Experimental Study of the Mechanical Properties of Mortar with Biobío Region Clam Shells Used as a Partial Replacement for Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation and Manufacturing
2.3. FTIR Analysis
2.4. Mechanical Characterization Tests
3. Results
3.1. FTIR Analysis Results
3.2. Workability
3.3. Flexural Tensile Strength
3.4. Compressive Strength
3.5. Economic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newell, P. An ancient battle between environment and concrete. Nat. Rev. Chem. 2021, 5, 513–514. [Google Scholar] [CrossRef] [PubMed]
- Marinković, S.; Dragaš, J.; Ignjatović, I.; Tošić, N. Environmental assessment of green concretes for structural use. J. Clean. Prod. 2017, 154, 633–649. [Google Scholar] [CrossRef]
- De Lena, E.; Spinelli, M.; Gatti, M.; Scaccabarozzi, R.; Campanari, S.; Consonni, S.; Romano, M.C. Techno-economic analysis of calcium looping processes for low CO2 emission cement plants. Int. J. Greenh. Gas Control. 2019, 82, 244–260. [Google Scholar] [CrossRef]
- Salem, S.; Hamdy, Y.; Abdelraouf, E.-S.; Shazly, M. Towards sustainable concrete: Cement replacement using Egyptian cornstalk ash. Case Stud. Constr. Mater. 2022, 17, e01193. [Google Scholar] [CrossRef]
- Dobiszewska, M.; Bagcal, O.; Beycioğlu, A.; Goulias, D.; Köksal, F.; Płomiński, B.; Ürünveren, H. Utilization of rock dust as cement replacement in cement composites: An alternative approach to sustainable mortar and concrete productions. J. Build. Eng. 2023, 69, 106180. [Google Scholar] [CrossRef]
- Chindasiriphan, P.; Meenyut, B.; Orasutthikul, S.; Jongvivatsakul, P.; Tangchirapat, W. Influences of high-volume coal bottom ash as cement and fine aggregate replacements on strength and heat evolution of eco-friendly high-strength concrete. J. Build. Eng. 2023, 65, 105791. [Google Scholar] [CrossRef]
- Danish, A.; Ozbakkaloglu, T. Greener cementitious composites incorporating sewage sludge ash as cement replacement: A review of progress, potentials, and future prospects. J. Clean. Prod. 2022, 371, 133364. [Google Scholar] [CrossRef]
- Nodehi, M.; Ren, J.; Shi, X.; Debbarma, S.; Ozbakkaloglu, T. Experimental evaluation of alkali-activated and portland cement-based mortars prepared using waste glass powder in replacement of fly ash. Constr. Build. Mater. 2023, 394, 132124. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Tao, Z. A comprehensive review on performance of cementitious and geopolymeric concretes with recycled waste glass as powder, sand or cullet. Resour. Conserv. Recycl. 2021, 172, 105664. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Z.; Yang, J.; He, Y.; He, X.; Su, Y.; Strnadel, B. Utilization of ultra-fine copper slag to prepare eco-friendly ultrahigh performance concrete by replacing silica fume. Constr. Build. Mater. 2023, 406, 133476. [Google Scholar] [CrossRef]
- Özkılıç, Y.O.; Althaqafi, E.; Bahrami, A.; Aksoylu, C.; Karalar, M.; Özdöner, N.; Thomas, B.S. Influence of ceramic waste powder on shear performance of environmentally friendly reinforced concrete beams. Sci. Rep. 2024, 14, 10401. [Google Scholar] [CrossRef] [PubMed]
- Stel’makh, S.A.; Shcherban, E.M.; Beskopylny, A.N.; Hiep, N.Q.; Song, Y.; Elshaeva, D.; Özkılıç, Y.O. Properties and Structure of Functional Concrete Mixtures Modified with River Shell Powder. Civ. Eng. J. 2024, 10, 2384–2403. [Google Scholar] [CrossRef]
- Sharma, N.; Thakur, M.S.; Kumar, R.; Malik, M.A.; Alahmadi, A.A.; Alwetaishi, M.; Alzaed, A.N. Assessing Waste Marble Powder Impact on Concrete Flexural Strength Using Gaussian Process, SVM, and ANFIS. Processes 2022, 10, 2745. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Lee, S.C.; Goh, W.I.; Yuen, C.W. Recycling of seashell waste in concrete: A review. Constr. Build. Mater. 2018, 162, 751–764. [Google Scholar] [CrossRef]
- Martínez-García, C.; González-Fonteboa, B.; Martínez-Abella, F.; Carro-López, D. Performance of mussel shell as aggregate in plain concrete. Constr. Build. Mater. 2017, 139, 570–583. [Google Scholar] [CrossRef]
- Norma Chilena Oficial NCh170.Of85. Standards Division of the National Institute of Standardization. 1985. Available online: https://www.cesmec.cl/medios/DIC/normas/NCh170Of85.pdf (accessed on 1 March 2022).
