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Abstract: The integration of wind and solar energy with green hydrogen technologies represents an
innovative approach toward achieving sustainable energy solutions. This review examines state-of-
the-art strategies for synthesizing renewable energy sources, aimed at improving the efficiency of
hydrogen (H2) generation, storage, and utilization. The complementary characteristics of solar and
wind energy, where solar power typically peaks during daylight hours while wind energy becomes
more accessible at night or during overcast conditions, facilitate more reliable and stable hydrogen
production. Quantitatively, hybrid systems can realize a reduction in the levelized cost of hydrogen
(LCOH) ranging from EUR 3.5 to EUR 8.9 per kilogram, thereby maximizing the use of renewable
resources but also minimizing the overall H2 production and infrastructure costs. Furthermore,
advancements such as enhanced electrolysis technologies, with overall efficiencies rising from 6% in
2008 to over 20% in the near future, illustrate significant progress in this domain. The review also
addresses operational challenges, including intermittency and scalability, and introduces system
topologies that enhance both efficiency and performance. However, it is essential to consider these
challenges carefully, because they can significantly impact the overall effectiveness of hydrogen
production systems. By providing a comprehensive assessment of these hybrid systems (which
are gaining traction), this study highlights their potential to address the increasing global energy
demands. However, it also aims to support the transition toward a carbon-neutral future. This
potential is significant, because it aligns with both environmental goals and energy requirements.
Although challenges remain, the promise of these systems is evident.

Keywords: proton exchange membrane; solid oxide electrolysis; green hydrogen production; renew-
able energy; water electrolysis; alkaline electrolysis

1. Introduction

The pressing need to prevent climate change and decrease dependency on fossil fuels
is causing major shifts in the global energy environment. As affordable and sustainable
substitutes for traditional energy, renewable energy sources, especially wind and solar, have
emerged as key players in this shift. Large-scale integration of wind and solar energy into
the energy system is significantly hindered by their intermittent nature, notwithstanding
their enormous potential [1]. The idea of combining renewable energy with green hydrogen
generation has drawn a lot of interest as a solution to this problem. Green hydrogen (H2),
generated through electrolysis with renewable energy, acts as a flexible energy carrier
and storage medium, allowing for the dissociation of the generation and utilization of
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energy, as well as the storage of excess clean energy to be utilized during periods of
minimal generation [2,3]. Current technological breakthroughs and increased investment
in renewable energy systems have prompted the development of several solutions for
integrating solar and wind energy with green H2 systems. These techniques seek to
improve the efficiency, dependability, and economic feasibility of renewable energy sources
while also contributing to the larger aims of carbon reduction and energy security [4]. The
combination of solar and wind energy with the generation of hydrogen not only addresses
the variable nature of renewable energy sources but also has the potential to create hybrid
energy systems that may function constantly and flexibly regardless of varying energy
demands and supply conditions [5].

Faran Razi and Ibrahim Dincer [6] objectively examined several solar H2 production
processes in their research, with an emphasis on electrical, photonic, thermal, and hybrid
energy choices. The paper went into detail about these methodologies, recent advance-
ments, and key technology, as well as plant layouts that influence H2 production prices.
Environmental effect, cost, exergy and energy efficiency, and sustainability indices are
all used to conduct a comparative study. The study discovers that high-temperature en-
ergy technologies that provide higher efficiency and yields while being less ecologically
friendly, whereas biochemical and photonic routes are more sustainable but less effective.
Mohammad et al. [7] evaluated the current state and recent advances in photovoltaic (PV)-
powered green H2 production, emphasizing the potential to considerably cut greenhouse
gas emissions. The study explored the efficiency of electrolysis powered through different
PV systems, with a special emphasis on solar-to-hydrogen (STH) conversion efficiency. The
findings discovered a number of barriers, including safety concerns, production and storage
challenges, commercial challenges, and concerns with weather fluctuation and PV cell
cooling. Despite these obstacles, the study emphasizes PV-powered H2 systems’ potential
as a viable substitute for traditional fuels. Abdulrahman et al. [8] proposed an intelligent
multi-objective optimization strategy for H2 energy storage systems (HESSs) in solar- or
wind-powered reverse osmosis systems. The study evaluated three green H2 storage
methods: gas hydrogen storage (GH2), liquid hydrogen storage (LH2), and material-based
hydrogen storage (MH2). GH2 had the highest overall life cycle cost (568,164.60 USD/year),
whereas LH2 had the greatest inherent risk due to explosion dangers. MH2 outperformed
GH2 and LH2 in terms of cost (18.92%) and safety (42.86%), although temperature control
during H2 emission posed issues. The findings offer an equitable strategy for construct-
ing sustainable HESSs that takes into account both economic and safety factors. Marcel
et al. [9] investigated the optimization of green H2 synthesis from solar and wind energy to
give high-temperature heat to Europe’s hard-to-abate production industries. They used
geospatial analysis to improve the sizing of plant components such as PV and wind ca-
pacity, electrolyzers, and hybrid storage that combines compressed H2 and lithium-ion
batteries. The study indicated that the levelized cost of H2 (LCOH) varied between 3.5 and
8.9 EUR/kg, with wind-rich regions having the lowest costs. Optimal H2 storage might
satisfy industrial demand for two to three days. Furthermore, a consistent demand profile
lowered costs by about 11%, and the majority of scenarios fulfilled EU emission targets.

Mohammad Zoghi et al. [10] conducted an analysis of the energy, exergy, and exergy-
economic (3E) performance of various systems aimed at green hydrogen production,
namely wind, solar pond, and ocean thermal energy conversion (OTEC) systems. They
employed a trilateral cycle (TLC) to enhance heat matching, combined with a thermoelectric
generator (TEG) for efficient waste heat recovery. The findings indicated that wind systems
yield the highest exergy efficiency ranging between 5.8% and 10.47% at wind speeds of 8 to
12 m/s while simultaneously maintaining the lowest cost rate at 66.08 USD/h. However, the
salinity gradient solar pond (SGSP)-based system emerges as the most cost-effective option
for hydrogen production, with costs fluctuating between 42.78 and 44.31 USD/GJ. This
reveals significant economic implications for the future of sustainable energy. Although the
performance metrics of wind systems are commendable, the overall economic advantage
provided by the SGSP system cannot be overlooked.
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Qusay et al. [11] conducted a comprehensive analysis of renewable energy capabilities
across 27 EU nations and the UK specifically examining solar, wind, hydro, and green
hydrogen. The research identified Austria, Belgium, and Germany as frontrunners in
renewable energy production; however, Germany stands out as the foremost producer.
Green hydrogen, particularly in Germany and France, serves a crucial function as an
alternative fuel. Regions such as Northern Sweden and Germany are recognized as potential
hubs for green electricity (this is significant, because it highlights emerging markets). The
study underscores the necessity of balancing supply and demand while emphasizing the
EU and UK’s notable progress and commitment to sustainability objectives in the energy
sector. Although challenges remain, the findings paint a promising picture for future
energy strategies.

Temitayo et al. [12] investigated recent advancements in the generation of green hy-
drogen (GH) utilizing water electrolyzers powered by renewable energy sources. Their
emphasis spans solar, wind, and hybrid systems. They conducted a comprehensive exami-
nation of various electrolyzer types, placing particular focus on proton exchange membrane
(PEMWE) and alkaline water electrolyzers (AWEs). Notably, PEMWE can achieve an ex-
traordinary hydrogen purity level of 99.9999% alongside superior current densities. Cost
analyses indicate that the levelized cost of hydrogen (LCOH) derived from wind energy for
PEMWE fluctuates between USD 5.3 and USD 9.29 per kilogram; in contrast, AWE ranges
from USD 7.49 to USD 7.59 per kilogram. Moreover, solid oxide electrolyzers (SOEs) exhibit
costs varying from USD 6 to USD 9.34 per kilogram, with the possibility of a significant
reduction to USD 1.9 per kilogram by 2050. This analysis underscores that wind speed
significantly influences the production costs of GH. However, the interaction of various
factors complicates the overall scenario, because it creates a multifaceted landscape that
requires careful consideration.

Shibna et al. [13] explored the synergy between solar photovoltaic (PV) and wind
systems in order to provide energy for a green building located at Rajasthan Technical
University in Kota, India. By employing the iHOGA algorithm, the researchers optimized a
hybrid system that yields 6988 kWh/year of energy, which effectively meets the building’s
demand of 6759 kWh (with minimal surplus). The system, however, reduces energy
loss to 276 kWh/year and mitigates an impressive 5273.14 kg of CO2 emissions annually.
Furthermore, the integration of these renewable sources significantly decreases other
pollutants—most notably, 9601.512 kg of SO2 and 32,424.32 kg of NOx each year—thus
underscoring the environmental advantages of this approach. Although the results are
promising, the study invites further investigation into optimizing such systems, because
the potential for greater efficiency and sustainability remains.

