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Abstract: The increasing demand for vehicles is leading to a rise in pollutant emissions across the
world. This decline in air quality is significantly impacting public health, with internal combustion
engines being a major contributor to this concerning trend. Ever-stringent regulations demand high
engine efficiency and reduced pollutant emissions. Therefore, every automobile company requires
rigorous methods for accurately estimating engine emissions. The implementation of advanced
technologies, including machine learning methods, has proven to be a promising solution. The
present work aims to develop an artificial intelligence-based model to estimate the pollutant emissions
produced by an internal combustion engine under varying operating conditions. Experimental
activities have been conducted on a single-cylinder spark ignition research engine with gasoline
port fuel injection under both stationary and dynamic operating conditions. This work explores
different artificial intelligence architectures and compares their performance in order to determine
the best approach for the presented task. These structures have been trained and tested based on data
obtained from the engine control unit and fast emission analyzer. The main target is to evaluate the
possibility of applying the presented artificial intelligence predictive model as an on-board virtual
tool in the estimation of emissions in real driving conditions.

Keywords: pollutant emissions; air quality; internal combustion engine; port fuel injection–spark
ignition engine; artificial intelligence; machine learning; virtual sensor

1. Introduction

To address the critical need for reducing air pollution from vehicles and improving air
purity, increasingly stringent guidelines on pollutants and greenhouse gasses (GHGs) are
pushing the advancement of greener and higher-performing internal combustion (IC) en-
gines [1,2]. Cutting-edge after-treatment technologies, including optimized diesel/gasoline
particulate filters (D/GPFs), selective catalytic reduction (SCR) systems incorporating injec-
tion of urea, and innovative techniques for catalyst warm-up, are successfully reducing the
release of pollutants such as NOx, CO, unburned hydrocarbons (HCs), and particulate mat-
ter, to target even more stringent regulations [3,4]. Traditional spark ignition (SI) engines
struggle to balance high performance with low emissions [5,6]. For modern SI engines,
lowering fuel consumption entails implementing high boost levels with engine downsiz-
ing [7], as well as using water injection [8], de-NOx converters [9], lean mixtures and/or
mixtures diluted with exhaust gas recirculation (EGR) [10]. It is essential to investigate
modern combustion techniques, such as low-temperature combustions (LTCs) [11], enhance
hybrid electric vehicle technologies to align with sustainable mobility specifications [12],
and encourage the utilization of alternative and renewable fuels [13], such as methanol
M100, ethanol E85 [14], and hydrogen H2 [15,16]. Nevertheless, the adoption of these ad-
vanced technologies adds to the complexity of the engine and amplifies the volume of data
that must be gathered from various physical sensors during both engine calibration and
operational phases [17]. Consequently, considerable computational resources are necessary,
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leading to extended operating times and higher costs. Furthermore, their performance
progressively declines over time due to challenging conditions [18].

Sophisticated technologies, including machine learning (ML) methodology [19], are
currently under investigation to efficiently track the parameters of the SI engine, with the
aim of addressing the aforementioned challenges. The improvement of engine design
depends on attaining optimal efficiency, which is essential in boosting engine performance
while concurrently minimizing fuel consumption and reducing pollutant emissions [20,21].
Incorporating advanced technologies such as machine learning can enhance this optimiza-
tion process. The ability of ML models to examine sophisticated dataset structures derived
from input data renders them particularly suitable in predicting pollutant emissions in
internal combustion engines. Data-driven approaches can enhance combustion strate-
gies, leading to improved efficiency and lower emissions [22,23]. However, the direct
on-board implementation of these measurements using physical instruments is challenging.
Therefore, preliminary characterizations on specific test benches are necessary for proper
engine calibration.