- Chiou, I.J.; Chen, C.H.; Li, Y.H. Using oyster-shell foamed bricks to neutralize the acidity of recycled rainwater. Constr. Build. Mater. 2014, 64, 480–487. [Google Scholar] [CrossRef]
- Yoon, G.-L.; Kim, B.-T.; Kim, B.-O.; Han, S.-H. Chemical–mechanical characteristics of crushed oyster-shell. Waste Manag. 2003, 23, 825–834. [Google Scholar] [CrossRef]
- Yang, E.-I.; Kim, M.-Y.; Park, H.-G.; Yi, S.-T. Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete. Constr. Build. Mater. 2010, 24, 758–765. [Google Scholar] [CrossRef]
- Khankhaje, E.; Salim, M.R.; Mirza, J.; Hussin, M.W.; Khan, R.; Rafieizonooz, M. Properties of quiet pervious concrete containing oil palm kernel shell and cockleshell. Appl. Acoust. 2017, 122, 113–120. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Kuo, W.-T.; Lin, C.-C.; Po-Yo, C. Study of the material properties of fly ash added to oyster cement mortar. Constr. Build. Mater. 2013, 41, 532–537. [Google Scholar] [CrossRef]
- Yang, E.-I.; Yi, S.-T.; Leem, Y.-M. Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties. Cem. Concr. Res. 2005, 35, 2175–2182. [Google Scholar] [CrossRef]
- Kuo, W.-T.; Wang, H.-Y.; Shu, C.-Y.; Su, D.-S. Engineering properties of controlled low-strength materials containing waste oyster shells. Constr. Build. Mater. 2013, 46, 128–133. [Google Scholar] [CrossRef]
- Djobo YJ, N.; Elimbi, A.; Manga, J.D.; Ndjock ID, L. Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers. Constr. Build. Mater. 2016, 113, 673–681. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Makul, N.; Siripattarapravat, C. Utilization of ground waste seashells in cement mortars for masonry and plastering. J. Environ. Manag. 2012, 111, 133–141. [Google Scholar] [CrossRef]
- Li, G.; Xu, X.; Chen, E.; Fan, J.; Xiong, G. Properties of cement-based bricks with oyster-shells ash. J. Clean. Prod. 2015, 91, 279–287. [Google Scholar] [CrossRef]
- Safi, B.; Saidi, M.; Daoui, A.; Bellal, A.; Mechekak, A.; Toumi, K. The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM). Constr. Build. Mater. 2015, 78, 430–438. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Boutouil, M.; Sebaibi, N.; Leleyter, L.; Baraud, F. Valorization of seashell by-products in pervious concrete pavers. Constr. Build. Mater. 2013, 49, 151–160. [Google Scholar] [CrossRef]
- Varhen, C.; Carrillo, S.; Ruiz, G. Experimental investigation of Peruvian scallop used as fine aggregate in concrete. Constr. Build. Mater. 2017, 136, 533–540. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Bourguiba, A.; El Mendili, Y.; Sebaibi, N.; Boutouil, M. A preliminary investigation of a novel mortar based on alkali-activated seashell waste powder. Powder Technol. 2021, 389, 471–481. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Bourguiba, A.; Sebaibi, N.; Boutouil, M. Valorization of queen scallop shells in the preparation of metakaolin-based geopolymer mortars. J. Build. Eng. 2022, 53, 104578. [Google Scholar] [CrossRef]
- Suarez-Riera, D.; Merlo, A.; Lavagna, L.; Nisticò, R.; Pavese, M. Mechanical properties of mortar containing recycled Acanthocardia tuberculata seashells as aggregate partial replacement. Bol. Soc. Esp. Cerámica Vidr. 2021, 60, 206–210. [Google Scholar] [CrossRef]
- Ndahirwa, D.; Zmamou, H.; Lenormand, H.; Leblanc, N. The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review. Clean. Mater. 2022, 5, 100123. [Google Scholar] [CrossRef]