Jabraeil et al. [14] introduced a system based on solar and wind energy for the produc-
tion of liquid hydrogen and ammonia—two sustainable energy carriers—addressing urban
demands for electricity, cooling, heating, and freshwater. The research evaluates three
scenarios: the exclusive production of liquid hydrogen, ammonia and a dual production
approach. An artificial neural network facilitates predictions, while a genetic algorithm
optimizes the entire system. When utilizing 40% of net power in the electrolyzer, the system
achieves energy and exergy performances of 56.78% and 44.69%, respectively, producing
13.2 MW of net power. This is coupled with substantial outputs of liquid hydrogen, am-
monia, freshwater, and cooling load. Exergy analysis reveals high destruction rates in the
Rankine cycle and electrolyzer. However, the optimal production rates and efficiencies are
identified for the dual production scenario, which highlights the complexity of the system.
Although the findings are promising, further research is necessary to enhance performance
and sustainability.

This review paper shows a thorough evaluation of the novel approaches used to
combine wind and solar energy with green H2 systems. The article classifies and examines
existing techniques, emphasizing their technological and economic benefits, as well as the
problems they face. It also looks at the most recent technological advances that are being
researched to address these difficulties and improve the efficiency of integrated renewable
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energy systems. This review is unique in that it takes a comprehensive approach to the
integration of wind and solar energy with green H2 systems, providing a full examination
of both established and new techniques. Unlike prior evaluations, which frequently focus
on either wind or solar energy integration with H2 generation in isolation, this research
conducts an unbiased study of various hybrid configurations and possible synergies.
Additionally, the paper presents a novel paradigm for evaluating the sustainability and
effectiveness of these integrated systems, taking into consideration the most recent advances
in materials science, design of systems, and energy management systems. By presenting
a roadmap for future research and development, this review intends to bridge the gap
between theoretical study and practical application, eventually contributing to the growth
of sustainable energy systems.

This paper is structured to provide a review of renewable energy integration, green
hydrogen production, and novel hybrid systems. Section 2 investigates the current state
of solar and wind technology, improvements in green hydrogen production, and the
benefits and problems of hybrid systems. Section 3 discusses options for optimizing energy
conversion, storage, and grid integration. Section 4 includes extensive case studies that
examine hybrid systems in a variety of scenarios. Section 5 discusses the major findings,
tackles obstacles, and proposes options for future research. The study concludes with a
summary in Section 6.

2. Renewable Energy Integration
2.1. Overview of Renewable Energy

As the global energy demand surges and traditional resources become increasingly
depleted, the imperative to advance clean energy solutions intensifies. This underscores
the critical need to explore and develop alternative renewable energy sources that can
effectively address the rising energy requirements [15]. Recent advancements in renewable
energy technologies, such as solar, wind, and bioenergy, have opened up new possibilities
for sustainable energy generation. These innovations hold the potential to transform the
energy landscape by providing viable and eco-friendly alternatives to conventional fossil
fuels [4,16]. This review aims to explore how these emerging technologies can be integrated
into the current energy infrastructure to meet the growing global demand while minimizing
the environmental impact. By harnessing the full potential of these renewable sources, we
can work towards a more sustainable and resilient energy future. Figure 1 provides a visual
representation of energy consumption trends both in the US and globally.
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2.2. Current State of Solar and Wind Energy Technologies
2.2.1. Significance of Solar and Wind in Advancing Sustainable Energy Transition

To reach the goal of a clean energy society and address the global climate challenges
by 2050, as envisioned by the United States Department of Energy, it is essential to develop
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sustainable and efficient clean energy systems [17,18]. This path underscores the necessity
for a fundamental shift, driven by the pursuit of sustainable and environmentally friendly
alternatives to the traditional reliance on fossil fuels. Solar and wind energy are crucial in
the transition to a sustainable energy system, offering significant environmental, economic,
and technological benefits. These sources—mainly solar and wind—are harnessed from
the Earth’s ongoing natural processes. The sun’s radiant energy and the continuous
movement of wind provide inexhaustible power that can meet humanity’s energy needs
indefinitely. Technological advancements and research have further bolstered the adoption
and integration of these renewable energy sources, making them increasingly efficient, cost-
effective, and accessible [19]. According to a UN report, the prices for renewable energy
technologies are declining swiftly. Between 2010 and 2020, the cost of electricity from
solar power dropped by 85 %, while onshore and offshore wind energy costs decreased
by 56 % and 48 %, respectively. These decreasing prices enhance the appeal of renewable
energy across the board, particularly for low- and middle-income countries, where most of
the new electricity demand is expected. With these cost reductions, there is a significant
opportunity for a substantial portion of the new power supply in the coming years to be
generated from low-carbon sources [20]. These renewable energy sources play a vital role
in lowering greenhouse gas emissions and combating climate change, as they produce
electricity without relying on fossil fuels. Among them, solar energy stands out for its
immense potential to generate renewable power. Additionally, unlike other renewable
sources like biomass, which can have some negative environmental impacts [21], solar
energy production is known to have no harmful effects on the environment [22]. This lack
of emissions also reduces air and water pollution, leading to cleaner environments and
improved public health.

The integration of both solar and wind energy systems is gaining momentum as a
strategy to balance the intermittent nature and geographical limitations of these renewable
sources. This approach addresses the challenges of unpredictability and the technical
constraints associated with each system, making them more reliable and viable on a larger
scale. For example, the use of wind energy is limited at certain sites due to low wind
speeds [23]. Hybrid solutions will therefore maximize their efficiencies and reliability [24].

2.2.2. The Evolution of Solar Energy Technologies

The advancement of solar technologies, especially in the generation of electricity, has
been impressive. These developments have greatly improved efficiency, lowered costs, and
expanded the range of applications for solar energy [25]. Initially, the first-generation silicon
PV cells consisting of semiconductive materials like silicon, which was developed in the
mid-20th century, laid the foundation for solar energy by converting sunlight directly into
electricity with efficiencies around 15–20%. These cells, however, were costly and primarily
used in specialized markets such as space exploration. Next was the development of
thin-film solar cells in the late 20th century. This phase offered a less expensive alternative
with greater versatility, though with slightly lower efficiencies of 10–15%. These thin-film
technologies enabled new applications, such as building-integrated photovoltaics (BIPVs)
and portable solar systems, by reducing material usage and production costs. However,
research has shown that the most effective way to further reduce costs is to enhance the
power conversion efficiencies of the PV cells, and that is where the third phase was critical.
The third phase of PV cells were produced using advanced semiconductors, including
nanocrystalline materials, polymers, dye-sensitized solar cells, and concentrated solar cells
with efficiencies up to 40% [26]. Current state-of-the-art solar technologies for energy
generation have advanced significantly, offering higher efficiency, cost-effectiveness, and
versatility. Leading the innovation are perovskite solar cells, which have shown remarkable
efficiency gains and potential for low-cost production, challenging traditional silicon-based
photovoltaics. Their efficiencies exceed 25%, surpassing traditional silicon PV cells while
being cheaper and easier to manufacture. Next in line was the arrival of Tandem cells.
These cells blend perovskite with silicon or other materials, exceeding 30% efficiency by
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harnessing a broader spectrum of sunlight. Further advancements in solar technology
include bifacial solar panels, which collect light from both sides, and concentrated solar
power (CSP) systems, which use mirrors to concentrate sunlight onto a central receiver.
CSP systems are being refined for large-scale energy production and offer the advantage of
thermal energy storage for a consistent power supply. Furthermore, advancements in solar
tracking systems and transparent solar cells are enhancing energy capture and opening up
new possibilities for integrating solar power into buildings and everyday objects. These
cutting-edge technologies, coupled with improvements in energy storage, are driving
the solar industry towards greater efficiency and broader adoption, making solar energy
a more viable and sustainable solution for global energy needs. These developments,
alongside innovations such as building-integrated photovoltaics, transparent solar cells,
and advanced energy storage solutions, highlight the significant strides made in solar
technology [27]. This progress is crucial for the global transition to sustainable energy. As
research and development continue, solar power is poised to become an even more integral
component of the global energy landscape.