Moradi et al. [24] proposed the modeling of NOx and HC raw emissions in a six-
cylinder gasoline engine that operates under highly transient conditions with the utilization
of machine learning approaches. The regression accuracy metric (R2) for the optimal model
predicting NOx is 0.98 for the training data and 0.97 for the test data. In contrast, the best
model for predicting HC achieves values of 0.90 for the training data and 0.89 for the test
data. Khac et al. [25] proposed models based on artificial neural networks (ANNs) for
estimating NOx and CO2 emissions from the in-cylinder pressure of a maritime diesel
engine. The models utilize the Multi-Layer Perceptron (MLP) and Radial Basis Function
(RBF) network architectures. The results demonstrate that the MLP model exhibits greater
accuracy, with a low mean average percentage error (MAPE), in estimating both NOx
(MAPE = 4.39%) and CO2 (MAPE = 1.08%) compared to the RBF network (MAPE = 11.8%
for NOx prediction and MAPE = 14.2% for CO2 prediction). Godwin et al. [26] demon-
strated the use of machine learning techniques to predict combustion, performance, and
emission parameters in a dual-fuel SI engine operating on neat gasoline and E20 ethanol.
While the ANN model exhibited reliable performance and accuracy, the ensemble least-
squares boosting (ELSB) technique achieved an even higher degree of agreement with the
experimental data. Cui et al. [27] developed a back propagation (BP) neural network model
to predict ignition delays for three-component surrogates using the pressure, ambient tem-
perature, and molar fractions of n-heptane, iso-octane, and toluene as inputs. Their model,
trained with data from single- and two-component surrogates, successfully predicted ig-
nition delays for Toluene Primary Reference Fuel (TPRF) surrogates. The neural network
composed of two hidden layers outperformed one with a single layer, and optimization
improved accuracy with a correlation coefficient above 0.9996. The model also significantly
reduced the computation time and accurately predicted the Motor Octane Number (MON)
and Research Octane Number (RON). It enabled the precise matching of real fuels to
surrogate advanced combustion engines. Wright et al. [28] introduced a hybrid algorithm
called physics-aware training that enables the use of backpropagation to train physical sys-
tems in situ. This approach integrates deep-learning techniques into controllable physical
systems, allowing the training of physical neural networks made from optics, mechanics,
and electronics. Their method addresses the challenge of applying backpropagation to
unconventional hardware, demonstrating its effectiveness for tasks like audio and image
classification. This innovation promises faster and more energy-efficient machine learning
and opens up new avenues for automatically designed functionalities in robotics, materials,
and smart sensors. Wang et al. [29] developed a model to predict transient NOx emissions
for heavy-duty diesel vehicles, addressing the issue of emission cheating during real-world
driving. By conducting road tests with portable emission measurement equipment and
employing an innovative feature engineering approach combining principal component
analysis and gray correlation analysis, they improved the data processing efficiency. They
used a double-hidden-layer BP neural network optimized with an advanced Grey Wolf
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algorithm. Their model achieved a root mean square error of 1.91 mg/s and R2 equal to
0.87, demonstrating superior accuracy in predicting actual road NOx emissions compared
to simpler models.

Present Contribution

This research investigates the possibility of integrating predictive models into the
engine control unit (ECU), with the aim of eliminating the need for cumbersome portable
devices during certification cycles, monitoring combustion quality in real time, and enabling
remote emission monitoring from any location. Tests were carried out on an SI single-
cylinder research engine fueled with conventional gasoline E5, considering a relative air
excess index (λ) equal to 1.0 and a wide range of different operating conditions. The
experimental setup involved collecting data coming from ECU and a raw gas analyzer.
These data served as training data for the ML architecture, which was developed to
forecast the composition of exhaust gases based on the observed behavior of the engine. To
accomplish this mission, different Feed-Forward neural networks with a back propagation
(BP) optimizer [30] were tested.

In the current study, research was conducted on fine-tuning parameters such as the
number of neurons, hidden layers, and input variables in ANN structures to enhance the
prediction performance. By conducting a series of experiments and validations iteratively,
the ML architecture ideal design was established.