- Instituto Nacional de Normalización. Norma Chilena Oficial Nch 148 Cemento–Terminología, Clasificación Y Especificaciones Generales; Instituto Nacional de Normalización: Santiago, Chile, 1968. [Google Scholar]
- Instituto Nacional de Normalización. Norma Chilena Oficial Nch 1498 Hormigón Y Mortero–Agua de Amasado–Clasificación Y Requisitos; Instituto Nacional de Normalización: Santiago, Chile, 2012. [Google Scholar]
- Zhong, B.-Y.; Zhou, Q.; Chan, C.-F.; Yu, Y. Structure and property characterization of oyster shell cementing material. Jiegou Huaxue 2012, 31, 85–92. [Google Scholar]
- Othman, N.; Bakar, B.H.A.; Don, M.M.; Megat Johari, M.A. Cockle shell ash replacement for cement and filler in concrete. Mal. J. Civ. Eng. 2013, 25, 201–211. [Google Scholar] [CrossRef]
- Ez-zaki, H.; Diouri, A.; Kamali-Bernard, S.; Sassi, O. Composite cement mortars based on marine sediments and oyster shell powder. Mater. Constr. 2016, 66, e080. [Google Scholar] [CrossRef]
- Nkrumah, E.; Dankwah, J.R. Recycling Blends of Rice Husk Ash and Snail Shells as Partial Replacement for Portland Cement in Building Block Production. Ghana J. Technol. 2016, 1, 67–74. [Google Scholar]
- Olivia, M.; Oktaviani, R. Properties of Concrete Containing Ground Waste Cockle and Clam Seashells. Procedia Eng. 2017, 171, 658–663. [Google Scholar] [CrossRef]
- Wang, J.; Liu, E.; Li, L. Characterization on the recycling of waste seashells with Portland cement towards sustainable cementitious materials. J. Clean. Prod. 2019, 220, 235–252. [Google Scholar] [CrossRef]
- Janković, B.; Smičiklas, I.; Manić, N.; Mraković, A.; Mandić, M.; Veljović, Đ.; Jović, M. Thermo-oxidative evolution and physico-chemical characterization of seashell waste for application in commercial sectors. Thermochim. Acta 2020, 686, 178568. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hasaniyah, M.W.; Zeyad, A.M.; Awad, M.M.; Alaskar, A.; Mohamed, A.M.; Alyousef, R. Durability and mechanical properties of seashell partially-replaced cement. J. Build. Eng. 2020, 31, 101328. [Google Scholar] [CrossRef]
- Rahul Rollakanti, C.; Venkata Siva Rama Prasad, C.; Poloju, K.K.; Juma Al Muharbi, N.M.; Venkat Arun, Y. An experimental investigation on mechanical properties of concrete by partial replacement of cement with wood ash and fine sea shell powder. Mater. Today Proc. 2021, 43, 1325–1330. [Google Scholar] [CrossRef]
- Sangeetha, P.; Shanmugapriya, M.; Santhosh Saravanan, K.; Prabhakaran, P.; Shashankar, V. Mechanical properties of concrete with seashell waste as partial replacement of cement and aggregate. Mater. Today Proc. 2022, 61, 320–326. [Google Scholar] [CrossRef]
- Nasaeng, P.; Wongsa, A.; Cheerarot, R.; Sata, V.; Chindaprasirt, P. Strength enhancement of pumice-based geopolymer paste by incorporating recycled concrete and calcined oyster shell powders. Case Stud. Constr. Mater. 2022, 17, e01307. [Google Scholar] [CrossRef]
- Olivia, M.; Mifshella, A.A.; Darmayanti, L. Mechanical Properties of Seashell Concrete. Procedia Eng. 2015, 125, 760–764. [Google Scholar] [CrossRef]
- Instituto Nacional de Normalización. Norma Chilena Oficial Nch 2261 Morteros–Confección de Probetas en Obra Y Determinación de la Resistencia a Compresión; Instituto Nacional de Normalización: Santiago, Chile, 2010. [Google Scholar]
- NCh 158 Of.1967: ‘Cemento–Ensayo de Flexión Y Compresión de Morteros de Cemento’. Available online: https://www.studocu.com/cl/document/universidad-de-chile/materiales-de-construccion/nch0158of1967-cementos-ensayo-de-flexion-y-compresion-de-morteros/25688224 (accessed on 5 April 2024).