2.2.3. Wind Energy Technologies

As the demand of clean energy continues to grow, wind, a form of solar energy that
is caused by the differential heating of the surface of the Earth by the sun, has a known
capability of supplying several MW of energy. According to a report published by Statista in
2024, the global generation of wind energy for the past two decades has shown a percentage
increment of 379% with an exponential growth rate of 0.12% (see Figure 2). Traditional
wind energy generation has primarily depended on onshore wind turbines, which have
become a common feature in areas with strong and steady winds. These turbines harness
the kinetic energy of the wind, converting it into electrical energy as their blades rotate [28].
According to Greenpeace, wind power has the potential to meet global energy demands,
providing up to 30% of the world’s electricity by 2050, while also creating over 2 million
new jobs and reducing CO2 emissions by 113 billion tons by that time.
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With the growing demand for sustainable energy, wind generation technology has
advanced significantly, leading to cutting-edge developments that have greatly expanded
the potential of wind power [29]. One of the most notable advancements is the shift from
onshore to offshore wind turbines, which marks a significant leap forward. Offshore
turbines can harness stronger and more consistent winds over oceans and large bodies
of water, allowing them to generate more electricity than their onshore counterparts due
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to the higher wind speeds found offshore [30]. Additionally, floating wind turbines, a
ground-breaking innovation, allow for the installation of turbines in deep waters where
fixed foundations are impractical, opening up vast new areas for wind energy genera-
tion [31]. Another emerging technology is the Vertical Axis Wind Turbine (VAWT), which
features a design that rotates around a vertical axis. This allows VAWTs to capture wind
from any direction, making them ideal for urban settings or areas with turbulent wind
conditions [32,33]. These innovations and many more are propelling wind energy towards
a more efficient and sustainable future (see Figure 3).
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2.2.4. Integrating Solar and Wind Renewable Energy Systems

The integration of wind and solar energy technologies has become a focal point in
the push for more reliable and sustainable energy generation. Traditionally, wind and
solar energy have operated independently, each contributing to the renewable energy mix
according to their unique strengths—wind turbines capturing kinetic energy from wind
and photovoltaic panels converting sunlight into electricity. However, recent innovations
have led to the creation of hybrid energy systems that integrate wind and solar technologies,
offering a more stable and reliable energy supply. Figure 4 shows a typical component of a
hybrid energy system consisting of solar and wind energies.
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A combination of these renewable energy sources will ensure a steadier supply, mini-
mizing the chances of power shortages during challenging weather conditions [34]. These
systems leverage the complementary strengths of wind and solar energy, with solar power
usually reaching its peak during the day, while wind power tends to be more reliable at
night or in varying seasons [24]. Current technologies incorporate advanced energy storage
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solutions like lithium-ion batteries to store the surplus energy produced during peak times
to be used when demand surges or when wind and solar resources are unavailable. Also,
smart grid technologies further enhance these systems by using real-time data analytics
to optimize the distribution and usage of generated power, ensuring a stable and efficient
energy supply [35]. Floating solar panels, combined with offshore wind farms, represent
another cutting-edge innovation, maximizing the use of available space and resources [36].
These integrated systems have charted the route for a resilient and adaptable infrastructure
capable of meeting the growing global demand for clean energy. For example, Figure 5
highlights a schematic diagram of a basic power system that integrates various renewable
energy sources.
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3. Innovative Strategies
3.1. Optimized Energy Conversion and Storage

Solar and wind energy offer abundant and clean power sources, yet their variability
leads to both excesses and shortages in energy generation. Green hydrogen systems provide
a viable solution to these challenges by converting surplus renewable energy into hydrogen
through electrolysis. This hydrogen can be stored and later used to supply power during
periods of low renewable energy production. By integrating solar, wind, and hydrogen
technologies, a more robust and reliable energy infrastructure can be achieved. This section
examines innovative technologies for optimizing hydrogen conversion and advanced
storage solutions based on the current literature.

3.1.1. Techniques for Efficient Energy Conversion

Maximizing energy conversion from solar and wind sources is essential for optimizing
their output. Improvements in solar photovoltaic (PV) cells and wind turbines are critical
to effectively capturing and converting energy. Key advancements include power-to-gas
technology, advanced electrolytes, and high-efficiency PV technologies. Integrating these
technologies with green hydrogen systems necessitates advanced control strategies to
efficiently convert excess energy into hydrogen through electrolysis. A brief overview of
these technologies is provided below.
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Power-to-gas (P2G) technology provides a solution for large-scale, long-term electricity
storage by connecting the power grid with the gas grid. This technology involves converting
surplus electricity into hydrogen through water electrolysis, which is then transformed into
methane (CH4) or substitute natural gas (SNG) by reacting with carbon monoxide (CO) or
carbon dioxide (CO2) in a methanation reaction. The produced methane can be injected
into the existing gas distribution network or stored for future use, effectively bridging
renewable energy generation with conventional gas infrastructure (see Figure 6).
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Electrolyte systems for water electrolysis are pivotal in the efficient production of
hydrogen and oxygen from water. The main types include proton exchange membrane
(PEM), alkaline water electrolysis (AWE), and solid oxide electrolysis (SOE), each with
distinct efficiencies, flexibilities, and lifespans, as outlined by Götz et al. [37], These systems
are compared in Table 1, highlighting their operational characteristics.

Table 1. Operational characteristics of the electrolytes in Ref [37] with significant modifications.

Key Parameters Alkaline Electrolysis PEM Electrolysis Solid Oxide Electrolysis

State of development Commercial Commercial Commercial
Cell temperature in ◦C 40–90 20–100 800–1000

Electrolyte Alkaline solution Solid polymer membrane ZrO2 ceramic doped with
Y2O3

Charge carrier OH− H3O+/H+ O2−

System power consumption
(future) in kWh/m3 (Hs) 4.3–5.7 4.1–4.8 Not Available

Cell voltage in V 1.8–2.4 1.8–2.2 0.91–1.3
H2 production in m3/h (STP,
per system)

<760 ≈ 2.7 MW Up to 450 ≈ 1.6 MW Not Available

Cold start time Minutes–hours Seconds–minutes Not Available

From the table, it is evident that PEM electrolysis has a lower system consumption
but with a higher cost than alkaline water electrolysis. It is primarily due to PEM’s higher
efficiency and advanced design. PEM technology operates at lower temperatures, uses
thinner proton-conductive membranes (20–300 µm), and allows for faster response times
and higher current densities (above 2 A/cm2), making the overall process more efficient.
This leads to reduced power consumption compared to alkaline electrolysis.

However, the higher cost of PEM electrolysis arises from the use of expensive noble
metals like platinum and palladium for the hydrogen evolution reaction and iridium
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oxide (IrO2) or ruthenium oxide (RuO2) for the oxygen evolution reaction at the electrodes.
These materials, while effective, are much more costly than the materials used in alkaline
electrolysis, which rely on less expensive catalysts. Additionally, the advanced components
and compact design of PEM systems contribute to the overall cost, making PEM electrolysis
more expensive than alkaline water electrolysis, despite its efficiency advantages [38].

In connecting to the grid, there is a need for fuel cells as a power generation technology.
Fuel cells are devices that convert chemical energy directly into electrical energy through
electrochemical reactions between fuels (typically hydrogen) and oxidizing agents (like
oxygen). They consist of two electrodes—an anode and a cathode—separated by an
electrolyte. Hydrogen is introduced at the anode, where it splits into protons and electrons,
generating electricity as the electrons flow through an external circuit. The protons combine
with oxygen at the cathode to produce water and heat. Fuel cells are used in various
applications, including powering electric vehicles, providing backup power, and serving as
stationary power sources. Different types, such as polymer electrolyte membrane fuel cells
(PEMFCs) and molten carbonate fuel cells (MCFCs), can operate on various fuels, enhancing
their flexibility and environmental benefits. A comparison between different fuel cells,
which include alkaline fuel cells (AFCs), direct methanol fuel cells (DMFCs), and phosphoric
acid fuel cells (PAFCs) is addressed in Table 2. They are particularly appealing for renewable
energy generation and cogeneration systems, where both electricity and thermal energy
are produced to improve efficiency [39]. PEMFCs are among the most promising power
generation technologies for achieving carbon neutrality. They are characterized by high
power density, rapid start-up times, excellent efficiency, lower operating temperatures, and
safe handling [40].

Table 2. Comparison of different fuel cell types in Ref [39] with significant modifications.

