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Abstract: Due to the physical characteristics of acoustic channels, the performance of underwater
acoustic communication networks (UACNs) is more susceptible to the impacts of multipath and
Doppler effects. Channel quality can serve as a measure of the reliability of underwater communica-
tion links. A cross-layer routing protocol based on channel quality (CLCQ) is proposed to improve
the overall network performance and resource utilization. First, the BELLHOP ray model is used
to calculate the channel impulse response combined with the winter sound speed profile data of a
specific sea area. Then, the channel impulse response is integrated into the communication system
to evaluate the channel quality between nodes based on the bit error rate (BER). Finally, during the
selection of the next hop node, a reinforcement learning algorithm is employed to facilitate cross-layer
interaction within the protocol stack. The optimal relay node is determined by the channel quality
index (BER) from the physical layer, the buffer state from the data link layer, and the node residual
energy. To enhance the algorithm’s convergence speed, a forwarding candidate set selection method
is proposed which takes into account node depth, residual energy, and buffer state. Simulation results
show that the packet delivery rate (PDR) of the CLCQ is significantly higher than that of Q-Learning-
Based Energy-Efficient and Lifetime-Extended Adaptive Routing (QELAR) and Geographic and
Opportunistic Routing (GEDAR).

Keywords: cross-layer routing protocol; channel quality; Q-learning; underwater acoustic communication
networks

1. Introduction

UACNs employ sound waves to transmit information and facilitate data exchange
between underwater devices via underwater acoustic channels. UACNs play a pivotal
role in numerous fields, including ocean observation, underwater operations, military
applications, and business [1,2]. UACNs typically comprise three main components: fixed
underwater acoustic sensor nodes, mobile autonomous underwater vehicles (AUVs), and
water gateway nodes. A distributed, multi-hop, three-dimensional network is formed
by the aggregation of multiple nodes at different locations. The nodes exchange data via
underwater acoustic communication and relay information to the central node through the
underwater relay nodes.

Although there are conceptual similarities between UACNs and terrestrial wireless
electromagnetic wave networks, underwater acoustic channels are considerably more
complex than terrestrial wireless channels. This complexity arises from several factors,
including multipath effects, Doppler effects, time-varying characteristics, and limited avail-
able bandwidth. These factors result in a high BER, high susceptibility to link interruptions,
and increased packet loss in communication transmissions [3–6]. Consequently, UACNs
cannot directly adopt the protocols and techniques of terrestrial wireless electromagnetic
wave protocols and technologies. When designing routing protocols for UACNs, it is
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essential to fully consider the characteristics of the underwater acoustic channels and the
underwater environment in order to establish a reliable transmission mechanism that
achieves a high PDR in the multi-hop network. In UACNs, factors such as data surges
and node failures can lead to network congestion, resulting in packet loss and reception
interference, as well as increased queuing delay. This further increases the end-to-end
delay and reduces the PDR [7]. Furthermore, sensor nodes in UACNs typically operate on
independently sourced power, which is limited and challenging to replenish. Consequently,
the energy consumption must be taken into account when designing routing protocols
for UACNs.

To address the aforementioned challenges, researchers have proposed cross-layer
design approaches, as evidenced by the following references: [8–10]. In contrast to tradi-
tional network protocols, which are designed independently within their respective layers,
cross-layer protocols facilitate information sharing between different layers, enabling the
network to dynamically adjust routing decisions and resource allocation based on real-time
channel conditions, node states, and application requirements. This optimization enhances
overall network performance [11]. In [12–14], the authors emphasize the importance of
considering node energy consumption, transmission path selection, and routing strategy
optimization in routing protocol design to improve energy utilization efficiency. However,
the impact of node congestion on energy consumption, end-to-end delay, and PDR is not
investigated. References [15,16] address the dual issues of energy efficiency and congestion
in protocol design; however, insufficient attention is paid to the critical impact of channel
quality on PDR. In [17], the receiver signal-to-noise ratio (SNR) is employed to forecast
the channel quality, which incorporates the propagation characteristics of signals. How-
ever, the physical layer effects during orthogonal frequency-division multiplexing (OFDM)
modulation and demodulation are not fully considered.

To increase the PDR in complex marine environments, a cross-layer routing protocol,
the CLCQ, for UACNs is proposed that combines channel quality and node congestion
state. The design of this protocol fully accounts for the specific characteristics of the marine
environment. The winter sound velocity profile data from a specific sea area are employed
to calculate the channel impulse response and propagation loss using the BELLHOP ray
model. These real marine channel characteristics are then introduced into the OFDM
communication system. Subsequently, the signal traversing the OFDM communication
system is used to compute the BER, which serves to assess the quality of the channel. In
the context of a variable underwater environment, the CLCQ designs a reward function
that considers channel quality, node buffer state, and residual energy. The reinforcement
learning method enables the CLCQ to adjust the next hop node selection dynamically.
Simulation results indicate that the CLCQ exhibits a higher PDR in the context of complex
underwater acoustic channels. The main contributions made by this paper are the following:

1. The cross-layer routing protocol is designed by combining the physical layer and data
link layer parameters to realize the information exchange between different layers. Sim-
ulation results show that the protocol can effectively improve the network performance.

2. The channel impulse response is calculated using winter sound speed profile data
from a specific sea area, and the results are applied to the OFDM communication
system to obtain the BER of underwater acoustic channels under specific marine
environments, different transceiver positions, and fixed modulation modes. The BER
serves as a channel quality evaluation index, which provides an important basis for
designing cross-layer routing protocols.