- Gunasekaran, S.; Anbalagan, G.; Pandi, S. Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc. 2006, 37, 892–899. [Google Scholar] [CrossRef]
- Ferraz, E.; Gamelas, J.A.F.; Coroado, J.; Monteiro, C.; Rocha, F. Recycling Waste Seashells to Produce Calcitic Lime: Characterization and Wet Slaking Reactivity. Waste Biomass Valorization 2019, 10, 2397–2414. [Google Scholar] [CrossRef]
- Shao, C.; Liu, R.; Zhang, Q.; Xu, J.; Chen, M.; Bai, J.; Tian, J. Recycling of waste glass powder: Effects on microstructure, mechanical properties and sustainability of seashell powder calcined sludge cement. J. Build. Eng. 2024, 96, 110665. [Google Scholar] [CrossRef]
- Lin, R.-S.; Oh, S.; Du, W.; Wang, X.-Y. Strengthening the performance of limestone-calcined clay cement (LC3) using nano silica. Constr. Build. Mater. 2022, 340, 127723. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, D.; Yu, X.; Liu, R.; Liao, Y. Properties of Cementitious Materials Utilizing Seashells as Aggregate or Cement: Prospects and Challenges. Materials 2024, 17, 1222. [Google Scholar] [CrossRef]
- Bahadori, H.R.; Hedayat, A.A.; Karbakhsh, A.; Mohammadizadeh, M. Effects of Seashell and Lumashell powders on the elevated temperature compressive strength and durability of shell-based concretes. Innov. Infrastruct. Solut. 2023, 8, 199. [Google Scholar] [CrossRef]
- Soltanzadeh, F.; Emam-Jomeh, M.; Edalat-Behbahani, A.; Soltan-Zadeh, Z. Development and characterization of blended cements containing seashell powder. Constr. Build. Mater. 2018, 161, 292–304. [Google Scholar] [CrossRef]
- SODIMAC. Cemento CBB 25 kilos. Available online: https://sodimac.falabella.com/sodimac-cl/product/110308912/Cementos-Cbb-25-Kilos/110308931?gclid=Cj0KCQjw1aOpBhCOARIsACXYv-e55P3942k56ODDNn2gJap91R_rEcrR7mK6NFai0c73hgYmxU_Os5IaAnx9EALw_wcB&kid=shopp365fc&pid=Google_w2a (accessed on 7 June 2024).
- ESSBIO. Tarifas Agua Potable. Available online: https://www.essbio.cl/pdf/banners/Despeje_Cobro_Boleta_Essbio.pdf (accessed on 7 June 2024).
- ACBB. Arena ACBB. Available online: https://www.mercantil.com/empresa/abastecedora-arenas-costanera-bio-bio/hualpen/300061532/esp/ (accessed on 7 June 2024).
- Ministerio de Energía. Tarifa de Electricidad 2023. Available online: https://energia.gob.cl/noticias/libertador-general-bernardo-ohiggins/seremi-de-energia-informa-sobre-los-alcances-del-proyecto-de-ley-que-estabiliza-la-tarifa-de-electricidad#:~:text=Usuarios%20que%20registren%20un%20consumo%20mensual%20mayor%20a%20250%20y,2%2C5%20pesos%20por%20kWh (accessed on 7 June 2024).