Fuel Cell Type PEMFC AFC DMFC PAFC MCFC SOFC

Operating temp
(◦C) 30–100 90–100 50–100 160–220 600–700 500–1000

Fuels Hydrocarbons or
methanol Pure hydrogen Methanol Hydrogen from

natural gas
Natural gas,
biogras, others

Natural gas or
propane,
hydrocarbons
or methanol

Electrolyte Solid polymeric
membrane

Aqueoussolutionof
potassium
hydroxide soaked
in a matrix

Solid organic
polymer poly-
perfluorosulfonic
acid

100% phosphoric
acid stabilized in
an alumina-based
matrix

Li2CO3/K2CO3
materials
stabilized in an
alumina-based
matrix

Solid, stabilized
zirconia
ceramic matrix
with free oxide
ions

Energy conversion
efficiency (heat and
power) (%)

85–90 85 85 85–90 85 Up to 90

Electrical
efficiency (%) 30–40 60 20–25 40–42 43–47 50–60

Typical stack size <1–100 kW 10–100 kW up to 1.5 kW
50–1000 kW
(250 kW module
typical)

<1–1000 kW
(250 kW module
typical)

5–3000 kW

Operational life
cycle

40,000–50,000 h
(stationary) Up to
5000 h (mobile)

Up to 5000 h 10,000–20,000 h Up to 40,000 h Up to 15,000 h Up to 40,000 h

Advancements in water electrolysis have further improved hydrogen production
processes. Techniques such as sacrificial-agent-assisted water electrolysis utilize small
molecules to replace the oxygen evolution reaction (OER), thereby degrading pollutants
and enhancing efficiency. Organic upgrading-assisted electrolysis incorporates organic
reactions to replace the OER, producing high-value chemicals along with hydrogen. Self-
powered electrolysis systems combine water splitting with metal-based batteries or fuel
cells, enabling hydrogen production without additional electricity input. Self-catalyzed elec-
trolysis systems leverage spontaneous metal oxidation at the anode, facilitating hydrogen
production at the cathode [41].
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Photovoltaic (PV) technology advancements have significantly boosted solar energy
utilization by improving the efficiency and adaptability of PV systems. These systems
convert solar energy directly into electricity, while photothermal variants use reflectors to
generate heat for steam turbines. Modern PV technologies incorporate high-performance
panels and intelligent inverters that dynamically optimize the system performance. Re-
search into Cu-doped ZnCdS-based photocatalysts has demonstrated that copper doping
enhances the conversion of solar energy into thermal energy, thereby increasing the overall
efficiency of hydrogen production through improved photocatalytic processes [42,43].

3.1.2. Advanced Storage Solutions for Hydrogen

Storage is a crucial factor of the green hydrogen ecosystem, facilitating the manage-
ment of hydrogen produced during phases of high renewable energy generation. Advanced
storage technologies are essential to ensure that hydrogen can be stored and retrieved safely
and cost-effectively. Various hydrogen storage methods include compressed gas tanks, hy-
drogen tanks, cryogenic liquid, physical storage metal hydride storage, and underground
storage [43]. This section provides an in-depth analysis of three of these storage solutions.
A comparative analysis of these hydrogen storage techniques is provided in Table 3.

Table 3. Comparison of hydrogen storage methods in Ref [43] with significant modifications.

Storage Method Hydrogen Content (wt.% H2) Volumetric Density (g/L) Volumetric Energy
Density (MJ/L)

Compression
1 bar, RT 100 0.0814 0.01
350 bar, RT 100 24.5 2.94
700 bar, RT 100 41.4 4.97
700 bar, RT, (inlc. Type IV tank) 5.7 40.8 4.9
Liquid Hydrogen
1 bar, −253 ◦C 100 70.8 8.5
1 bar, −253 ◦C (inlc. tank) 14 51 6.12
Metal Hydrides
MgH2 7.6 110 13.2
FeTiH2 1.89 114 13.7

Compressed Hydrogen Storage: Compressed hydrogen storage is the most common
method used for both stationary and mobile applications. This well-established technology
enables rapid hydrogen filling and release without requiring additional energy for release.
However, compressing hydrogen to high pressures consumes approximately 13–18% of
its lower heating value, impacting the overall cost-effectiveness of the process. Increasing
pressure results in only a marginal increase in the power requirements for compression.
Typically, hydrogen is stored in cylindrical vessels, because spherical vessels are less prac-
tical for mobile applications. These vessels must be lightweight, durable, and capable of
withstanding high pressures while resisting hydrogen diffusion and potential embrittle-
ment. The four types of compressed hydrogen storage vessels—Type I, Type II, Type III,
and Type IV—are detailed in [8]. Underground geological caverns also offer a long-term
storage solution, though concerns about hydrogen purity due to potential contaminants in
the caverns may arise.

Liquid Hydrogen Storage: Storing hydrogen in its liquid form (LH2) provides a much
higher density compared to gaseous storage, enhancing the volumetric energy density. At
−253 ◦C, the density of liquid hydrogen is about 71 g/L, making it more energy-dense
than compressed hydrogen. Liquid hydrogen storage is a well-established technology
that allows for high rates of hydrogen release and low adiabatic expansion energy under
cryogenic conditions. In its liquid state, hydrogen is non-corrosive, and storage generally
involves stainless steel and aluminum alloy vessels with adequate insulation. However,
the cost and energy demands for liquefaction are significant [43].



Appl. Sci. 2024, 14, 9771 12 of 31

Solid-State Storage: Solid-state hydrogen storage involves hydrogen chemically react-
ing with metals or metal alloys to form metal hydrides. In this process, hydrogen molecules
dissociate into atomic hydrogen on the metal surface, diffuse into the bulk material, and
become chemisorbed within the metal or alloy structure. This interaction can cause the
metal lattice to expand by approximately 20–30% of its initial volume. Metal hydrides
are formed either through direct reactions between hydrogen and the metal or via the
electrochemical dissociation of water molecules. The reaction mechanisms are as expressed
in Equations (1) and (2):

Direct Hydrogen Reaction M + x/2H2 ↔ MHx (1)

Electrochemical Dissociation of Water M + x/2H2O + x/2 e− ↔ MHx + x/2 OH− (2)

where M is a metal or alloy.
The formation of metal hydrides releases heat due to chemisorption, while desorption—

where hydrogen is released for use—requires an equivalent amount of energy to be supplied
externally. This reversible reaction can be triggered by reducing pressure or increasing
temperature. Understanding the thermodynamics of these reactions is crucial for opti-
mizing metal hydride storage systems. Metal hydrides provide higher hydrogen storage
capacity compared to compressed and liquefied hydrogen and operate at moderate tem-
peratures and pressures, making them a safer alternative to the more extreme conditions
required for gas compression and liquefaction. They can also undergo multiple cycles
of hydrogen loading and release if impurities do not interfere. Generally, many metal
hydrides require moderate energy inputs ranging from 20 to 55 kJ/mol H2 for hydrogen
release [43]. However, metal hydrides present challenges such as slower sorption and
desorption kinetics, higher temperatures required for hydrogen release, and potential
formation of undesirable gases during discharge. Table 4 lists various metal hydrides and
their hydrogen storage capacities.

Table 4. Hydrogen storage characteristics of metal hydrides in Ref [43] with significant modifications.

Metal Hydride H2 Capacity (wt.%) Desorption Temperature (◦C) Desorption Enthalpy (kJ/mol H2)

MgH2 7.6 >300 75
MgH2–LiBH4 11.4 >350 45
MgH2–LiAlH4 (1:1 M) 9.4 >250 45
FeTiH2 1.89 >30 28
LaNi5H6 1.4 >100 31
Mg2NiH4 3.59 >280 65
MgH2–NaAlH4 (1:1 M) 7.6 >175 -
Mg2FeH6 5.5 >300 77.6

3.2. Grid Integration and Management
3.2.1. Strategies for Integrating Hybrid Systems into the Grid

Integrating hybrid systems that combine solar, wind, and green hydrogen into the
existing energy grid involves careful planning and execution. The process requires the
development of advanced grid management systems to handle the variability and inter-
mittency of renewable energy sources, ensuring effective real-time monitoring and control
to balance energy supply and demand. Fluctuations in renewable energy supply are best
managed by leveraging the complementary nature of each source. Solar power peaks
during daylight hours, while wind generation varies with different weather conditions.
Hydrogen, as a green energy solution, can serve as a long-term storage mechanism, provid-
ing a consistent supply to the grid. By utilizing predictive modeling to forecast weather
patterns, operators can anticipate fluctuations in solar and wind energy and adjust hydro-
gen production accordingly. This approach helps maintain a stable and reliable energy
supply, optimizing the integration of renewable resources into the grid [24].
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Advanced energy management software is crucial for optimizing hybrid system
operations by coordinating various energy sources, managing storage, and adjusting
production rates based on demand. Flexible grid architectures are essential for the seamless
integration of renewable energy and hydrogen technologies, allowing the grid to adapt to
changes in energy supply and demand, thus enhancing stability and reliability. Hybrid
systems are designed to complement traditional energy sources, offering additional stability
and reliability to the grid while managing the variability of renewables and optimizing
hydrogen contributions. Addressing challenges in energy transmission and distribution
is also vital to ensure the efficient incorporation of these hybrid systems into the existing
grid infrastructure.

