 0.106 2.238 0.105 2.248 0.140 2.250 0.101 2.726
NN-Dragonnet (E) 0.027 2.076 0.104 2.254 0.134 2.248 0.111 2.733
NN-Dragonnet (M) 0.053 2.096 0.097 2.250 0.127 2.210 0.102 2.725

(b) Imputed Dataset

Regarding Case 1, the direct estimation of the ATE using Equation (7) leads to an
estimated ATE of 0.58. In detail, in Case 1 there are no biases in the dataset and thus the
estimated effect coincides with the ground truth ATE, as it would have been calculated
through an RCT. On the other hand, the direct calculation of the effect of high-intensity
exercise on BMD loss for the biased datasets is 0.87, which is an overestimation of the ATE
compared to the real 0.58 value. The deviation in results compared to the ground truth is
reasonable, as in this case the ATE measures the combined effect of a higher concentration
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of calcium in the blood, along with high-intensity physical activity, leading to a higher
inhibition of BMD loss.

The interpretation of Tables 1 and 2 reveals that ML models achieve better estimation
of the ATE (and CATE) in observational studies, as opposed to the direct estimation of the
causal effect from the dataset. Therefore, the benefit of using these algorithms for causal
effect estimation is apparent, as the estimation errors are considerably lower. Regarding
to the estimation of the PEHE of each model, they are all close to the calculation of the
PEHE for the average of the population, as it is calculated on the unbiased and biased
dataset. Furthermore, it is worth noticing that in both non-imputed and imputed datasets,
there is no significant difference in the estimation of the ATE in Cases 2 and 3, where the
“Calcium supplementation”, “Nutrition rich in calcium”, “Alcohol consumption” and “Vit.
D in Blood” are confounders, as there is still in the dataset the variable “Calcium in blood”
acting as a proxy variable. Finally, the estimations of the ATE in Cases 2 and 4 are also very
close, as the hidden variable “Calcium in blood” is represented by the variables “Calcium
supplement”, “Alcohol consumption”, “Calcitonin”, “Vit. D in Blood” and “Nutrition rich
in calcium” in the dataset.

In practice, these results indicate that direct calculation of the ATE using the datasets of
Cases 2–4 would lead to a significant overestimation of the effect of high-intensity physical
activity on BMD loss, due to its confounding with calcium supplementation, while methods
such as NN-Dragonnet would lead to much lower estimation error (e.g., 0.094 instead of
0.29 for Case 2). Such differences are important, especially given that BC patients often
suffer from additional conditions, such as cardiovascular disease or chronic fatigue. Having
accurate information about the risks and benefits of each treatment on each of the multiple
existing conditions enables clinicians to reach optimal treatment decisions.

Table 2. Experimental results on test set. Top results are specified in bold, while second best are
underlined. The calculated ground truth ATE of “intense exercise” on “BMD loss” is 0.58.

Model
Case 1 Case 2 Case 3 Case 4

|ϵATE| = 0 |ϵATE| = 0.29 |ϵATE| = 0.29 |ϵATE| = 0.29
|ϵATE| PEHE |ϵATE| PEHE |ϵATE| PEHE |ϵATE| PEHE

LR1 0.154 4.378 0.141 2.762 0.155 2.756 0.189 2.743
LR2 0.062 3.896 0.201 2.336 0.220 2.330 0.157 2.790
R-Forest 0.128 3.912 0.281 2.453 0.285 2.463 0.088 3.179
BART 0.427 3.966 0.175 2.565 0.182 2.496 0.169 2.751
TARnet 0.034 4.020 0.227 2.373 0.224 2.406 0.056 2.833
Dragonnet 0.011 3.752 0.265 2.440 0.237 2.365 0.045 2.800
NN-Dragonnet (C) 0.112 4.096 0.182 2.404 0.229 2.396 0.141 3.050
NN-Dragonnet (E) 0.197 4.220 0.176 2.386 0.275 2.342 0.151 3.085
NN-Dragonnet (M) 0.216 4.306 0.154 2.409 0.221 2.324 0.001 2.903