3. The reward function for reinforcement learning was designed by considering channel
quality, node buffer state, and remaining energy to select reliable links and avoid
congestion, thereby enhancing the PDR and reducing end-to-end delay. Additionally,
a forwarding candidate selection method based on node depth, remaining energy,
and buffer state was proposed to accelerate algorithm convergence.

The rest of the paper is organized as follows: Section 2 reviews related research. The
system model, including the network model, energy model, and communication model,
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is presented in Section 3. The proposed CLCQ protocol is described in detail in Section 4.
Section 5 evaluates the performance of the CLCQ protocol through simulation. Section 6
summarizes the research results and concludes.

2. Related Work

In UACNs, underwater routing protocols can select appropriate paths for data trans-
mission between underwater nodes by considering the characteristics of the underwater
acoustic channel and the network topology [18]. Routing protocols are primarily classified
into two categories, non-cross-layer routing and cross-layer routing which depends on the
involvement of parameters from other layers of the network stack [19]. These parameters
include node buffer states, receiver SNR, transmission power, and transmission rates.

Traditional non-cross-layer routing implements specific standards and rules only
within network layers, with no interaction between layers. One classic example is the Vector-
Based Forwarding (VBF) routing protocol, which relies on three-dimensional coordinate
information for data transmission [20]. VBF uses source–destination vectors as axes to
directionally forward packets within a limited-radius communication pipe, in contrast
to the flooding approach. However, in a network with sparsely distributed nodes, the
forwarding node may not be able to find the next hop node within the communication
range of the pipe. To solve this problem, researchers have also proposed two improved
routing protocols based on VBF: the HHVBF (Hop-by-Hop VBF) routing protocol [21] and
VBVA (Vector-Based Void Avoidance) routing protocol [22]. HHVBF employs a hop-by-hop
forwarding strategy that allows each node to maintain a virtual routing pipeline pointing
to the destination node. VBVA combines vector shifting and backpressure mechanisms to
avoid convex and concave voids in the network. QELAR [23] employs Q-learning for the
first time in distributed routing protocols in underwater sensor networks. It integrates the
residual energy of each node and the average residual energy of neighboring nodes into
the design of the reward function to select an optimally energy-efficient transmission path.
Experiments show that the lifetime of QELAR is on average 20% longer than that of VBF.
However, the design of the protocol focuses only on the energy of the nodes and does not
consider other factors that may affect the routing.

The objective of cross-layer routing protocols is to enhance the overall performance of
routing protocols through the implementation of effective information-sharing mechanisms
while maintaining the hierarchical structure of the network stack [24]. GEDAR [25] is
an opportunistic routing protocol that employs the concept of clustering, which focuses
on determining the next hop forwarding node by calculating the priority of the derived
cluster. The priority calculation incorporates both the distance between nodes and the
packet error rate. The sending node then forwards the packet to the cluster of nodes with
the highest priority. However, the protocol does not fully consider the congestion state
of the nodes during packet forwarding, which may result in higher end-to-end delay and
energy consumption. In [15], a congestion avoidance routing protocol, RCAR, is proposed.
The reward function takes into account the congestion level and the residual energy of
the nodes, allowing for the avoidance of congested regions during packet forwarding.
Furthermore, RCAR introduces an MAC layer-based handshake mechanism for updating
information, which ensures that the optimal transmission path is selected. Although RCAR
is a cross-layer routing protocol, it primarily concentrates on the design of the network
layer and data link layer, with minimal consideration of how certain factors in the physical
layer impact the protocol’s performance.

MOR [26] is a cross-layer routing protocol proposed by Yuan et al. The protocol
considers four key performance indicators, energy consumption, end-to-end delay, link
quality, and link congestion, and uses the non-dominated sorting genetic algorithm II
(NSGA-II) to find the optimal routing path. The effectiveness of MOR in reducing energy
consumption, decreasing end-to-end delay, and improving packet transmission rate is
verified by experiments. PCAQR [13] is a new network topology that realizes cross-layer
application by optimizing the transmission power and routing path of nodes, reducing
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energy consumption and delay. CLORP [27] is a cross-layer opportunistic routing protocol
that uses multi-agent reinforcement learning with two reward functions for successful and
failed transmissions, combined with cross-layer information to optimize routing. It employs
an adaptive learning rate and a Q-value initialization strategy based on location and
neighbor count to accelerate convergence and adapt to dynamic network topology changes.
CLIC utilizes an integrated routing MAC to adaptively avoid nodes likely to experience
high conflict or congestion during routing [28]. This approach provides a high PDR and
low latency with low overhead. Nevertheless, the protocol does not fully account for the
distinctive characteristics of underwater acoustic channels, such as signal propagation loss
and multipath effects, which can influence the efficacy of data transmission. GO-MAC [17]
employs a novel approach to determining the next hop node, integrating geographic routing
protocols and OFDM techniques. This integration enables the simultaneous optimization
of communication resources and the selection of next hop nodes through a handshaking
mechanism. The degree of node congestion and channel quality are taken into account to
optimize the adaptive backoff algorithm in the geographic routing protocol. Nevertheless,
the assessment of the channel quality in this protocol is predominantly based on the ray
propagation model to predict the receiver SNR, which primarily focuses on the propagation
characteristics of the signals and does not fully consider the physical layer effects in the
OFDM modulation and demodulation process.