Research highlights the importance of electrolyzers and fuel cells in integrating hy-
drogen technologies into the grid, as they can adjust hydrogen production based on
demand signals and operate during periods of low electricity prices or excess renewable
output [44,45]. Studies have shown that hybrid energy storage systems using renewable
energy sources and hydrogen can provide reliable power to remote areas and reduce costs
by 20% [46]. Simulation studies have explored hybrid storage systems with fuel cells,
electrolyzers, hydrogen tanks, and batteries and have shown that increasing hydrogen
production flexibility can reduce costs and CO2 emissions [47,48]. Various optimization
techniques, including ensemble learning frameworks, have been investigated to improve
the design of integrated renewable energy-powered hydrogen systems [49]. Economic
analyses of grid-connected electrolysis technologies, such as proton exchange membrane
electrolysis (PEMEC) and solid oxide electrolyzers, have revealed potential cost reductions
with scaling and subsidies [50]. Additionally, electrolyzers contribute to the demand re-
sponse and ancillary services like voltage regulation and frequency control, enhancing grid
flexibility and potentially reducing hydrogen production costs [51].

3.2.2. Smart Grid Technologies and Management Practices

Two crucial components for advancing towards sustainable energy sources are smart
grid technology and hydrogen energy systems (HESs). The shift to smart grids marks a
major advancement from traditional electricity distribution systems, essential for optimiz-
ing green hydrogen production and utilization within a comprehensive energy framework.
Smart grids enhance coordination and operational efficiency, addressing the challenges
related to intermittent renewable energy sources and ensuring effective hydrogen pro-
duction and distribution. Smart grids involve several key elements to facilitate green
hydrogen production, including real-time data monitoring and analysis for tracking en-
ergy production and consumption; predictive analytics for anticipating energy needs and
adjusting hydrogen production; and automated control systems for managing hydrogen
production, storage, and integration with other energy resources. Advanced metering
infrastructure (AMI) supports real-time energy consumption monitoring and control, while
energy management systems (EMSs) optimize the operation of hybrid systems, ensuring
efficient energy distribution and utilization. Incorporating artificial intelligence (AI) into
these systems can transform green energy grid management by enhancing the monitoring,
control, and communication capabilities.

Machine learning (ML) plays an increasingly important role in integrating HESs, op-
timizing energy management, and improving grid stability. ML, a subset of AI, allows
systems to learn from data, recognize patterns, and make decisions autonomously, ad-
dressing the variability of renewable energy sources, demand fluctuations, and efficient
energy distribution. ML models are particularly useful for energy forecasting by analyzing
historical consumption data and weather patterns to predict future energy needs and for
demand response initiatives, improving real-time grid operations and optimizing energy
transfer within smart infrastructures [52]. Deep learning (DL) models further enhance
energy prediction accuracy by analyzing a wide range of variables, including historical data
and meteorological conditions. DL models are effective in predicting the energy supply,
particularly for renewable sources like wind and solar, and in capturing temporal and
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spatial dependencies to refine supply forecasts [53]. Optimization algorithms, fundamental
to AI, are critical for real-time decision-making, efficient resource allocation, and optimized
energy flows within smart grids and HESs [54]. The substantial volume of data from
weather reports, production logs, and consumption patterns requires advanced analytics.
Blockchain technology has emerged as a key tool in the green hydrogen production ecosys-
tem, offering significant benefits in terms of transparency, traceability, and efficient trading
of green hydrogen.

Blockchain technology brings several advantages to green hydrogen production, partic-
ularly in enhancing traceability and transparency. By documenting each stage of hydrogen
production on a decentralized ledger, blockchain ensures compliance with the standards
related to renewable energy sourcing and carbon emissions. This level of transparency is
crucial for both certification and verification processes. Moreover, blockchain facilitates
direct peer-to-peer trading of green hydrogen via smart contracts, eliminating the need for
middlemen and securing efficient transactions. It also aids in the seamless integration of
renewable energy sources into hydrogen production by providing real-time monitoring of
energy generation, usage, and storage, thereby optimizing resource utilization. Addition-
ally, the combination of blockchain with advanced power management systems boosts the
efficiency and sustainability of hydrogen production, storage, and consumption. This tech-
nology significantly enhances data access performance, further strengthening the overall
effectiveness and sustainability of the green hydrogen ecosystem. Figure 7 summarizes the
impact of blockchain on data access performance in hydrogen production [55].
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In summary, the paper presents several key innovations aimed at enhancing renewable
energy integration and infrastructure reliability mentioned in the literature. These include
the integration of solar, wind, and hydrogen technologies, where surplus power is used for
hydrogen production and storage, addressing renewable energy intermittency. Advanced
electrolysis techniques, such as sacrificial agent-assisted and organic upgrading-assisted
methods, improve hydrogen production efficiency while enabling the coproduction of
valuable chemicals. Hydrogen storage innovations, including compressed, liquid, and
solid-state metal hydrides, offer safer and more cost-effective solutions. Additionally, smart
grid integration through machine learning and deep learning enhances real-time energy
management and grid stability. Lastly, blockchain technology is introduced to improve
transparency and traceability within the hydrogen ecosystem, facilitating peer-to-peer
transactions and efficient resource use.
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4. Case Studies and Applications

Energy efficiency and carbon emissions can be improved by integrating wind and
solar power with green H2 systems, a technique that has drawn a lot of interest. Under
three distinct scenarios: regional applications, urban vs. rural regions, and industrial
applications, this section showcases the real-world deployment of such hybrid systems.

4.1. Case Study 1: Regional Implementation

The EU aims to attain carbon neutrality by 2050, as detailed in the 2020 European
Green Agreement [56]. Expanding renewable energy sources is crucial for achieving this
ambitious goal. The European Union’s market is expected to experience an increase in
energy demand for hydrogen and electricity [57]. Other sectors are electrifying, which
is causing a significant increase in electricity demand. On the other hand, hydrogen is
especially important in difficult-to-electrify regions. Hydrogen can be used or converted
into methanol, methane, ammonia, or Fischer–Tropsch fuels for shipping and aviation,
as well as feedstocks in the chemical sector and steelmaking. The integration of offshore
wind farms with green H2 generation is increasingly centered around the North Sea area,
specifically in offshore Germany, the Netherlands, and the UK. This area is perfect for
producing wind energy on a large scale due to its high wind speeds. Additional help
for the combination of renewable energy and H2 generation comes from the presence of
coastal areas and pre-existing facilities. Hydrogen is produced by electrolyzers powered by
excess electricity produced by wind farms in the Northern Germany region, especially in
Schleswig-Holstein. Once delivered or stored, this hydrogen can be used for a variety of
purposes, such as industrial activities and transportation [57].

Many believe that the European North Sea, with its relatively shallow waters, presents
a suitable location for offshore wind energy and has the potential to become an energy hub
in order to meet this growing need. Due to this, the governments of the nation’s bordering
the North Sea have pledged to build offshore wind farms in the region capable of producing
at least 300 GW by 2050. For various reasons, including its seasonal synchronization with
demand, its abundant supply in Europe, its affordability, its role in energy security and
tactical autonomy, and the existence of a competitive EU wind sector, wind energy is crucial
in this context. Offshore wind has the potential to be significant, particularly for green H2
and its derivatives. By 2030, the North Sea’s anticipated cost-effective wind capacity of
635 GW could supply a significant amount of Europe’s electricity needs. With 200 million
people living in high-demand areas and 20% of Europe’s GDP, the prospect is not only
enormous but also well located [58].

The slow growth of onshore wind energy due to societal acceptance challenges [59]
highlights the relevance of offshore wind energy, which has minimal acceptance issues [60].
The projected technological onshore wind capacity in Europe is 13.4 TW [61], while the
European wind industry expects to deploy 1 TW by 2050. To effectively exploit the North
Sea’s wind potential, floating wind turbines must be deployed. Floating wind turbines
enable the utilization of wind resources in deep oceans with relatively high capacity factors,
constituting the next frontier in the offshore wind sector [62]. Pilot projects in Spain and
Scotland have demonstrated the practicality of floating wind. Even though industrial
floating wind installations are rare in Europe, the business is rapidly growing, with many
projects scheduled to be functional by 2030 [63]. In the United Kingdom, for instance,
shallow water seabeds are already totally reserved for fixed-bottom turbines. As a result,
floating wind appears to be the only viable alternative for exploiting the rest of the offshore
seabed. As a result, the UK has launched auctions for seabed licenses designed specifically
for floating wind projects.