(a) Non-Imputed Dataset

Model
Case 1 Case 2 Case 3 Case 4

|ϵATE| = 0 |ϵATE| = 0.29 |ϵATE| = 0.29 |ϵATE| = 0.29
|ϵATE| PEHE |ϵATE| PEHE |ϵATE| PEHE |ϵATE| PEHE

LR1 0.154 3.668 0.143 2.762 0.157 2.755 0.191 2.742
LR2 0.053 2.928 0.205 2.334 0.223 2.326 0.168 2.770
R-Forest 0.120 2.970 0.277 2.462 0.277 2.460 0.114 3.147
BART 0.462 3.345 0.164 2.451 0.186 2.601 0.150 2.756
TARnet 0.034 3.124 0.237 2.358 0.232 2.393 0.061 2.772
Dragonnet 0.009 2.807 0.271 2.429 0.285 2.434 0.051 2.764
NN-Dragonnet (C) 0.047 2.961 0.184 2.387 0.239 2.402 0.141 3.023
NN-Dragonnet (E) 0.031 2.707 0.181 2.374 0.233 2.357 0.141 3.049
NN-Dragonnet (M) 0.004 2.762 0.170 2.390 0.229 2.366 0.128 3.025

(b) Imputed Dataset
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6. Discussion and Conclusions

In this work, we propose a data analysis workflow, which is developed in the context
of the REBECCA project. The main objective is to present a methodology on how to handle
RWD and provide accurate and reliable estimations of causal effects for research on the
quality of life of BCPs. The proposed methodology consists of the stages of data collection,
data curation (including data imputation and outlier detection), model development,
treatment effect estimation and finally, the presentation of results. Issues related to data
quality as well as sampling, confounding and other biases have an impact on the accuracy
of treatment effect estimation.

To demonstrate and evaluate the proposed approach, we developed a causal DAG
for the case of osteopenia and osteoporosis, which is a comorbidity of AI treatment in
postmenopausal BCPs. Specifically, we used the DAG and an associated SCM to generate
synthetic datasets and then we applied the proposed workflow to several use case scenarios,
including cases with missing values as well as sampling and confounding biases. Based
on the results of the experimental analysis, the proposed approach achieves significantly
higher estimation accuracy, compared to direct computation of the ATE, in cases where bias
is present. This implies that the use of ML models for causal inference is beneficial, since
they provide lower estimation errors. The experimental analysis results suggest that there
is promise in using automated methods for data quality control and causal effect estimation
for studying factors affecting the quality of life of BCPs.

The synthetic data used in this study were carefully designed based on established
relationships from the literature on clinical trials, as well as input from domain experts
(see Appendixes A and B). This approach helped in ensuring that the generated data
faithfully represent realistic clinical scenarios and the underlying mechanisms involved.
Nevertheless, even though the generated data may not capture some of the complexity and
the nuances of real patient data, they highlight the challenges that arise when attempting
to estimate treatment effects on the quality of life of BCPs.

Generally, synthetic data offer substantial benefits in addressing the lack of real-world
datasets, especially in cases such as the inherent absence of the counterfactual outcomes [69].
However, the synthetic data generation process carries the risk of introducing biases, either
from the assumptions made in defining relationships or from the algorithm used to generate
the data. To the best of our knowledge, there are no available causal inference datasets
for studying the comorbidity of osteopenia and osteoporosis; hence, an evaluation for
ensuring that key statistical properties of the RWD are preserved by the generated synthetic
is impossible. This can be considered as a limitation of this approach, since the generated
synthetic data may not fully capture the complexity of RWD. An elegant approach for
addressing this difficulty will certainly be included in our future research.