In conclusion, when designing cross-layer routing protocols, several factors must
be taken into account in order to ensure the efficiency and reliability of the protocols.
Firstly, the protocol design should fully consider the acoustic propagation characteristics,
particularly in special environments such as underwater acoustic channels, where signal
propagation loss and multipath effects significantly impact data transmission performance.
Secondly, cross-layer design factors are also critical, including but not limited to congestion
state, residual energy, channel quality, and hop count, which collectively determine the
merits of routing and the overall performance of the network. Furthermore, it is essential
to consider the physical layer characteristics, particularly when employing modulation
techniques such as OFDM. The unique physical layer characteristics of OFDM must be
fully incorporated into the protocol architecture.

3. System Model
3.1. Network Model

In this paper, the information is generated by the underwater source node and trans-
mitted upward to the destination node using relay forwarding. Subsequently, the des-
tination node transmits the data packets to the ground base station for data analysis
via electromagnetic waves. The network model is depicted in Figure 1. We make the
following assumptions:

1. Numerous underwater sensor nodes are randomly scattered throughout a three-
dimensional underwater network;

2. The destination nodes are energy unconstrained and can obtain their position infor-
mation through GPS;

3. All underwater nodes can obtain their location information through positioning algorithms;
4. All nodes have access to their buffer status.
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Figure 1. The schematic diagram of the network.

3.2. Energy Consumption Model

In underwater acoustic communication, the attenuation function within a channel, as
defined by the Thorp propagation model, is given by Equation (1), where f represents the
frequency in kHz, and d is the distance in km.

A(d, f ) = dkα( f )d (1)

Here k and α( f ) denote the energy scattering factor and the absorption coefficient,
respectively. The energy scattering factor is assigned values based on the scattering type:
1 for columnar scattering, 1.5 for real scattering, and 2 for spherical scattering. The absorp-
tion coefficient α( f ) is determined by Equation (2) and is measured in dB/km.

α( f ) = 10α/10 (2)

α =
0.11 f 2

1 + f 2 +
44 f 2

4100 + f 2 + 2.75 × 10−4 f 2 + 0.003 (3)

When a node transmits m bits of data over a distance d, the model for node transmis-
sion energy consumption [29] can be expressed as follows:

ES = PR A(d, f )TS (4)

The energy consumption by the receiver to receive k bits of data can be calculated by
the following:

ER = PR × TR (5)

where PR is the received power, and TR is the time taken to receive the m bits of data.

3.3. Communication Model

In order to consider the impact of channel quality on network performance, the real
propagation loss and channel impulse response are calculated using the BELLHOP ray
model in conjunction with winter sound speed profile data from a specific sea area. The ob-
tained channel impulse response is then applied to a physical-layer OFDM communication
system to evaluate the BER of the underwater acoustic channel in conjunction with specific
modulation modes and underwater environmental conditions.

The winter sound speed profile, as depicted in Figure 2, is utilized to describe the
sound speed distribution of the deep-sea acoustic channel in a specific sea area. We obtain
the number of multipaths Npa for the known transmitting depth and the known receiving
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position, as well as the amplitude and delay information in the Npa*1 dimension. The
impulse response h(t) is defined as follows:

h(t) = A0δ(t − τ0) +
Npa−1

∑
u = 1

Auδ(t − τu) (6)

where Au and τu are the amplitude and delay of the u-th acoustic line at the receiver, re-
spectively. An example of the channel is shown in Figure 3. If the signal at the transmitter is
denoted by xm(t), the received signal of the multipath channel is denoted by the following:

ym(t) = A0xm(t − τ0) +
Npa−1

∑
u = 1

Auxm(t − τu) + nc(t) (7)

where ym(t) is the superposition of the direct acoustic signal and multiple reflections, and
nc(t) is the channel noise.
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Figure 3. Example of channel (transmit depth 1000 m, receive depth 878.1 m, distance 536.8 m).

The delay and amplitude of the multipath channel, as calculated by BELLHOP, are
incorporated into the physical layer of the OFDM system depicted in Figure 4. OFDM is
a modulation technique that divides a high-speed data stream into multiple low-speed
subcarriers for transmission. This process has the characteristics of resistance to multipath
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fading, high-frequency utilization, and strong resistance to jamming. It is therefore suitable
for the complex channel environment of underwater acoustic communication.
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Figure 4. OFDM underwater acoustic communication system implementation process.

The OFDM system described in this paper employs LDPC code for channel coding,
BPSK for modulation and demodulation, and a frequency-based channel estimation and
equalization method. In order to eliminate the Doppler effect in the underwater acoustic
channel, a time-domain correlation method is employed for Doppler estimation, while
an interpolation method is used for Doppler compensation. Based on the positional
information of the transmitting and receiving nodes, the BER for known transmitting and
receiving depths and distance can be calculated. The bit error rate is inversely proportional
to the channel quality. A lower bit error rate indicates a higher channel quality. Figure 5
depicts the 2D BER for a transmitting depth of 800 m, varying receiving depths, and varying
receiving distances. As stated in [25], the PDR can be calculated from the BER.
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4. Proposed CLCQ Protocol
4.1. Q-Learning-Based Routing Protocol

Q-learning is a model-free reinforcement learning algorithm which learns the optimal
actions by interacting with the environment and estimating the long-term value of actions
in specific states [30]. The objective of Q-learning is to identify the optimal policy that
maximizes the expected future rewards. The complexity of the underwater acoustic channel
and the uncertainty of the environment make it challenging to obtain a large number of
real environmental data. Q-learning is capable of modifying the node behavior strategy
in real time based on the current network status and data characteristics. This makes it a
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highly versatile solution for UACNs that frequently change. The fundamental principle
underlying Q-learning is the utilization of the Bellman equation to iteratively update the Q-
function until it converges to the optimal Q-value. The updated formula for the Q-function
can be expressed as follows:

Qπ(si, ai) = ri + γ ∑
sj∈S

P
aj
sisj Q

π
(
sj, a

)
(8)

where si and sj represent the current state and the next state, respectively. ai represents
the action taken, and ri represents the immediate reward for the current action. γ ∈ (0, 1)
denotes the discount factor, and Pai

sisj is the transition probability from state si to state sj
through action ai. Ref. [31] has proven that there exists at least one optimal policy π∗ that
can achieve the optimal value, which can be described as follows:

V∗(s) = max
a

(Q∗(s, a)) (9)

Q∗(si, ai) = ri + γ ∑
sj∈S

Pai
sisj V

∗(sj
)

(10)

Among these, Q∗(si, ai) represents the expected return of taking action ai under the
optimal policy in the state si. The protocol framework that is the subject of this study is
depicted in Figure 6. In order to calculate the value of the reward function, nodes must
obtain information from the environment, such as the remaining energy of neighboring
nodes. The agent then evaluates the actions for candidate nodes and sends the data
packet to the next hop probabilistically. This method fully exploits the information transfer
between the network layer, data link layer, and physical layer within the network protocol
stack to achieve efficient routing in practical applications.
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Figure 6. Protocol framework.

4.2. Selection of Forwarding Candidate Set

This section will examine the process of selecting the forwarding candidate set in
detail. By comprehensively considering factors such as node depth, energy, and buffer
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state, we will further filter out eligible forwarding nodes from the neighboring nodes. Only
nodes that meet the specified criteria can be selected as the next hop.

In UACNs, the neighbor set of node ni is defined as

Neighbori = {ni1, ni2, ni3, . . . , nim} (11)

where m represents the number of neighbor nodes of node ni. If node nj satisfies Equation (12),
then nj belongs to the forwarding candidate set of ni.

candidateSet = Subset1 ∩ Subset2 ∩ Subset3 (12)

Subset1 =
{

nj ⊆ Neighbori | depth
(
nj
)
≤ depth(ni)

}
(13)

Subset2 =
{

nj ⊆ Neighbori | Eres
(
nj
)
≥ 0.2Einit

(
nj
)}

(14)

Subset3 =
{

nj ⊆ Neighbori | Bu f f erj
now ≤ 0.8Bu f f erj

max

}
(15)

To ensure that packets are transmitted towards a decreasing depth, nodes with a depth
less than or equal to that of node ni are first selected from the neighbor nodes according to
Equation (13), forming a subset Subset1. Furthermore, in order to prevent certain nodes
from depleting their energy prematurely and creating routing holes, neighbor nodes with
less than 80% of the initial energy are filtered out according to Equation (14), which helps
extend the lifespan of the network. Concurrently, to alleviate network congestion and
enhance packet transmission efficacy, only nodes whose current buffer length is not more
than 80% of the maximum buffer length are selected according to Equation (15). Finally, the
intersection of the aforementioned subsets is selected as the final forwarding candidate set.
However, if the forwarding candidate set is empty, this article proposes that the forwarding
candidate set be assigned all neighbor nodes of the current node ni, denoted as Neighbori.
This approach ensures uninterrupted packet transmission.

4.3. Selection of Next Hop

The design of this protocol incorporates considerations of the channel quality of the
actual underwater environment, thereby improving the PDR. As a cross-layer routing
protocol based on Q-learning, the CLCQ can select the next hop forwarding node by
calculating function values through the current buffer state, the residual energy, and the
BER of point-to-point communication. Note that competitive MAC protocols can potentially
lead to collisions, which may result in packet loss. In order to mitigate this risk, the CLCQ
employs Slotted FAMA [32] as the MAC protocol and makes further improvements. To
prevent packet collisions, each packet must be transmitted within the corresponding time
slot. The length of a time slot is defined as follows:

slot = Tprop + Ttrans + Tguard (16)

Tprop =
range
Vsound

(17)

Ttrans =
packetSize

Rb
(18)

where Tprop is the maximum propagation delay, Ttrans is the transmission delay, and Tguard
is the guard interval, set to 0.001 s.

The goal of Q-learning is to learn a policy that can achieve the maximum cumulative
reward by continuously updating the Q-value. The design of the reward function is crucial
for the effectiveness of Q-learning as it determines the behavioral goals and learning
motivations of the agent. Assuming that node ni holds a packet under state si, the action of
node ni sending the packet to node nj in its forwarding candidate set is denoted as aij, with
the obtained reward denoted as Rij, and the Q-function defined as Q(si, aij). Some symbols
are shown in Table 1.
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Table 1. The list of symbols.

Parameters Symbols

Constant reward g0
Channel quality sensitivity φq

Channel-quality-related reward c(q)
Delay and congestion sensitivity φt

Delay-and-congestion-related reward c(t)
Residual energy sensitivity φen1

Residual energy reward b(ni), b(nj)
Energy distribution sensitivity φen2

Energy distribution reward d(ni), d(nj)
Residual energy of node ni Eres(ni)

The initial energy of node ni Einit(ni)
Average residual energy of ni neighbor nodes E(ni)

Current buffer length Bu f fnow
Maximum buffer length Bu f fmax

A handshake time tMAC
Proportionality factor α1, α2

BER from ni to nj BERij
Average BER to its neighbor nodes BER

Maximum number of retransmissions Nmax
Discount factor γ

If the packet is successfully transmitted from node ni to node nj, the reward function
can be obtained by the following:

R
aij
sij = −g0 − φq × c(q)− φt × c(t)− φe1 ×

[
b(ni) + b

(
nj
)]

+φe2 ×
[
d(ni) + d

(
nj
)] (19)

The reward function mainly consists of four parts: a fixed reward, a channel-quality-
related reward, a delay-and-congestion-related reward, and an energy-consumption-related
reward. Among them, g0 is the fixed reward with a weight set to 1, while the other weights
(φq, φt, φen1, and φen2) are all less than or equal to 1.