Integrating North Sea wind energy into the onshore energy grid presents considerable
hurdles due to the need for additional long-range transmission facilities. Transmission
system operators (TSOs) have shown a desire to develop similar facilities in the North
Sea. Offshore transmission lines typically connect wind farms to the shore by radial
connections or connections from point to point [64]. Novel hybrid interconnectors link
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wind farms and permit inter-country transmission. The hybrid systems correspond with
the mutual interests of North Sea nations and the European Commission. While not all
North Sea nations embrace hybrid interconnectors, the European TSOs’ Ten-Year Network
Development Plan (TYNDP) 2024 has hybrid projects in consideration [65]. Another
expansion of hybrid interconnectors would be the construction of a more meshed offshore
grid with terminals connecting different countries. Figure 8 displays various offshore
connection types.
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Concerns regarding legal and regulatory obstacles, such as the ambiguity of project
responsibility, have been raised, despite the various advantages of hybrid projects. Ac-
cording to ENTSO-E, a consortium of European TSOs, an interconnected offshore grid can
promote energy security, possibilities for trading, standards, and minimize the demand for
total assets [66].

The North Sea Wind Power Hub is a prime instance of an offshore facility project. A
coalition of TSOs and gas TSOs is driving the initiative, which seeks to build a significant
offshore wind hub in the North Sea and link it to the onshore grid using high-voltage direct
current (HVDC) cables. In addition to electric interconnectors, the hubs are expected to
contain H2 manufacturing facilities and pipelines linking to them onshore [57].

More closely examining offshore H2 production, the H2Mare project intends to com-
pare the cost-effectiveness of offshore and onshore electrolysis. It investigates a variety of
ideas, including manufacturing H2 offshore and bringing it onshore via pipelines, sending
power onshore for electrolysis, or producing and storing H2 offshore in floating tanks
for pickup by ships. The H2Mare project is an innovative effort aimed at investigating
the feasibility and promise of offshore green H2 production that is fully independent of
grid connections [67]. This significant project, led by a coalition of 33 top industrial and
scientific partners and supervised by Siemens Energy, has the potential to transform our
understanding of renewable energy and its applications, especially in the setting of offshore
wind energy.

The H2Mare project is focused on manufacturing green H2 and other power-to-X (PtX)
products directly at sea. Unlike traditional approaches that rely on transporting power
produced by offshore wind turbines to the mainland grid, the H2Mare project envisions
a system in which the electricity produced is instantly used to manufacture H2 by water
electrolysis directly at the source [67]. This technique not only eliminates the need for
substantial and costly grid infrastructure, but it also provides the possibility of establishing
a self-sustaining, emissions-free energy production cycle in the offshore area [68]. The
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project’s vision goes beyond simply creating H2. It also intends to manufacture other
PtX products, such as synthetic fuels and chemicals, which are required for a variety
of industrial operations. This program is in line with worldwide efforts to decarbonize
hard-to-abate sectors and transition to a sustainable energy market.

4.2. Case Study 2: Environmental Siting of Hydrogen Production Hubs

The combustion of hydrogen has proven to be a clean, versatile, and efficient energy
carrier (see Equation (3)).

H2 (g) + ½ O2 (g) = H2O(Liquid) + Energy (3)

Hydrogen helps in energy generation through fuel cells, direct combustion, and vari-
ous industrial applications, and hydrogen can produce electricity, provide high-temperature
heat, and support a wide range of energy needs without the carbon emissions associated
with fossil fuels (see Figure 9).
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This makes hydrogen a crucial component in the transition to a sustainable and
decarbonized energy system. At present, the world consumes around 65 million tons of
hydrogen each year, with almost 95% of it produced through carbon-intensive methods.
For example, the most common source of hydrogen is by reacting methane from natural gas
with steam (CH4 + 2H2O → CO2 + 4H2). Although, a cheaper and well-established process,
the release of CO2 is still a challenge not contributing to the clean energy sustainable goals
of 2050. There is therefore a global call for alternative ways for hydrogen production using
renewable energy sources. Numerous research studies have explored the performance and
cost of hydrogen production using green energy sources like solar and wind. Renewable
energy sources such as solar and wind significantly reduce the environmental impact of
hydrogen production by powering the electrolysis process, in which water (H2O) is split
into hydrogen (H2) and oxygen (O2) using electricity. When this electricity is generated
from renewable sources, the hydrogen production process becomes almost entirely carbon-
free. However, there is a limited amount of research on the application of renewable energy
sources specifically for hydrogen production. Currently, Chile and Argentina, with their
world-class variable renewable energy (VRE) resources, have significant potential to become
leading producers and exporters of renewable energy stored in hydrogen-rich chemicals.
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Comparison of Hybrid Systems in Different Environments

The setup of hybrid renewable systems at varying environments requires utmost study
to achieve potent results when deplored in certain environments. Ref [69] hinted that the
location of hydrogen production is a key factor in determining the final cost, as it influences
the capacity factor of a plant harnessing renewable energy. Furthermore, factors such as
(a) geographical climatic factors, (b) infrastructure and logistics, (c) economic and technical
challenges, (d) environmental and land use concerns, (e) technical integration, and many
others are great determiners of cost. Herein, we reviewed several case studies that explored
the use of solar and wind energy for hydrogen production in rural, urban environments,
or in industrial regions. The initial evaluations indicate that Australia ranks among the
countries with the greatest potential for green hydrogen production.

Currently, Australia has committed to decarbonizing its mineral processing, fertilizer
production, and oil and gas industries and utilizing them domestically to produce hydro-
gen [70]. For example, the Gladstone Hydrogen Project located in Gladstone, Queensland,
Australia (an industrial region), invested USD 3 billion in their Electrolyzer Manufacturing
Plant, making it one of the biggest hydrogen plants in the world. Gladstone’s location is
advantageous for hydrogen production, thanks to its established industrial base, port facili-
ties, and access to nearby renewable energy resources. However, one significant challenge
in Gladstone is that the capital expenditure, along with operational and maintenance costs
for solar and onshore wind energy production in that area, are twice as high compared
to hydrogen production from sources like brown coal [71]. One major reason is that the
city itself is an industrial region that lacks abundant solar and wind resources, which are
more abundant in the rural and regional areas. Another challenge to sighting the location
of hydrogen production hubs is the available of water. Hydrogen production requires a
significant amount of water, sometimes exceeding the combined capacity of Australia’s
six major municipal desalination plants in Adelaide, Gold Coast, Melbourne, Perth, and
Sydney, which together have an approximate capacity of 480 GL per year. Water scarcity
remains a critical issue for farming and communities in regional Australia, with ongoing
efforts to improve water risk assessment frameworks. Although Gladstone is not typically
considered a water-scarce area, the substantial water demand for hydrogen production
could present challenges, especially during droughts or periods of increased industrial
activity. Effective water resource management and favorable climatic conditions are crucial
for maintaining the sustainability of hydrogen production in the region [72].

One out of the seven hubs identified by the Council of Australian Governments
is Pilbara in Western Australia. This pilot project will involve a phased development
project aimed at large-scale hydrogen production in the remote region utilizing solar
and wind energy [73]. However, producing hydrogen in Pilbara presents substantial
challenges due to the region’s isolation and arid conditions. The key challenges include
the difficulty in transporting hydrogen to markets, as the area lacks the infrastructure
necessary for large-scale production and distribution. Water scarcity is another significant
issue in Pilbara [74]. Given Pilbara’s limited freshwater resources, which complicates the
electrolysis process and could make it costly if desalination is required, the high initial
capital costs for establishing hydrogen production facilities, coupled with the expenses
related to renewable energy, water procurement, and transportation, pose major economic
viability concerns. The technical hurdles of integrating intermittent renewable energy
sources like solar and wind into a consistent hydrogen production process, along with the
challenges of maintaining operations in such a harsh and isolated environment, further
complicate the project. Successfully addressing these obstacles will require substantial
investment, innovative solutions, and collaboration among stakeholders.

5. Discussion
5.1. Renewable Energy Sources

Wind and solar energy are employed as renewable energy sources to generate electric-
ity to power electrolysis for H2 synthesis [75]. Solar energy has been used in applications
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such as photovoltaic systems (PVs), concentrated solar power (CSPs) systems, and wind
energy to power electrolysis equipment. A converter (DC/DC or AC/DC) is required for
establishing the power of renewable energy sources with electrolysis input. Rather than the
high expense of power transmission, renewable energy sources are being used to provide
electricity in remote places [76]. The excess energy generated by green energy sources
has been utilized to power electrolysis for H2 generation. The electrolysis is powered
by PV panels, a solar charger, and a DC/DC converter via an electrical circuit known
as a maximum power point tracker. In the event of low solar radiation, the battery is
thought to serve as energy storage. The PV/H2 system has several advantages over other
renewable energy sources, including the utilization of DC voltage and verified parts that
require minimal maintenance. The CSP/H2 system uses heat instead of electricity to power
the electrolysis system and convert water to steam via the SOE [77]. Thermal storage in
the CSP/H2 system enables continuous H2 generation. Research was undertaken [78] to
compare the efficiency of each system under identical operating conditions. The results
revealed that the CSP/H2 system performs better than the PV/H2. Furthermore, wind
energy was employed to power the electrolysis (wind/H2) unit by supplying electricity
through an AC/DC converter. Wind energy is available 24 h a day, not just during the day,
like solar energy; however, it is an uneven energy source owing to its nature.