In this research, we focused our attention on the estimation of the ATE and CATE,
which constitute quantitative measures of how treatments perform on average and for
specific subgroups. It is worth highlighting the importance of translating the findings made
from the estimation of these metrics into hypotheses for future research as well as clinical
practice for supporting clinicians in making more informed, patient-specific treatment
decisions. However, this is not possible due to the lack of available real-world data.

In our future work, we intend to seek and obtain real BC patient data from clinical
trials for assessing the quality of the generated synthetic data. In addition, we will focus
our attention on developing methods that combine the data-driven causal effect estimation
models with Structural Causal Models, as well as methods for model validation and testing.
Finally, another interesting direction is the enhancement of SCMs for multiple comorbidities
of breast cancer, which need to be developed to support holistic, multi-level interventions
to improve the quality of life of patients.
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Appendix A. DAG Variables

Next, we present all the links between the variables of the DAG along with an expla-
nation for the connection of the corresponding nodes.

• Age → Menopause: This is an obvious relationship, since age in the majority of the
cases indicates whether the woman is pre-menopausal or post-menopausal.

• Age → Estrogens: According to Lephart [70] estrogen levels peak in the mid-to-late
20s in women and then decline by 50% by 50 years of age and dramatically decrease
further after menopause.

• Age → Bone Mineral Density (BMD) loss: BMD loss increases as a person gets
older [71].

• Menopause → Aromatase Inhibitor (AI) treatment: Only post-menopausal women
undergo AI treatment [72].

• Menopause → Estrogens: Estrogen levels in post-menopausal women drop and they
no longer ovulate [70].

• AI treatment → Estrogens: AI treatment specifically targets estrogens and, thus,
accelerates their deprivation [70].

• Family History (patient’s ethnicity) → Estrogens: According to Visvanathan and
Yager [73], there are variations in the estrogen levels of breast cancer patients among dif-
ferent ethnicities.

• Body Mass Index (BMI) → Estrogens: Clinicians advise was that BMI is a good
indication of whether the patients have better eating and exercising behavior.

• Heritage → Estrogens: Clinicians informed us that genetics, mainly if the mother of
the patient had osteoporosis or had a limb fracture, has an effect on estrogen levels,
which afterwards lead to a reduction in BMD.

• Estrogens → Calcitonin: Calcitonin is proposed as mediator of estrogen action, as is
mentioned in [74].

• Estrogens → Mood: Based on Thompson and Reilly [75], a lack of estrogens worsens
the patient’s mood.

• Estrogens → Abdominal Fat Accumulation: Low levels of estrogens can contribute to
women gaining fat in the belly area [76].

• Estrogens → Energy/Fatigue: Clinicians informed us that a lack of estrogens lowers
the patient’s levels of energy and, thus, causes fatigue.

• Estrogens → Sleep quality: Clinicians highlighted that information about sleep is
crucial for studying the case of osteopenia and osteoporosis. As is indicated in
Gava et al. [77], low estrogen levels cause sleep disturbances.

https://github.com/kiriakidou/A-Causal-Inference-Methodology-to-Support-Research-on-Osteopenia-for-Breast-Cancer-Patients
https://github.com/kiriakidou/A-Causal-Inference-Methodology-to-Support-Research-on-Osteopenia-for-Breast-Cancer-Patients
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• Estrogens → Ability to concentrate: The research of Hara et al. [78] suggests that
estrogen levels have an impact on memory and cognition. Hence, low estrogen levels
lead to difficulty in concentrating.

• Estrogens → Hot flashes: Clinicians underlined that a lack of estrogens have a negative
impact on patients’ hot flashes .

• Estrogens → Libido: Clinicians highlighted that a lack of estrogens decreases
patients’ libido.

• Estrogens → Depression: The research of Studd [79] indicates that low estrogen levels
are associated with depression.

• Exercise → Mood: Research of Hoffman and Hoffman [80] reveals that exercise leads
to an improvement in mood.

• Exercise → Abdominal Fat Accumulation: Clinicians discussed that if a person does
more intense exercise, then there is probability for less abdominal fat accumulation.