The current study extensively tested different ANN architectures, focusing on configu-
rations optimized for pollutant emission prediction in a spark-ignition engine. The models
were trained on dynamic engine operating cycles, allowing them to predict emissions under
varying real-world conditions. This dynamic approach contrasts with earlier studies that
focused more on static engine conditions. This research created and tested five unique
dynamic cycles designed to stress the predictive capabilities of the network. Each cycle
represented different engine speeds, torques, and throttle conditions, providing a more
thorough evaluation of the model’s robustness across various operating conditions. The
capacity of the optimized model in generalizing over various cycles (engine speeds, throttle
openings, and torque settings) demonstrates its superior robustness. Previous models, by
comparison, may have shown limited performance outside of specific test conditions.

The findings indicate that the proposed model achieves convergence throughout the
training process while avoiding overfitting. This demonstrates its proficiency in efficiently
extracting knowledge from the dataset and generating accurate predictions. The results
indicate that the model holds considerable promise for predicting pollutant emission
concentrations in SI engines. Indeed, for each of the aforementioned dynamic cycles, the
prediction of the analyzed pollutant emissions yields an average root mean square error
(RMSE) of less than 5%, with a maximum of 5.87% and a minimum of 1.57%. Throughout,
it consistently remains below the 10% acceptability threshold, thereby ensuring compliance
with high quality standards [31]. Therefore, the BP neural network model has potential
applications as an onboard virtual tool for estimating emissions in real driving conditions
through the presented ANN predictive model.

2. Materials and Methods
2.1. Experimental Setup

The measurements were conducted on a 500-cc single-cylinder research engine, shown
in Figure 1, charactered by a pent-roof combustion chamber with four valves and a reverse
tumble intake port system precisely crafted for operation in port fuel injection (PFI) [32]
mode. Moreover, the engine features a stroke of 88 mm, a bore of 85 mm, a connecting rod
length of 139 mm, and a compression ratio of 8.8:1. Additional detailed information about
the test engine can be found in [33,34] and in Table 1.
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Figure 1. Test motor: (a) real-world depiction and (b) layout illustration.

Table 1. Engine’s main characteristics.

Feature Value Unit

Displaced volume 500 cm3

Stroke 88 mm
Bore 85 mm

Connecting rod length 139 mm
Compression ratio 8.8:1 -
Number of valves 4 -

Exhaust valve open −13 CAD aBDC
Exhaust valve closed 25 CAD aBDC

Intake valve open −20 CAD aBDC
Intake valve closed −24 CAD aBDC

The air-flow rate was regulated by a throttle valve positioned upstream of the intake
manifold.

An AVL 5700 dynamic brake was mechanically linked to the engine crankshaft, provid-
ing speed control for the engine via National Instruments hardware and custom LabVIEW
software (LabVIEW version number: 12.0.1f5—32 bit), applicable in both motored and
firing conditions.

A European-market gasoline (E5, alcoholic fuel made of 95% gasoline and 5% ethanol),
with a Research Octane Number (RON) equal to 95 and a Motor Octane Number (MON)
equal to 85, was used as fuel and was injected by a Weber IWP092 port fuel injector at
4.8 bar absolute.

The injector’s energizing time and ignition timing (IT) were controlled by utilizing an
Athena GET HPUH4 research ECU by sending an activation signal to the control unit of
the igniter.
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A Horiba MEXA-7100D with an OVN-723A was used to conduct the exhaust gas
analysis. The general schema of the experimental setup employed, including the inputs
and outputs for the analyzed nets, is presented in Figure 2, with further details and
specifications provided in Table 2.
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Table 2. Measurements and apparatus details.