5.1.1. Solar-Powered Hydrogen Production System

PV/H2 technology is a green H2 generation method powered by the solar system,
which creates electricity to fuel the electrolysis unit. The PV/H2 system is the most com-
monly employed technique for producing green H2 due to its low cost, superior efficiency,
and ease of implementation. This technology has been experimentally tested in several
places and weather situations. Another research investigation found that utilizing a photo-
voltaic tracking system provided the best results but at a higher cost than a conventional
PV system, while using a concentrated PV system increased efficiency when compared
to a classical PV system. Another model-based investigation yielded similar results to an
empirical investigation. A review of a photovoltaic system-based maximum power point
tracking (MPPT) revealed that the performances were nearly identical to those of a PV
system with or without MPPT, although the cost was somewhat higher when employing
MPPT. Furthermore, it was established that the rate of H2 production was proportional to
MPPT efficiency [79].

Research has shown that combining the PV/H2 system with PEM electrolysis has
yielded promising results, with efficiency steadily improving over time. In 2008, just 6%
performance was reported utilizing the PV/H2 combination, with a high production cost of
approximately 40 USD/kg [80]. Research aims to improve PV/H2 efficiency, productivity,
and cost-effectiveness. In reality, in 2010, the efficiency was increased to 12.4% by adopting
direct connectivity between the photovoltaic system and the electrolytic unit. The produc-
tion cost of H2 has lowered from 40 USD/kg in 2008 to 3.4 USD/kg in 2022. The outcome is
because of the operating voltage system, which is constantly accessible from the PV system
to power the electrolysis. Several studies have found that PV/H2 systems are better suited
for remote places than electrolysis. Furthermore, because PV panels are more efficient than
horizontal panels, they have an impact on H2 production. The PV/H2 system can generate
both H2 and power through a fuel cell, making it ideal for nighttime or wintertime use [81].

When there is little or no solar radiation to generate the electricity required for elec-
trolysis, a fuel cell can be acquired to power an electrolysis machine. Utilizing grid/H2 for
H2 generation is less expensive than utilizing grid/PV/H2 or PV/H2, according to a study
of the costs of various green sources for electricity production. In actuality, the expenses
for grid/H2, grid/PV/H2, and PV/H2 are, respectively, 5.5, 6.1, and 12.5 USD/kg [82].
Because power transportation is relatively expensive, PV systems and wind energy are
advantageous in rural places where the traditional grid is not deployed. The initial cost
has been determined to be dependent on the cost of the land and the installation of the PV
system. A high output of H2 can be provided by increasing the efficiency of the PV/H2
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system, which is particularly appropriate in remote places due to the significant potential
of solar energy in these areas. This has led to the introduction of bifacial solar panels,
which first increase H2 generation and subsequently improve efficiency [83]. As a result,
H2 generation increased to 4.2 g/h/m2 from 3.7 g/h/m2 in the case of monofacial solar
panels, while the efficiency of bifacial solar panels reached 13.5% as opposed to 11.55%.

5.1.2. Wind-Powered Hydrogen Production System

Wind energy is not more efficient than solar energy owing to the wind’s unpredictable
nature. As a result, the amount of electricity generated by wind turbines varies over time.
Excess electricity might be stored as H2 gas utilizing wind energy in a W/H2 system, as
illustrated in Figure 10. During low wind speeds, the produced H2 can be converted to
energy using a fuel cell; during high wind speeds, a portion of the H2 may be sold or stored,
while the remainder is converted to electricity [84]. Thus, a wind turbine’s efficiency can
be enhanced by integrating it with an electrolytic unit and a fuel cell to create a sufficient
green energy source [85].
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There is theoretical and numerical research on the wind/H2 system, in addition to
the experimental investigations. In actuality, a model for electrolysis has been created
utilizing four numerical models [86]. The suggested models have demonstrated good
performance under the wind speed outcome conditions. Additional studies have looked
into how to use a novel approach and control technique to enhance the wind/H2 system’s
efficiency [87]. To reduce the cost of producing H2 under the wind/H2 system, many
strategies and procedures have been developed. It has been noted that the expenses are
influenced by both the original outlay and the locations of the wind and H2 systems. A
sample of some global locations and the associated costs of an electricity-based wind energy
system and H2 generation are provided in Table 5.
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Table 5. Wind energy system based on hydrogen production and electricity costs.

Country Electricity Cost (USD/Kwh) H2 Production Cost (USD/Kg) References

Turkey NA 3.10 [88]
Pakistan NA 4.02 [89]
Algeria NA 1.214 [90]
Iran 0.0325–0.0755 1.375–1.59 [91]
Iran 0.068–0.115 2.1008–3.5602 [92]
Morocco NA 2.36–2.66 [93]
South Africa NA 6.34–8.97 [94]
Afghanistan 0.063–0.079 2.118–2.261 [91]
Kuwait NA 13.28–11.52 [95]

When H2 is generated using renewable energy sources, it is stored and transferred.
High-pressure tanks are used to properly store H2 [56]. The most serious issue that can
arise is the escape of compressed gas at high pressure, which could result in an explosion.
On the other hand, the storage system is one of the most important elements influencing
H2 production costs. Various installation strategies for wind and H2 systems have been
studied to lower production costs [88]. The cost of producing H2 and transporting it by
pipeline is around 5.71 USD per kilogram. A study was carried out on the integration of H2
and methane generation, which allows for an increase in the system’s overall efficiency [89].
A low-cost H2 manufacturing method was discovered employing a wind turbine in the
location with the highest potential wind power in Southern Algeria [90]. The lowest price
of roughly 1.214 USD/kg was found in Adrar City.

5.1.3. Hybrid Solar and Wind Energy System for Hydrogen Production

PV systems are most effective for producing electricity in rural locations where there
is no grid. Furthermore, creating H2-based wind and solar energy to power electrolysis
units is extremely appealing, especially in the case of excess energy, which can be traded in,
stored, or transformed into electricity through fuel cells [78]. To increase the effectiveness
of the H2 production system, it is necessary to integrate wind and solar power in order
to create an efficient hybrid H2 production system, which allows for lower H2 costs and
constant production, since two green energy sources are used [96]. Figure 11 depicts the PV-
wind/H2 system concept. The PV-wind/H2 system outperforms the PV/H2 and wind/H2
systems due to its high potential for electricity. The PV/H2 and wind/H2 systems combine
to generate the hybrid system [97]. Hybrid systems are more efficient than single systems
like PV/H2 or wind/H2 [98]. The efficacy of the PV-wind/H2 system is improving as the
input electricity to the electrolysis unit rises, as does the temperature of the water within
the electrolysis.

To improve the efficiency of the solar–wind/H2 system, numerous more experiments
have been carried out utilizing various methodologies. The results shown below serve as
examples [4,99–101]:

• Refueling automobiles at H2 stations, where a kilogram of H2 may be produced at a
price of 13.12 USD.

• Batteries increase the system performance and enable uninterrupted constant opera-
tion of the solar–wind/H2 system.

• The hybrid system has a higher efficiency factor than the single system.
• Supplying homes with power with fuel cells that run on hybrid systems that produce

H2.
• Supplying cars with H2 for as little as 9.28 USD/kg.
• At an efficiency of about 61%, the production of 239 kg/h has been attained.
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Thus, the H2-generating system’s solar and wind energy can be used for desalination,
electricity, cooling, and heating in addition to producing hydrogen. A summary of the
features of a few hybrid solar–wind hydrogen systems is shown in Table 6.

Table 6. Technical specifications for solar, wind, and H2 production systems.

Integrated Solar and Wind
Systems for H2 Production

Cost Analysis: H2 Production
(USD/kg) Vs. Electricity
Generation (USD/kWh)

Performance Metrics and
Specifications References

Synergized Solar-Wind
Hybrid for H2 Production

The cost of generated
electricity ranges from 0.06 to
0.55 $/kwh.
H2 production costs range
from $3.73 to $4.65 per kg.

Utilized in the electrification process.
Production of H2 exceeds that of PV
and wind.
Used as a method for desalination.
Utilized as a cooling mechanism
utilized as a system of heating.
Enhanced effectiveness.