• Exercise → Energy/Fatigue: Intense exercise lead to fatigue, as is stated in [81].
• Exercise → Sleep quality: The research of Hargens et al. [82] indicates that exercise

decreases patients’ sleep complaints as well as insomnia.
• Exercise → Ability to concentrate: The research of Falkai et al. [83] suggests that mild

exercise can improve the ability to concentrate.
• Exercise → Hot flashes: The research of Romani et al. [84] indicates that higher levels

of physical activity are significantly associated with increasing odds of moderate or
severe hot flashes.

• Exercise → Libido: Moderate exercise is linked to increases in libido, while excessive
exercise is linked to lower libido, as is supported in [85].

• Exercise → Depression: According to Mead et al. [86], exercise seems to improve the
symptoms of depression.

• Exercise → Bone Turnover: Results of the study of Gombos et al. [87] are consistent
with previous reports in the literature indicating that the force generated by muscle
contraction contribute to stimulating bone resorption.

• Calcitonin → Calcium in blood: The main function of calcitonin is the decreasing of
calcium levels in the blood [88].

• Calcium supplement → Calcium in blood: When the patient receives calcium supple-
mentation, it leads to higher calcium levels in the blood.

• Vit. D in Blood → Calcium in blood: Low vitamin D levels inhibit the absorption of
calcium in the blood and, hence, lead to a low level of calcium in the blood [89].

• Nutrition rich in calcium → Calcium in blood: Receiving more calcium through
nutrition leads to higher calcium levels in the blood.

• Alcohol consumption → Calcium in blood: One of the clinical symptoms of chronic
alcohol consumption the decrease in calcium in the blood, as is supported in the
research in [90].

• Diabetes → Vit. D in Blood: Vitamin D deficiency is associated with a decreased
insulin release, based on Mitri et al. [91]’s research.

• Vit. D supplement → Vit. D in Blood: When the patient receives vitamin D supple-
mentation, this leads to higher vitamin D levels in the blood.

• Calcium in blood → Bone Turnover: Calcium is essential for bone formation, as is
reported in [92].

• Cigarettes per day → Bone Turnover: According to Trevisan et al. [93], smoking
negatively affects bone health and, hence, reduces the formation of bones.

• Parathormone(PTH) → Bone Turnover: PTH stimulates the release of calcium in an
indirect process through osteoclasts, which ultimately leads to the resorption of the
bones, as is supported in [94].

• Bone Turnover → C-Telopeptides: Increased levels of C-Telopeptides indicate in-
creased bone resorption, based on Ju et al. [95].



Appl. Sci. 2024, 14, 9700 19 of 26

Appendix B. Functional Relationships of Synthetic Data Generator

Each variable in the DAG is associated with one of the following four functions:

• identity → The value of this variable is set beforehand;
• randint → A random integer is selected from a range of predefined values;
• normal → A random value drawn from a normal gaussian distribution;
• variable name → Custom functions defined specifically for the generation of these variables;
• parametric → The value of the variable depends on the generated values of all incoming

nodes. Specifically, given that some variables (x1, x2, . . . , xn) directly affect a variable
y in the causal DAG, the output value of y is of course dependent on the outputs of its
parents, along with some inherent to the parent variables and exogenous noise factors
u. Therefore, we generate the output of y as y = ∑n

i aixiui + U.

The parameters of each function were based on values found in the literature, taking
into consideration the context of the use cases described in the manuscript (i.e., menopausal
women under aromatase inhibitor treatment). All relationships are described in the Ta-
ble A1, where N(µ, σ2) refers to noise drawn from a normal Gaussian distribution. In addi-
tion, the custom functions for each variable mentioned in Table A1 are defined below.