Nomenclature | MR-00 | MR-05 | MR-10 | |
(A) Pouring dosage for specimens, prior to correction of the aggregate for moisture content. | Cement [g] | 1501.87 | 1426.77 | 1351.68 |
Clam shell [g] | 0 | 75.09 | 150.19 | |
Water [g] | 750.93 | 750.93 | 750.93 | |
Sand [g] | 4505.6 | 4505.6 | 4505.6 | |
(B) Pouring dosage for specimens with uncalcined shells, after correction of the aggregate for moisture content. | Cement [g] | 1727.15 | 1640.79 | 1554.43 |
Clam shell [g] | 0 | 86.36 | 172.71 | |
Water [g] | 863.57 | 863.57 | 863.57 | |
Sand [g] | 5295.15 | 5295.15 | 5295.15 | |
Nomenclature | MRC-00 | MRC-05 | MRC-10 | |
(C) Pouring dosage for specimens with calcined shells, after correction of the aggregate for moisture content. | Cement [g] | 1727.15 | 1640.79 | 1554.43 |
Clam shell [g] | 0 | 86.36 | 172.71 | |
Water [g] | 949.93 | 949.93 | 949.93 | |
Sand [g] | 5295.15 | 5295.15 | 5295.15 |
Nomenclature | Cone Settlement [cm] |
---|---|
MR-00 | 1 |
MR-05 | 2 |
MR-10 | 2 |
MRC-00 | 3.5 |
MRC-05 | 2.5 |
MRC-10 | 2.5 |
Specimen | # | Flexural Tensile Strength [MPa] at Age: | Standard Deviation at 28 Days | |||
---|---|---|---|---|---|---|
3 Days | 7 Days | 14 Days | 28 Days | |||
MR-00 | 1 | 7.10 | 10.29 | 13.74 | 15.03 | 0.87 |
2 | 7.05 | 10.20 | 16.92 | 16.55 | ||
3 | 6.41 | 9.36 | 13.14 | 15.03 | ||
MR-05 | 1 | 5.21 | 8.72 | 13.93 | 15.59 | 0.97 |
2 | 5.53 | 9.68 | 14.33 | 15.47 | ||
3 | 5.31 | 8.98 | 12.76 | 17.21 | ||
MR-10 | 1 | 5.91 | 8.62 | 12.79 | 17.53 | 1.44 |
2 | 5.21 | 9.39 | 12.79 | 15.58 | ||
3 | 5.94 | 10.78 | 13.19 | 14.72 | ||
MRC-00 | 1 | 3.75 | 8.14 | 9.55 | 11.25 | 0.81 |
2 | 3.41 | 7.28 | 10.24 | 12.26 | ||
3 | 3.07 | 8.72 | 9.68 | 12.84 | ||
MRC-05 | 1 | 3.15 | 6.57 | 10.51 | 12.92 | 0.25 |
2 | 3.23 | 7.10 | 9.87 | 12.45 | ||
3 | 2.25 | 6.99 | 10.53 | 12.55 | ||
MRC-10 | 1 | 3.09 | 6.28 | 9.28 | 13.22 | 0.57 |
2 | 2.83 | 7.22 | 8.16 | 12.08 | ||
3 | 2.47 | 7.22 | 8.87 | 12.53 |
Specimen | # | Compressive Strength [MPa] at Age: | Standard Deviation at 28 Days | |||||||
---|---|---|---|---|---|---|---|---|---|---|
3 Days 1 | 7 Days | 14 Days | 28 Days | |||||||
P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | |||
MR-00 | 1 | 7.54 | 7.80 | 14.79 | 15.98 | 22.85 | 22.54 | 22.72 | 27.29 | 2.61 |
2 | 8.03 | 7.85 | 15.63 | 16.02 | 22.97 | 22.32 | 29.61 | 29.86 | ||
3 | 7.57 | 8.08 | 15.42 | 15.64 | 21.34 | 20.87 | 28.50 | 28.18 | ||
MR-05 | 1 | 6.10 | 6.20 | 14.29 | 13.91 | 19.59 | 19.83 | 25.78 | 26.25 | 0.98 |
2 | 6.23 | 6.27 | 12.81 | 12.97 | 20.90 | 20.14 | 26.98 | 25.91 | ||
3 | 6.18 | 6.37 | 12.63 | 12.86 | 19.38 | 19.33 | 24.22 | 24.90 | ||
MR-10 | 1 | 5.54 | 5.57 | 11.65 | 11.38 | 19.11 | 19.24 | 21.95 | 22.00 | 0.5 |
2 | 5.61 | 5.59 | 12.03 | 11.84 | 20.25 | 17.71 | 22.99 | 22.53 | ||
3 | 5.34 | 5.79 | 12.19 | 12.92 | 18.98 | 18.40 | 22.53 | 21.61 | ||