[89,92,93,96,97]

Wind-Driven H2 Production

H2 production costs range
from 5.27–8.01. The cost of
electricity produced in
USD/kg ranges from 0.08 to
0.55 USD/kwh.

An AC/DC converter is required to
power the electrolysis. Extreme wind
speed settings. Efficiency is about
5–14%.

[84–87,102]

Solar Photovoltaics and H2

The cost of producing H2
ranges from 3.41 to
16.01 USD/kg, whereas the
cost of generated electricity
ranges from 0.06–0.38
USD/kWh.

The most commonly used technology
for green H2 production. Requires
minimal maintenance. Increases H2
output. Lowers production costs.
Achieved efficiency of 12.4% in 2010
and 21% by 2020.

[50,79,81,103–105]

5.2. Challenges and Limitations

Given that hydrogen can serve as an alternative energy source and offer flexibility
to the power market. It is crucial to prioritize sustainable production methods through
the integration of renewable energy systems, often referred to as green hydrogen energy
systems. The advancement in green hydrogen systems in terms of techno-economic ca-
pabilities, competitive advantage, and optimization strategies are extensively reviewed
and found to be the major drives in the renewable energy field to address issues associated
with the extensive use of wind-based electricity and takes a central role in future net-zero
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carbon drives. It goes without saying that some challenges are hindering the accelerated
adoption of these technologies. This section focuses on the challenges that need to be
carefully considered to realize the full potential of green hydrogen technology.

i. Intermittency and Variability: The inherent fluctuation of solar and wind energy
is a substantial obstacle to achieving consistent hydrogen generation. Variations
in renewable energy production can result in ineffective electrolysis processes and
unreliable hydrogen provision [106,107]. Hybrid solar–wind–hydrogen systems
employ multi-layered control strategies to manage renewable energy fluctuations
across various timescales. Short-term responses (seconds to minutes) utilize power
electronics, battery storage, and fuel cells for rapid adjustments. Medium-term
strategies (minutes to hours) incorporate predictive algorithms, energy manage-
ment systems, and flexible electrolyzer operation. Long-term approaches (hours to
days) leverage hydrogen storage, seasonal forecasting, and grid interconnections.
Advanced control methods, including adaptive systems, model predictive control,
and hierarchical structures, coordinate these components. This comprehensive
approach ensures continuous system stability by balancing energy production, stor-
age, and consumption, effectively addressing the intermittent nature of renewable
sources in an integrated and efficient manner.

ii. High capital cost: The equipment required for electrolysis, hydrogen storage, and
fuel cells remains expensive. These high initial investments can be a significant
barrier to entry for many potential adopters, particularly in regions without strong
policy support. Also, developing the necessary infrastructure for large-scale hy-
drogen storage and distribution requires substantial investment and technological
advancements [108–113].

iii. Market Uncertainty and Regulatory hurdles: The embryonic state of the green
hydrogen market introduces ambiguity for investors, potentially constraining fi-
nancing for extensive projects and impeding industry expansion. Also, a lack of
standardized regulations and codes for hydrogen systems in many regions can slow
down project development and increase compliance costs [107,114–116].

iv. Material degradation: Prolonged exposure to hydrogen can degrade certain ma-
terials in electrolyzers and fuel cells, potentially reducing the system lifespan and
increasing maintenance costs. Therefore, accurately predicting the performance
degradation of fuel cells is both theoretically significant and practically important,
highlighting the need for further research in this area [117].

v. Safety issues: Hydrogen is extremely combustible and necessitates cautious han-
dling. Integrating strong safety measures and protocols increases the overall com-
plexity and cost of the system, especially in densely populated regions.

vi. Fuel cell efficiency: The process of converting electricity into hydrogen through
electrolysis and subsequently converting it back into electricity using fuel cells is
characterized by a relatively poor overall efficiency, often ranging from 30% to
40%. This decrease in efficiency can render the system less economically feasible
as compared to the direct utilization of renewable electricity or alternative energy
storage technologies [118–121].

The challenges associated with the solar and wind energy-integrated green hydro-
gen production systems highlighted in the previous section can be mitigation by several
correction measures, such as:

i. Automated forecasting and control systems: The integration of solar and wind
resources with hydrogen production can be optimized with the use of intelligent
control systems and advanced weather forecasting technologies. The influence of
intermittency can be reduced by using machine learning algorithms to forecast the
output of renewable energy and modify electrolysis processes appropriately.

ii. Cost reduction strategies: One way to lower the capital costs of hydrogen systems
is to use less expensive materials, increase the output, and enhance manufacturing



Appl. Sci. 2024, 14, 9771 24 of 31

processes. The use of carbon pricing mechanisms, government incentives, and
subsidies may contribute to the increased economic viability of these systems.

iii. Standardization and market policy support: Regulatory hurdles can be reduced
through the development and implementation of international standards for hy-
drogen systems. Government policies that incentivize green hydrogen production
and use can help create a more stable market environment and attract investment.
This can include feed-in tariffs for green hydrogen, mandates for hydrogen use in
certain sectors, and support for research and development.

iv. Development of advanced materials: Research into more durable and hydrogen-
resistant materials can extend the lifespan of system components and reduce main-
tenance costs. This includes developing new catalysts, membranes, and structural
materials for electrolyzers and fuel cells.

v. Efficiency improvements: The overall efficiency of the system can be raised by
continuing research into more effective electrolysis technologies, such as high-
temperature electrolysis and sophisticated proton exchange membrane (PEM) elec-
trolyzers. Hydrogen-based energy storage can also become more viable through
creating reversible fuel cells and increasing fuel cell efficiency.

Some of the highlighted potential solutions for addressing the barriers hindering the
widespread adoption of these green hydrogen technologies have been proven to mitigate
the challenges. While some are just hypothetical solutions that could be implemented
and improved with time, ongoing research and development are steadily improving the
viability of these integrated systems.

5.3. Future Directions

The advent of technological advancements has created room for significant improve-
ments in green hydrogen production and is shaping the future of integrated solar, wind, and
green hydrogen systems. The adoption of hydrogen-based technology presents substantial
opportunities for economic growth, improvement in human well-being, and addressing
pressing environmental concerns. Recently, there has been a growing interest in the method
of water electrolysis for hydrogen generation, driven by technological advancements and
the accessibility of cost-effective power sources. Emerging trends such as floating offshore
renewable energy platforms, advanced AI-driven control systems, and solid-state elec-
trolysis technology are opening up new possibilities for more efficient and cost-effective
hydrogen production. The expansion of hydrogen applications beyond energy storage
to include industrial processes, synthetic fuel production, and transportation is creat-
ing new markets and improving the economic case for green hydrogen. Also, through
hydrogen-based energy storage for grid stabilization, large-scale hydrogen storage systems
can provide long-duration energy storage to stabilize grids with a high penetration of
renewable energy. The incorporation of hydrogen in steel production as a reducing agent
could significantly reduce carbon emissions and the overall energy consumption.

The hydrogen market’s growth depends on future hydrogen prices, technology ad-
vancements, potential greenhouse gas restrictions, and alternative energy costs. Hydrogen
shows promise as a future fuel due to various social, economic, and environmental fac-
tors, potentially reducing oil imports and vehicle emissions. The current research focuses
on hydrogen synthesis from diverse sources and improving storage and transportation
methods. While the experimental results are promising, their large-scale feasibility needs
careful evaluation. The urgent need for clean energy is clear, but transitioning from fossil
fuels faces significant political and economic challenges. The shift to renewable energy,
including hydrogen, will be gradual due to the extensive restructuring required in global
energy infrastructure, which underpins the world economy and power dynamics.

6. Conclusions

This research extensively discusses the advancement of integrated solar and wind
energy with green hydrogen systems for efficient hydrogen production, storage, and con-
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sumption. It highlights recent technological developments, such as improved electrolyzers
and enhanced energy storage. Various instances of the implementation of the system in
real-world applications were critically examined. The need for integrated renewable energy
and green hydrogen systems to help us achieve a sustainable, low-carbon future is growing
as the urgency to address climate change decreases. Even if there are still obstacles to over-
come, the continuous progress in technology, along with the increasing governmental and
social backing for sustainable energy solutions, point to a bright future for these creative
approaches. The success of combining solar and wind energy with green hydrogen systems
will ultimately depend on a coordinated effort across multiple domains—technological
innovation, policy support, market development, and public engagement. As research pro-
gresses and costs continue to decrease, these integrated systems have the potential to play a
pivotal role in the global energy transition, contributing significantly to the decarbonization
of various sectors and the creation of a more sustainable and resilient energy landscape.
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