Energy-consumption-related reward: b(ni) is the reward related to the remaining
energy, defined as follows [23]:

b(ni) = 1 − Eres(ni)

Einit(ni)
(20)

wherein Eres(ni) and Einit(ni), respectively, represent the remaining energy and initial
energy of the node. When all nodes have the same initial energy, the lower the remaining
energy of node ni, the higher the reward b(ni), and the more difficult it is for the two nodes
to communicate. d(ni) is a function measuring the energy distribution of the node, defined
as follows:

d(ni) =
2
π

arctan
(
Eres(ni)− E(ni)

)
(21)

where E(ni) is the average remaining energy of all neighbor nodes of node ni. The greater
the discrepancy between a node’s residual energy and the mean residual energy of its
neighboring nodes, the more likely it is that the node will be selected as the next hop node.

Delay-and-congestion-related reward: Congestion occurs when there are a large
number of packets in the buffer of a node. The handshake-based Slotted FAMA protocol
transmits a limited number of packets per handshake. For nodes with a high load, a certain
number of handshakes is required to release the load. Consequently, the congestion issue
in the network can be viewed as a delay, and the reward can be expressed as follows [15]:

c(t) = 1 − 1
ttotal + 1

(22)
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ttotal = α1 ×
([

Bu f fnow

Bu f fmax

]
+ 1

)
× tMAC + α2 × tMAC (23)

where tMAC is the total delay of data transmission in the Slotted FAMA protocol, and
α1∈[0, 1] and α2∈[0, 1] are two delay coefficients, respectively. The candidate node with a
larger buffer length is less likely to be selected as the next hop node.

Channel-quality-related reward: The channel quality and connection reliability be-
tween network nodes are factors that cannot be ignored in the system networking. Here, the
BER is used to measure the reliability of the communication link. We propose an improved
reward related to channel quality as follows:

c(q) = σBERij − 1 (24)

where σ is a predetermined base, and, in order to ensure that the range of c(q) is [0, 1), σ is
set to 2. A greater BER results in a greater channel-quality-related cost, which makes it less
likely that the node will be chosen as the next hop.

If the number of retransmissions of the data packet reaches the maximum limit and
the next hop has not received the data packet, the data packet forwarding process is
unsuccessful. The reward function for forwarding failure is presented by the following:

R
aij
Fij

= −g0 − φq × c′(q)− φt × c′(t)− φe1 × b(ni) + φe2 × d(ni) (25)

c′(q) = σBER − 1 (26)

c′(t) = 1 − 1
t′total + 1

(27)

t′total = α1 ×
([

Bu f fnow

Bu f fmax

]
+ 1

)
× tMAC + α2 × tMAC × Nmax (28)

According to [15], Nmax is the maximum number of retransmissions, and c′(t) is the
delay-and-congestion-related overhead of transmission failure. BER is the average bit error
rate from node ni to all neighbor nodes, and c′(q) is the channel-quality-related reward of
transmission failure.

The dynamic nature of the underwater acoustic channel makes it challenging to
ascertain the likelihood of successful data packet transmission. Consequently, this paper
employs the bit error rate of point-to-point communication to delineate the channel state.
The state transition success probability and packet loss rate are expressed as follows:

P
aij
sisj = 1 − BERij (29)

P
aij
sisi = BERij (30)

Accordingly, we define the direct reward function for packet transmission:

Rij = P
aij
sisj × R

aij
sij + P

aij
sisj × R

aij
Fij

=
(
1 − BERij

)
× R

aij
sij + BERij × R

aij
Fij

(31)

The action utility function is defined as follows:

Q∗(si, ai) = Rij + γ ×
((

1 − BERij
)
× V∗(sj

)
+ BERij × V∗(si)

)
(32)

The optimal value is updated as follows:

V∗(si) = max
a

(Q∗(si, a)) (33)

Initially, the Q-values and V-values of all nodes are set to 0, the constant reward g0 is
set to 1, and the discount factor γ is set to 0.5.
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4.4. Packet Structure Design

The packet structure design in this protocol is shown in Figure 7.
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Figure 7. Packet structure.

RTS: This packet is used by sending nodes to request channel access from their neigh-
bors and carries a test data segment for calculating the BER. After receiving the RTS packet,
the neighbor node calculates the BER through the test data segment and writes the result to
the corresponding field of the CTS packet.

CTS: Neighbors send CTS packets to the sending node simultaneously at the beginning
of the slot to confirm that they have received the RTS packet. To avoid multiple CTS packets
colliding at the sending node, each neighbor node uses different subcarrier frequency bands
to transmit CTS packets.

DATA: In addition to the payload to be transmitted, it also contains routing information
such as the destination address and receiving address, as well as additional information
such as the V-value and residual energy.

ACK: After the receiving node successfully receives the DATA packet, it sends an
ACK packet to confirm receipt of the data and provides feedback about its own status
information to the sending node.