Device Description Specifications

Kistler Kibox
Indicating analysis system for

signal acquisition and
combustion analysis

10 analog input channels and
2 encoder input channels

Kistler 6061B In-cylinder pressure
piezoelectric sensor

Sensitivity: 25.9 pC/bar
Range: 0–250 bar

Kistler 5011B Charge amplifier Scale: 10 bar/V

Kistler 4075A5

Piezoresistive pressure sensor,
used for the intake line,

downstream of the throttle;
reference for in-cylinder

pressure pegging

Sensitivity: 25 mV/bar/mA
Range: 0–5 bar

AVL 365C
Optical encoder for crankshaft
angular position and engine

speed measurement
Resolution up to 0.1 CAD

AVL 5700
Dynamic brake, mechanically

coupled with the
engine crankshaft

Ensures the engine speed
control through National

Instruments hardware and
in-house LabVIEW code
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Table 2. Cont.

Device Description Specifications

Athena GET HPUH4 Engine control unit

Control the injector energizing
time and IT by sending a

trigger signal to the igniter
control unit

Horiba Mexa 720 Fast lambda probe

Output: AFR, λ, and [O2]
Adjustable for various fuels
through setting the O/C and

H/C ratios

Horiba Mexa 7100D Exhaust gas analyzer Output: HC, CO, CO2, NOx,
SO2, O2, and THC

2.2. Artificial Neural Network Setup
2.2.1. Description of the Initial Dataset

This study evaluates the effectiveness of the back propagation neural architecture in
predicting pollutant concentrations, in particular, NOx, CO, CO2, and HC emissions, in ppm
(Figure 3) over 5 different dynamic cycles, at the exhaust port of a spark ignition engine.
The initial dataset, for training and validating the architecture, comprises experimental
data collected under a constant λ value (i.e., λ = 1.0), with varying throttle valve openings
(TVOs) ranging from 5% to 100% and engine speeds ranging from 500 rpm to 2250 rpm
(Figure 4).
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The dataset, detailed in Table 3, includes 100 operating cases, with each case featuring
100 consecutive combustion events. The machine learning model utilized the following
four parameters as inputs for each combustion event:

• Engine speed [rpm].
• Ignition timing [CAD aTDC].
• Throttle valve opening [%].
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• Torque [Nm].
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Table 3. General description of the initial dataset. With respect to each operating case, the mean value
across 100 combustion events has been considered for each parameter.

Case
Number

[-]

Engine
Speed
[rpm]

IT
[CAD
aTDC]

TVO
[%]

Torque
[Nm]

NOx
[ppm]

CO
[ppm]

CO2
[ppm]

HC
[ppm]

1 500 −38.3 10 9.63 3545.63 35.13 131,387.39 1.20
2 625 −37.8 10 11.37 4121.68 26.74 126,021.47 1.21
3 750 −38.5 10 12.62 4146.88 32.21 130,625.34 1.22
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

99 2000 −22.8 100 36.50 4321.81 24.59 132,692.25 1.22
100 2250 −4.0 100 28.04 1972.78 610.42 131,912.61 9.48

Based on the observations previously outlined and presented in Table 3 and Figure 4,
Figure 5 shows the division of the primary dataset into training and validation subsets,
comprising [100 × 4] input variables and [100 × 4] output variables. The dataset is
composed of 100 experimental cases, as detailed in Table 3, with each case defined by
8 variables (Figure 5a). The input parameters (i.e., engine speed, IT, TVO, and torque) are
organized into a [4 × 100] matrix, while the output parameters (i.e., NOx, CO, CO2, and
HC) are represented by another [4 × 100] matrix; see Figure 5b. The dataset was partitioned
so that 90% of the data were utilized for training and the residual 10% were reserved for
validation (Figure 5c).
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2.2.2. Description of the Dynamic Cycles

Building on the dataset previously detailed in Table 3 and illustrated in Figure 4,
the network has been subsequently trained using the specified data. Following the
training phase, dynamic cycles were defined, which constitute the basis for predicting
pollutant emissions.