For the BMD Loss function, we differentiate between the following cases:
Case 1: Low Exercise → the function is as follows:

bmd loss = −0.1 · calcium
10

− formation
3

· N (0.5, 1) +
resorption

3
+

age − 50
50

· N (0.5, 1)

+N (0.5, 0.5) +
max(pa, 1)

4
· N (1, 0.5) + 0.5

Case 2: Intense Exercise → the function is as follows:

bmd loss = −0.1 · calcium
10

− formation
3

· N (0.5, 1) +
resorption

3
+

age − 50
50

· N (0.5, 1)

+N (0.5, 0.5)− pa
4

· N (0.5, 0.5)

For Back Pain:

back pain =


randint(0, 1), if bmd loss = 0
randint(2, 3), if bmd loss = 1
randint(3, 4), if bmd loss = 2

For the Calcium in Blood function, we differentiate between the following cases:
Case 1: No Calcium Supplementation

calc in blood = max
(
(−0.9)alcohol · (1.1)nutri · vit_d

20
+N (1, 1) · bone_res

2
+N (1, 1),N (0.5, 1)

)
Case 2: Calcium Supplementation

calc in blood = max
((

6.5 +
(

10.2 − 8.5
50 − 20

)
· (−0.9)alcohol · (1.1)nutri · vit_d

20

+N (1, 1) · bone_res
2

+N (1, 1)
)

, 7.5 +N (1, 1)
)

For the generation of the Estrogens level, we calculate the following. Let (g(f, b, r,
aroma, factor) be defined as follows:

g( f , b, r, aroma, factor) = −factor · (1.1) f · (1.1)r · (0.9)b · (1.9)aroma
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Case 1: Pre-menopausal patient

u = max(abs(N (50, 5)− age), 1)

f1 = 400 + g(family, bmi, heritage, ai, 9.3) · u

Case 2: Menopausal patient

u = max(abs(age −N (60, 10)), 1)

f1 = 30 + g(family, bmi, heritage, ai, 2.31) · u

Table A1. Functional relationships in synthetic data generator.

Node Parent Node xi Function Parameters ai, ui and U or Value

Abdominal Fat Accumulation Estrogens parametric a1 = −1/370, u1 = 1,
U ∼ N(1, 2)

Exercise parametric a2 = −1, u2 = 1,
U ∼ N(1, 2)

Ability to concentrate Estrogens parametric a1 = 1/370, u1 = 1, U ∼ N(0, 2)

Exercise ordinal a2 = 1, u2 = 1,
U ∼ N(0, 2)

Age normal N(60, 10)

AI treatment Menopause identity 1

Alcohol Consumption randint (0, 4)

Back pain BMD loss Back pain Function described below

BMD Loss
Calcium in blood, Bone
formation, Bone resorption, Age,
Exercise, Calcium supplement

BMD loss Function described below

BMI randint (0, 2)

Bone Formation Calcium in blood parametric a1 = 2, u1 = 2, U ∼ N(1, 1)
Calcitonin parametric a2 = −1/4, u2 = 1, U ∼ N(1, 1)

Cigarettes per day parametric a3 = −1, u3 = U ∼ N(0.5, 1),
U ∼ N(1, 1)

Bone resorption Calcitonin parametric a1 = 1/2, u1 = 1, U ∼ N(0, 1)
Exercise parametric a2 = 2, u2 = 1, U ∼ N(0, 1)

PTH parametric a3 = 1, u3 = U ∼ N(0.5, 1),
U ∼ N(0, 1)

Calcitonin Estrogens parametric a1 = 10/370, u1 = 1, U ∼ N(2, 1)

Calcium in Blood

Alcohol consumption, Calcium
Supplement, Calcitonin,
Nutrition rich in calcium, Vit D
in Blood

calcium in blood Function described below

Calcium Supplement identity 0

Cigarettes per day randint (0, 3)

Clinical Symptoms Estrogens, Exercise randint (0, 1)

C-Telopeptides Bone resorption normal N(500, 100)
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Table A1. Cont.