4.5. Overview of CLCQ

The process of the CLCQ protocol is shown in Algorithm 1. The main steps of the
CLCQ algorithm are outlined below:
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(1) Initialize the network: Set parameters such as node coordinates, Q-values, V-values,
communication range, maximum buffer length, and initial energy.

(2) Broadcast beacon: Obtain the status information of neighbor nodes, such as the
residual energy, current buffer state, and locations.

(3) Send RTS: Broadcast RTS packet with a test data segment. After receiving the RTS
packet, the neighbor node uses the test data segment to calculate the BER and writes
the result to the CTS packet.

(4) Receive CTS packets from neighbor nodes.
(5) Determine the forwarding candidate set: Select based on node depth, remaining

energy, and buffer state.
(6) Calculate the Q-values of all nodes in the forwarding candidate set.
(7) Select the node with the highest Q-value as the next hop, update the V-value, and

then proceed with the data packet transmission.
(8) Determine if the sink node has received the data packet: If the sink node has received

the data packet, the process ends; if not, repeat steps (3) to (7) until the sink node
receives it.

Algorithm 1 CLCQ Algorithm

1: Initialize network;
2: Broadcast beacon;
3: Get Eres, Bu f f now, Bu f f max, and the location of neighbors;
4: Begin
5: If (node ni ! = sink node) then
6: Send RTS;
7: Receive CTS;
8: Select forwarding candidate set;
9: While the next hop is not found do

10: For nj ∈ candidateSet do
11: Calculate the reward function Rij;
12: Calculate the action-utility function Q*(si, ai);
13: End for
14: Select nj with the max Q*(si, ai) as the next hop;
15: Update the V(si) of ni with max Q*(si, ai);
16: End while
17: Packet transmission;
18: Receive ACK;
19: End if
20: End

5. Simulation Results and Performance Analyses

This section simulates the CLCQ in three aspects. Firstly, the convergence speed
is compared with that of QELAR. Subsequently, the impact of varying parameters on
the CLCQ is assessed. Finally, the four performance indicators of energy consumption,
residual energy variance, average end-to-end delay, and PDR are compared with QELAR
and GEDAR.

5.1. Simulation Setting

The simulation model is a network structure including one source node, one des-
tination node, and multiple relay nodes. The three-dimensional coverage water area is
3000 m * 3000 m * 1000 m, and the relay nodes are randomly deployed. The packet is
generated by the source node and sends it at a time. Other parameters are shown in Table 2.
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Table 2. The simulation parameters.

Simulation Parameters Values

Transmission range 1000 m
Frequency 9.75 kHz

Receiving power 0.6 W
Idle power 1 mW

Transmission rate 2 kb/s
Data packet size 512 bit

Energy initialization of nodes 1000 J
The number of nodes [50,60,70,80,90,100]

5.2. Performance Evaluation of CLCQ

The V-value of the source node is employed to assess the depth of its comprehension
of the network topology and the accuracy of its prediction of the optimal global path. When
the V-value of the source node is observed to be stable or to exhibit a convergence trend,
it can be inferred that the node has learned a relatively accurate optimal path selection
strategy, resulting in a stable state of transmission efficiency and performance for the
routing protocol within the network. Figure 8 illustrates the evolution of the V-value of the
source node following the transmission of each packet in a network comprising 60 nodes.
A comparison of the V-value change observed in this protocol with that observed in the
QELAR protocol reveals several significant differences.
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Figure 8. V-value of the source node.

With the continuous transmission of data packets, the V-value experiences a sharp
decline and then gradually slows down, which suggests that the protocol progressively
identifies the optimal route based on the current environmental conditions. In contrast, the
V-value of QELAR slows down when the 20th packet is sent, while the speed of this protocol
begins to slow down when the 6th packet is sent. This suggests that the protocol converges
more quickly than QELAR. This rapid convergence is attributed to the optimization strategy
employed by this protocol before data packet transmission. The forwarding candidate set
is determined based on node depth, residual energy, and buffer state. By filtering the set of
node neighbors, unnecessary exploration is reduced, thereby accelerating the convergence
speed of the algorithm. This strategy not only enhances the efficacy of routing selection but
also optimizes the performance of the entire network, thereby conferring upon the protocol
enhanced adaptability and stability in a dynamic network environment.

Figures 9 and 10 illustrate the impact of varying φen1 and φen2 on the total energy
consumption and residual energy variance when 60 nodes are deployed in the network.
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Firstly, it can be observed from Figure 9 that, as the value of φen2 increases, the total energy
consumption displays an upward trend. Furthermore, it can be seen that, as the value of
φen1 increases, the energy consumption also increases, although the overall change is not
significant. As the value of φen2 increases, the network is more likely to select a node with
a significant discrepancy between its residual energy and the average residual energy of its
neighbors as the next hop node. This choice increases the transmission path length, thereby
raising the overall energy consumption. This heightened energy consumption indicates
that the network may be compromising some energy efficiency in pursuit of a balanced
energy distribution.
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Figure 9. Total energy consumption under different φen1 and φen2 values.
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Figure 10. Residual energy variance under different φen1 and φen2 values.