Specifically, as depicted in Figure 6, 5 distinct dynamic cycles have been defined,
each characterized by a unique road path, particularly concerning variations in engine
speed (red curves) and torque (blue curves) and different durations, as specified in Table 3.
These differences have been carefully considered to ensure a comprehensive analysis of the
network’s predictive capabilities for the pollutant concentrations at the exhaust pipe across
varying operating conditions.
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Therefore, based on these dynamic cycles, additional experimental tests were con-
ducted for each cycle utilizing the torque and engine speed values previously presented in
Figure 6 as inputs for the test bench, described in Section 2.1. A dedicated system enabled
control of the engine’s speed, and torque, together with the throttle valve opening in order
to obtain, from these tests, the corresponding pollutant emissions. These emissions data
have been used as critical reference points for evaluating the accuracy and effectiveness of
the BP architecture’s predictive capabilities.

3. Developing and Optimization of the Artificial Neural Network
3.1. Back Propagation Structure

The back propagation artificial neural network (BPANN) is a fundamental type of
ANN primarily used in supervised learning tasks. It is designed to learn from data by min-
imizing the discrepancy between actual and predicted results through the backpropagation
process. The network (Figure 7) consists of layers, including an input layer that receives
raw data, one or more hidden layers that process these data by applying weights and
activation functions, and an output layer that produces the network’s prediction. Neurons
in these layers take inputs, multiply them by weights, apply an activation function (for
example, Sigmoid function, ReLU function, . . .) to introduce non-linearity, and pass the
result to the next layer [27].
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The network operates through a forward pass, where data flow through the network
layer by layer and an output is generated based on the processing in the hidden layers.
After the forward pass, the network’s output is compared to the actual target using a loss
function, which measures the error between the predicted output and the target. The
process of Back Propagation follows, during which the error is transmitted from the output
layer back to the input layer. Gradients of the loss function with respect to each weight are
calculated, and the weights are updated in the direction that minimizes the loss, typically
using optimization algorithms like gradient descent [28].

This process is repeated over many iterations, known as epochs, allowing the network
to gradually learn the optimal weights that minimize the error and thus improve its
performance on the training data. Key concepts include the following:

• Learning rate, which controls the pace of learning.
• Overfitting, in which the network exhibits strong performance on training data but

struggles with unseen data, a challenge that can be mitigated using techniques such
as regularization.

• Convergence, where training stabilizes as the network learns optimal weights.

3.2. Overview of the Procedures for Establishing the Structural Parameters of the Proposed Model

A preliminary comparative analysis of the BP neural architectures was conducted,
focusing on optimizing their internal structures to achieve high prediction quality and
faster convergence times. This optimization involved experimenting with various numbers
of hidden layers, neurons, and activation functions. All activities, including architecture
development and optimization, were executed within the MATLAB environment, using a
single CPU (central processing unit) and 16 GB of RAM (Random Access Memory).

To assess the precision and performance of the model’s parameters, the root mean
square error (RMSE), which represents the average squared differences between predicted
values and observed values, has been employed as the primary metric for measuring loss
(Equation (1)). In regression problems, it is common practice to also employ additional
metrics, such as the mean squared error (MSE) and the mean absolute error (MAE), to
further evaluate model performance.

RMSE [%] = 100 ×
√

1
N ∑N

i=1

(
Yi

predicted − Yi
target

)2
(1)

where

• N = cycle duration.
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• i = ith temporal instant.
• Yi

predicted = predicted value.

• Yi
target = target value (experimental results).

As mentioned in the introduction, an upper threshold of 10% is established for these
calculated RMSEs to guarantee precise predictions.

For the BPANN architecture, the structural parameters examined to optimize network
performance include the number of hidden layers, varying from 2 to 6, and the number of
neurons per hidden layer, ranging from 20 to 100.