Node Parent Node xi Function Parameters ai, ui and U or Value

Depression Estrogens parametric a1 = 1/370, u1 = 1, U ∼ N(0, 2)
Exercise parametric a2 = −1, u2 = 1, U ∼ N(0, 2)

Diabetes randint (0, 1)

Energy Loss/Fatigue Estrogens, Exercise randint (0, 4)

Estrogens Family history, BMI, Heritage,
AI treatment, Menopause, Age estrogens Function described below

Family history randint (0, 1)

Heritage randint (0, 1)

Libido Estrogens parametric a1 = 1/370, u1 = 1, U ∼ N(0, 2)
Exercise parametric a2 = 1/370, u2 = 1, U ∼ N(0, 2)

Menopause Age identity 1

Mood Estrogens, Exercise normal N(0, 1)

Number of fractures BMD Loss fractures Function described below

Nutrition rich in calcium randint (0, 4)

Exercise randint (0, 3)

PTH normal N(35, 10)

Sleep quality Estrogens parametric ordinal a1 = 1, u1 = 1, U ∼ N(−1, 1)

Exercise parametric ordinal a2 = 1/370, u2 = 1,
U ∼ N(−1, 1)

Vit D in Blood Vit D Supplement, Diabetes Vit D in blood Function described below

Vit D Supplement randint (0, 1)

The final estrogen level is given by

estrogens = max(( f1), 0 + abs(N (0.5, 1)))

For Number of fractures:

number of fractures =


randint(0, 1), if bmd loss = 0
randint(2, 3), if bmd loss = 1
randint(3, 4), if bmd loss = 2

For the generation of the Vit. D in Blood values, we calculate the following:
Case 1: No Vit. D supplementation

a =
200 − 140

15 − 5
f = max((20 − a · diabetes)−N (2, 1), 0)

Case 2: Vit. D Supplementation

a =
140 − 10
50 − 20

f = max(30 − a · diabetes +N (0.5, 1), 0)

The final levels of vitamin D are given by

vit d in blood = max( f , abs(N (0.5, 1)))
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Appendix C. Hyperparameter Values Used in the Experiments

Table A2. Hyperparameter values of each method in the experiments.

Model Hyperparameters

R-Forest n_estimators = 100, criterion = ‘gini’, max_depth = None, min_samples_split = 2 and min_samples_leaf = 1.

BART n_trees = 100, n_chains = 4, σa = 10−3, σb = 10−3, α = 0.95 and β = 2.

TARnet

Topology: Three dense layers of 200 neurons with ELU activation function for producing the representation
layer Z(X). The output of Z(X) is further processed by two dense layers of 100 neurons each with ELU
activation function and kernel regularizer of 10−2 for the prediction of the outcome of the control group and a
similar branch for the treatment group.

Dragonnet

Topology: Three dense layers of 200 neurons with ELU activation function for producing the representation
layer Z(X). The output of Z(X) is further processed by two dense layers of 100 neurons each with ELU
activation function and kernel regularizer of 10−2 for the prediction of the outcome of the control group and a
similar branch for the treatment group. In addition, the shared representation Z(X) is used for predicting the
propensity score, through the use of a simple linear map followed by a sigmoid activation function.

NN-Dragonnet

Topology: Three dense layers of 200 neurons with ELU activation function for producing the representation
layer Z(X). Next, the output of Z(X) is concatenated with the average of the neighboring instances of
control(treatment) group and the combined information is further processed by two dense layers of 100 neurons
each with ELU activation function and kernel regularizer of 10−2 for the prediction of the outcome of the
control(treatment) group. In addition, the shared representation Z(X) is used for predicting the propensity
score, through the use of a simple linear map followed by a sigmoid activation function.

Notice that all neural network-based models were trained for 100 epochs using ADAM
(Adaptive Moment Estimation) as the optimizer with a learning rate of 10−3 and then
for another 300 epochs using SGD (Stochastic Gradient Descent) as the optimizer with a
learning rate of 10−5 and momentum m = 0.9. In addition, the utilized loss function was
t-reg with α = 1 and β = 1, while 20% of the training data were used as the validation set.
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