Figure 10 illustrates the trend of residual energy variance. As the values of φen1 and
φen2 increase, the residual energy variance of the network gradually decreases. For instance,
when φen1 = 1 and φen2 = 0.9, the residual energy variance is only 28.87% of that when
φen1 = 0.1 and φen2 = 0.1. This is because the proportion of energy consumption in the
reward function increases, rendering the residual energy of the node a crucial factor in
routing selection. When φen2 increases, the network will select a node with a significant
discrepancy between the residual energy of its neighbors and its residual energy. This
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approach helps to achieve a balanced distribution of energy, thereby reducing the residual
energy variance. On the other hand, when φen1 increases, the network is inclined to select
nodes with a considerable residual energy, which also serves to diminish the residual
energy variance. Consequently, the residual energy variance of nodes gradually tends to
become balanced over time following multiple packet transmissions.

In conclusion, by modifying the values of φen1 and φen2, a trade-off between network
energy consumption and residual energy balance can be achieved. While increasing these
two parameters can reduce the variance of residual energy and promote the balanced
distribution of energy, it will also increase the total energy consumption of the network.
Consequently, in practical applications, it is necessary to select reasonable values for these
two parameters based on the specific needs and objectives of the network to achieve optimal
network performance.

Figure 11 illustrates the impact of varying φt, α1, and α2 on the average end-to-end
delay when 100 nodes are deployed in the network. Under the configuration of φt = 1,
α1 = 0.9, α2 = 0.1, the average end-to-end delay is 76.78 s. In contrast, when φt = 0.1,
α1 = 0.1, and α2 = 0.9, the average end-to-end delay is 85.78 s, which is approximately 9 s
shorter than that of the latter. The results illustrate that, by adjusting the values of φt, α1,
and α2, the network delay can be effectively reduced and the network performance can
be optimized. Firstly, an increase in the value of φt makes the protocol more inclined to
select those nodes with a lower latency when choosing the next hop node, and consciously
avoid the congestion area. This is because the time required for multiple retransmissions
caused by congestion is considerably longer than the time required for a successful single
transmission, indicating that congestion has a more significant impact on the network.
Furthermore, while maintaining φt constantly, increasing α1 can more effectively avoid
severely congested neighboring nodes. This strategy facilitates a reduction in the number
of packets that must traverse the congested area, thereby reducing the average end-to-end
delay of the entire network.
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Figure 11. Average end-to-end delay under different φt, α1, and α2 values.

Figure 12 illustrates the impact of varying φq and φt values on PDR when 60 nodes
are deployed in the network. Firstly, an increase in φq means that the protocol is more
inclined to select nodes with a lower bit error rate as the next hop. A reduction in the bit
error rate will lead to an improvement in link quality and reliability, resulting in fewer
errors and retransmissions during data transmission. This significantly enhances the PDR.
On the other hand, increasing φt tends to cause the protocol to avoid nodes that lead
to multiple retransmissions due to congestion, which also increases the PDR. Although
congestion management is equally important for improving the PDR, the impact of channel
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quality on the PDR seems to be more significant, as illustrated in Figure 12. When φt = 0.1,
as φq increases, the PDR increases more rapidly than when φt = 0.9. This indicates that
channel quality is a more significant factor in this protocol, and its impact on PDR is
more pronounced than that of congestion. Therefore, it is necessary to consider both the
channel quality of physical layer and the congestion degree of the link layer in cross-layer
design. Such a design can optimize data transmission in different network environments,
significantly improving communication reliability and packet delivery rates.
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5.3. Performance Comparisons

Figure 13 illustrates the total energy consumption of the proposed CLCQ, as well
as QELAR and GEDAR, under varying numbers of nodes. It is evident from the data
that, as the number of network nodes increases, the total energy consumption of this
protocol and QELAR nodes exhibits a downward trend, while the energy consumption
of GEDAR shows a slight increase but remains relatively consistent. Once the number of
nodes exceeds 70, the energy consumption advantage of this protocol becomes noticeable.
This phenomenon reveals that, as the network size increases, the advantages of this protocol
in energy consumption control become more pronounced. In particular, when there are
90 nodes in the network and both φen1 and φen2 are set at 0.1, the energy consumption of
this protocol is approximately 16.04% and 17.93% lower than that of QELAR and GEDAR,
respectively. This result not only corroborates the efficacy of this protocol in terms of
energy conservation but also highlights its performance advantages, especially in large-
scale networks. This is because the protocol is designed to consider how to reduce energy
consumption by optimizing routing as the network scale expands.