The network has been trained for 10,000 epochs, enabling the calculation of the final
loss function value for each prediction model once the maximum learning iteration has been
achieved. The most effective configuration of the BPANN consists of an input layer with
4 neurons, corresponding to the number of input variables. This is followed by 4 hidden
layers, each containing 100 neurons. These hidden layers are separated by ReLU (Rectified
Linear Unit) activation functions, which improve the network’s capability to recognize
intricate patterns from the input strongly non-linear data. Finally, the network features an
output layer with 4 physical neurons, the associated values of which are synchronized with
the input physical quantities. It is important to emphasize that the alignment between 4
input and 4 output variables is merely coincidental and should not be misconstrued as a
structural limitation of the model.

This architecture, fine-tuned through a thorough preliminary analysis, is designed to
take advantage of deep learning through multiple hidden layers and ReLU activation to
improve pattern recognition and predictive performance. The Adam optimizer is utilized in
this study, as it incorporates an adaptive learning rate along with momentum adjustments
throughout the training process. This advanced optimization algorithm is specifically
designed to enhance the efficiency of the weight matrix and bias adjustments within the
BPANN model, ultimately improving its overall performance and convergence speed.

To ensure completeness, the validation loss and training loss curves of the most
effective BPANN structure are illustrated in Figure 8:
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4. Results and Discussion

Figure 9 illustrates the predictions generated by the previously presented BPANN
concerning pollutant emissions concentration, i.e., NOx, CO, CO2, and HC, across the
5 dynamic cycles earlier depicted; see Figure 6.
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As illustrated in Figure 9, where the red curves depict the predictions generated by
the network and the black curves represent the experimentally obtained target values, the
BPANN architecture demonstrates a remarkable ability to accurately replicate the emission
trends for each dynamic cycle and every pollutant analyzed. Upon closer examination, it is
evident that for all the cases studied, the RMSE remains significantly below the acceptable
threshold of 10%, never exceeding 6%. Specifically, the highest RMSE, observed in the
prediction of CO for dynamic cycle 4 (Figure 9d), is 5.87%, while the lowest, at 1.57%, is
observed in the prediction of HC for dynamic cycle 1 (Figure 9a).

The results previously presented in Figure 9 are comprehensively summarized in
Table 4.

The prediction’s regression accuracy (R2) performed by the optimal tested architecture,
as shown in Figure 10, was determined using Equation (2):

R2 = 1 − rMSE = 1 − MSE
Var

(
Ytarget

) (2)

where

• rMSE is the relative mean squared error.
• MSE is the mean squared error.
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• Var(Ytarget) refers to the variance of the random variable Ytarget. Variance is a statistical
measure that represents the dispersion or spread of the values of Ytarget around its
mean. It quantifies how much the values of x deviate from the mean value Ytarget.

As is possible to observe, in all the charts, the data points are represented with
predicted values plotted on the y-axis and target values on the x-axis. The closeness of the
points to the diagonal dashed line reflects the accuracy of the predictions. Each graph is
scaled according to the data range specific to each case.

In accordance with the observations made in Figure 9 and Table 4, the BPANN demon-
strates a consistent alignment along the interpolation line, with no significant deviations,
for all pollutants analyzed across each dynamic cycle, thereby achieving exceptionally high
accuracy. It is noteworthy that this architecture displays very little dispersion, with R2

values becoming close to unity, definitely > 0.93, for all pollutants analyzed across each
dynamic cycle: the highest R2 value, 0.9871, is observed for HC emissions in dynamic
cycle 1, while the only exception is the HC emission value in dynamic cycle 2, with an
R2 = 0.8814.

The results previously presented in Figure 10 are comprehensively summarized in
Table 5.
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Table 4. RSME results.

Dynamic Cycle
Number

[-]

Duration
[s]

RMSE
NOx
[%]

RMSE
CO
[%]

RMSE
CO2
[%]

RMSE
HC
[%]

1 100 4.29 5.65 5.27 1.57

2 200 5.00 5.39 5.11 3.65

3 300 4.22 5.46 5.01 1.97

4 400 4.39 5.87 5.36 1.63

5 500 3.95 4.72 4.58 1.72

Table 5. R2 results.