MRC-00 | 1 | 3.34 | 3.18 | 9.67 | 11.40 | 15.52 | 15.37 | 19.36 | 20.46 | 1.03 |
2 | 3.42 | 3.29 | 9.36 | 10.02 | 15.44 | 14.72 | 21.31 | 20.83 | ||
3 | 3.73 | 3.31 | 9.82 | 10.80 | 16.11 | 14.53 | 22.44 | 21.41 | ||
MRC-05 | 1 | 2.88 | 2.93 | 9.02 | 10.41 | 13.64 | 13.66 | 17.76 | 18.32 | 1.17 |
2 | 2.64 | 2.97 | 9.55 | 9.40 | 13.34 | 14.30 | 18.74 | 17.71 | ||
3 | 2.80 | 2.98 | 10.03 | 9.56 | 13.58 | 13.53 | 17.40 | 15.36 | ||
MRC-10 | 1 | 2.91 | 2.88 | 7.73 | 8.64 | 13.46 | 13.08 | 16.64 | 18.10 | 2.66 |
2 | 2.69 | 2.78 | 9.28 | 9.25 | 12.36 | 12.53 | 12.80 | 13.49 | ||
3 | 2.82 | 2.31 | 8.17 | 8.61 | 12.48 | 12.49 | 19.07 | 18.37 |
Format | Unit | Price ($USD) | Unit Price ($USD/unit) | |
---|---|---|---|---|
Cement | 25 | kg | 4.04 [57] | 0.16 |
Water | 1 | L | 0.0015 [58] | 0.0015 |
Sand | 25 | kg | 1.68 [59] | 0.067 |
Uncalcined shells | 1 | kg | 0.0050 | 0.0050 |
Calcined shells | 1 | kg | 0.096 | 0.096 |
Energy | 1 | kWh | 2.5 [60] | 2.5 |
Specimen | MR-00 | MR-05 | MR-10 | MRC-00 | MRC-05 | MRC-10 |
---|---|---|---|---|---|---|
Replacement percentage | 0% | 5% | 10% | 0% | 5% | 10% |
Sand ($USD) | 98.53 | 98.53 | 98.53 | 97.45 | 97.45 | 97.45 |
Water ($USD) | 0.37 | 0.37 | 0.37 | 0.40 | 0.40 | 0.40 |
Cement ($USD) | 79.08 | 75.12 | 71.17 | 78.21 | 74.30 | 70.39 |
Residue ($USD) | 0 | 0.12 | 0.24 | 0 | 2.43 | 4.86 |
Total ($USD) | 177.98 | 174.14 | 179.31 | 176.06 | 174.58 | 173.1 |
Savings compared to the standard mix | 0% | 2.16% | 4.31% | 0% | 0.84% | 1.68% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valin Fernández, M.; Muñoz Toro, B.S.; Merino Quilodrán, L.E.; Valin Rivera, J.L.; Salas Salgado, A.F.; Palacio, D.A. Experimental Study of the Mechanical Properties of Mortar with Biobío Region Clam Shells Used as a Partial Replacement for Cement. Appl. Sci. 2024, 14, 9756. https://doi.org/10.3390/app14219756
Valin Fernández M, Muñoz Toro BS, Merino Quilodrán LE, Valin Rivera JL, Salas Salgado AF, Palacio DA. Experimental Study of the Mechanical Properties of Mortar with Biobío Region Clam Shells Used as a Partial Replacement for Cement. Applied Sciences. 2024; 14(21):9756. https://doi.org/10.3390/app14219756
Chicago/Turabian StyleValin Fernández, Meylí, Benjamín Sebastián Muñoz Toro, Luis Enrique Merino Quilodrán, José Luis Valin Rivera, Alexis Fidel Salas Salgado, and Daniel A. Palacio. 2024. "Experimental Study of the Mechanical Properties of Mortar with Biobío Region Clam Shells Used as a Partial Replacement for Cement" Applied Sciences 14, no. 21: 9756. https://doi.org/10.3390/app14219756
APA StyleValin Fernández, M., Muñoz Toro, B. S., Merino Quilodrán, L. E., Valin Rivera, J. L., Salas Salgado, A. F., & Palacio, D. A. (2024). Experimental Study of the Mechanical Properties of Mortar with Biobío Region Clam Shells Used as a Partial Replacement for Cement. Applied Sciences, 14(21), 9756. https://doi.org/10.3390/app14219756