As illustrated in Figure 14, the residual energy variance of the CLCQ, QELAR, and
GEDAR varies with the number of nodes. The selection mechanism of relay nodes in the
GEDAR protocol is primarily dependent on the location information. Consequently, when
node locations do not change significantly over a short period, the network tends to follow
a fixed transmission path. This results in GEDAR having significantly higher residual
energy variance compared to the other two protocols. In contrast, the proposed protocol
and QELAR show superior performance in addressing the residual energy variance. As
the node count grows, the number of next hop nodes available for selection also increases,
thereby providing more routing choices for the protocol. This, in turn, helps to achieve
more uniform energy consumption. Consequently, the residual energy variance of the
two protocols gradually decreases as the number of nodes increases. Furthermore, as
the number of nodes increases, the CLCQ presents a more pronounced advantage in
energy balance and achieves superior energy utilization efficiency. This indicates that
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the protocol proposed in this paper is capable of more intelligent energy consumption
allocation within the network, preventing excessive energy depletion on specific nodes and
thereby enhancing the overall energy utilization efficiency of the network.
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Figure 15 depicts the average end-to-end delay of the CLCQ under varying numbers
of nodes, with comparisons made to QELAR and GEDAR. It can be observed that the
average end-to-end delay of all protocols decreases as the number of nodes increases. This
is because an increase in node density allows the network to identify a path with fewer
hops between the source and destination nodes, thereby reducing delay. Furthermore,
GEDAR does not consider the issue of congestion, resulting in a significantly longer end-
to-end delay than the other two protocols. In the case of a small number of nodes, the
average end-to-end delay of QELAR is observed to be shorter than that of the CLCQ.
Nevertheless, as the number of nodes increases, the delay gap between the CLCQ and the
QELAR protocol begins to narrow. Once the network reaches a certain scale, the CLCQ
exhibits a lower average end-to-end delay than QELAR. This indicates that, as the network
scale expands, the CLCQ exhibits enhanced adaptability and superiority in addressing
congestion, selecting routing, and optimizing data transmission paths. The advantage of the
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CLCQ is that it fully considers the channel quality of the physical layer and the congestion
of the data link layer in the protocol design. By dynamically evaluating the BER of links
and the buffer state of nodes, the CLCQ can effectively avoid congested areas and select
more reliable links, thereby reducing the number of retransmissions in data transmission
and the delay caused by congestion. Therefore, the design of the CLCQ improves packet
transmission efficiency while reducing end-to-end delay, which validates its contribution
to improving communication performance in dynamic network environments.
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Figure 16 illustrates the PDR of each routing protocol under varying node counts. As
the number of nodes increases, the PDR of all protocols improves. For GEDAR and QELAR,
an increase in node count means that more nodes participate in the routing process, which,
in turn, improves the PDR. Nevertheless, the protocol proposed in this paper exhibits a
more pronounced advantage in terms of PDR. This advantage is not solely attributable to
the increased route selection opportunities afforded by the increase in the number of nodes.
It also benefits from the cross-layer mechanism of protocol design. In the event of a high-
quality channel between nodes, there is a greater probability of the nodes being selected as
the next hop, thereby reducing the occurrence of transmission failures due to unreliable
channels. At the same time, the CLCQ effectively avoids congested links and further
improves the PDR. For instance, at a node count of 90, the PDR of QELAR is 78.71%, while
that of GEDAR is 86.93%. When φq = 0.9, the PDR of the CLCQ is 97.02%. Because GEDAR
has shortcomings in network congestion management, QELAR’s assessment of channel
quality is not comprehensive enough, and the CLCQ is better at solving these problems.

Figures 13–16 provide a comprehensive evaluation of the four key indicators of the
CLCQ, with a comparison to QELAR and GEDAR. In terms of energy consumption,
once the network node count surpasses 60, the CLCQ’s energy consumption advantage
becomes apparent, especially in large-scale networks. Although the CLCQ initially shows
a marginally higher average end-to-end delay compared to QELAR, this gap narrows as
the number of nodes increases, as illustrated in Figure 15. At a certain point, the CLCQ
reaches the lowest average end-to-end delay. Additionally, the CLCQ presents outstanding
results with respect to the crucial metric of the PDR, with a significantly higher success rate
than that of QELAR and GEDAR. Overall, the protocol proposed in this paper is the most
balanced of the three protocols.
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5.4. Summary and Discussion

The simulation results in Sections 5.2 and 5.3 show the effectiveness of the CLCQ
design. First, the forwarding candidate set selection method proposed in Section 4.2,
which comprehensively considers node depth, residual energy, and buffer state, reduces
the exploration of invalid nodes and significantly speeds up the convergence rate of the
algorithm. As shown in Figure 8, the convergence rate of the CLCQ is notably faster than
that of QELAR, proving the contribution of this method to improving the overall efficiency
of the protocol.

Second, Figures 9–12 highlight the necessity of the reward function design. The
reward function in Section 4.3 accounts for not only channel quality (BER) but also node
residual energy and buffer state. As shown in Figures 9 and 10, despite the increase in
energy consumption, the residual energy distribution is more balanced, indicating the
effectiveness of energy-related rewards. Figures 11 and 12 further illustrate that the reward
function based on channel quality and congestion effectively reduces end-to-end latency
and improves the PDR.

Finally, the comparison of the CLCQ with QELAR and GEDAR (Figures 13–16) shows
that the CLCQ has clear advantages in energy consumption control, delay reduction, and
delivery rate improvement in large-scale networks. This is primarily due to the cross-layer
design presented in Section 4.1, which enhances transmission reliability and efficiency by
dynamically evaluating channel quality and buffer state.

6. Conclusions

The objective of this study was to propose a novel cross-layer routing protocol, desig-
nated as the CLCQ. The actual channel impulse response is calculated by using the winter
sound velocity profile data from a specific sea area. Subsequently, the underwater acoustic
channel is incorporated into the OFDM communication system, and the channel quality
is evaluated by calculating the bit error rate, which is then applied to the protocol design.
Furthermore, this paper proposes an optimized forwarding candidate set selection method
that accelerates the convergence speed of the reinforcement learning algorithm, thereby
further enhancing the overall performance and efficiency of the routing protocol.

The CLCQ effectively integrates the information from the physical layer and data
link layer to intelligently select the next hop node. To guarantee the reliability of data
transmission, this study devised a reward function based on a reinforcement learning
algorithm. This function considers various factors, including channel quality, buffer state,
and residual energy, in order to select the optimal route for forwarding data packets.
Consequently, the CLCQ circumvents congestion areas while selecting high-reliability links.
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The results of the simulation present that the PDR of the CLCQ is markedly enhanced
compared to the traditional underwater acoustic routing protocols.

However, some unresolved issues remain in this study. For instance, the BER utilized
in the protocol design is calculated under the deterministic communication system, without
considering different communication environments.
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