Dynamic Cycle
Number

[-]

Duration
[s]

R2

NOx
[-]

R2

CO
[-]

R2

CO2
[-]

R2

HC
[-]

1 100 0.9508 0.9413 0.9555 0.9871

2 200 0.9414 0.9461 0.9563 0.8814

3 300 0.9503 0.9453 0.9585 0.9612

4 400 0.9473 0.9305 0.9478 0.9821

5 500 0.9558 0.9568 0.9631 0.9683

The results highlight the robust learning abilities of the BPANN architecture, showcas-
ing its effectiveness in accurately capturing and replicating the target trend throughout the
training process.

Nonetheless, certain uncertainties persist. The observed variability in RMSE values
and the somewhat lower R2 value of 0.8814 for HC in dynamic cycle 2 indicate that despite
the BPANN’s generally strong performance, there are factors affecting the accuracy of
its predictions. These factors may include the model’s sensitivity to specific operating
conditions, the representativeness of the training data, and the inherent complexity of
emission processes. To address these uncertainties, it is essential to improve data quality,
refine the BPANN model, and perform sensitivity analyses to better understand and
mitigate sources of prediction variability. Although the BPANN exhibits commendable
performance, recognizing and addressing these uncertainties will be vital in enhancing its
reliability in practical applications.

5. Conclusions

This study proposed a deep learning methodology utilizing back propagation artificial
neural networks to predict pollutant emissions in a single-cylinder spark-ignition engine
across various operating conditions. The network architecture was refined by optimiz-
ing the number of hidden layers, neurons, and activation functions to ensure optimal
performance. The model demonstrated robustness and reliability, achieving accurate pre-
dictions, with RMSE values below 6%, alongside strong regression accuracy, with R2 values
exceeding 0.93 in most instances.

The back propagation artificial neural network’s capacity to generalize across different
dynamic cycles, encompassing variations in torque and engine speed, underscores its
potential as an effective tool for real-time emission monitoring. By integrating this model
into engine control units, it may be possible to conduct on-board emission estimation,
thereby facilitating compliance with environmental regulations and reducing emissions in
real-world driving scenarios. The implementation of this predictive architecture could sig-
nificantly streamline emission monitoring, eliminating the need for cumbersome portable
devices during certification cycles while supporting proactive maintenance strategies.
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Future research should focus on experimentally validating and deploying trained back
propagation artificial neural network within engine control units, addressing challenges
such as compatibility with open and closed engine control unit architectures and fostering
collaborations with stakeholders to ensure the seamless integration of the neural network
into existing hardware systems.
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Nomenclature

ANN artificial neural network
aBDC after bottom dead center
aTDC after top dead center
BP back propagation
BPANN back propagation artificial neural network
CAD crank angle degree
CO carbon monoxide
CO2 carbon dioxide
CoVIMEP coefficient of variance of IMEP
CPU central processing unit
DI direct injection
DPF diesel particulate filter
E5 gasoline
E20/E85 ethanol
ECU engine control unit
EGR exhaust gas recirculation
ELSB ensemble least-squares boosting
GHG greenhouse gasses
GPF gasoline particulate filter
H2 hydrogen
HC hydrocarbons
IC internal combustion
IMEP indicated mean effective pressure
IT ignition timing
λ (1/φ) air excess coefficient
LTC low-temperature combustion
M100 methanol
MAPE mean average percentage error
MLP Multi-Layer Perceptron
ML machine learning
MON Motor Octane Number
NOx nitrogen oxides
O2 oxygen
PFI port fuel injection
R2 coefficient of determination
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RAM Random Access Memory
RBF Radial Basis Function
SCR selective catalytic reducer
RMSE root mean square error
RON Research Octane Number
TPRF Toluene Primary Reference Fuel
TVO throttle valve opening
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