

 applsci-14-09867

applsci-14-09867

Appl. Sci. 2024, 14(21), 9867; doi:10.3390/app14219867

Article

Concurrent Access Performance Comparison Between Relational Databases and Graph NoSQL Databases for Complex Algorithms

Elena Lupu *, Adriana Olteanu * and Anca Daniela Ionita

Faculty of Automatic Control and Computer Science, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania

*

Correspondence: elena.lupu@stud.acs.upb.ro (E.L.); adriana.olteanu@upb.ro (A.O.)

Citation: Lupu, E.; Olteanu, A.; Ionita, A.D. Concurrent Access Performance Comparison Between Relational Databases and Graph NoSQL Databases for Complex Algorithms. Appl. Sci. 2024, 14, 9867. https://doi.org/10.3390/app14219867

Academic Editor: Grigorios Beligiannis

Received: 17 September 2024 / Revised: 22 October 2024 / Accepted: 25 October 2024 / Published: 28 October 2024

Abstract

:

Databases are a fundamental element of contemporary software applications. The most widely used and recognized type in practice is the relational database, valued for its ability to store and organize data in tabular structures, its emphasis on data consistency and integrity, and its use of a standardized query language, SQL. However, with the rapid increase in both the volume and complexity of data, relational databases have recently encountered challenges in effectively modeling this expanding information. To address performance challenges, new database systems have emerged, offering alternative approaches to data modeling—these are known as NoSQL databases. In this paper, we present an indoor navigation application designed to operate on both a relational database, Microsoft SQL Server, and a graph-based NoSQL database, Neo4j. We describe the algorithms implemented for testing and the performance metrics analyzed to draw our conclusions. The results revealed Neo4j’s strength in managing data with complex relationships but also exposed its limitations in handling concurrent access, where SQL Server demonstrated significantly greater stability.

Keywords:

graph database; Neo4j; relational database; SQL Server; performance; complex queries; concurrent access

1. Introduction

The selection of an appropriate database management system is crucial for the efficient execution of complex algorithms and the management of concurrent access in modern applications. Relational databases have long been the cornerstone of data storage systems, valued for their structured data models, adherence to the atomicity, consistency, isolation, and durability (ACID) principles, and advanced query optimization methods [1]. However, as data relationships become more complex and the demand for real-time analytics grows, graph NoSQL [2] databases have gained traction as a powerful alternative. These databases are specifically designed to manage highly interconnected data, making them ideal for use cases such as social networks, recommendation engines, and knowledge graphs.

Some studies have compared the performance of relational databases and graph NoSQL databases, especially in the context of executing complex algorithms and handling high levels of concurrent access. Research has shown that while relational databases excel in scenarios involving structured data and complex join operations, they often struggle with the computational overhead of navigating intricate relationships within the data. Conversely, graph NoSQL databases [3], with their native support for graph traversal algorithms, can significantly reduce the complexity and execution time for such tasks, though they may present challenges in terms of consistency and transaction management under concurrent access.

The ability to manage massive concurrent access is a crucial criterion when selecting the right database, as most modern applications are designed to be accessed by millions of users simultaneously and must respond to all requests in real time. Without an effective management system, any application would struggle to fulfill its purpose under the strain of multiple users. One way to leverage the strengths of graph NoSQL databases while mitigating its weaknesses in concurrent access is to use a combination of SQL and NoSQL in the application’s architecture. This approach allows for both stability and flexibility.

This paper aims to contribute to the ongoing debate by providing a comprehensive performance comparison between relational databases and graph NoSQL databases, focusing on their ability to handle complex algorithms and manage concurrent access, using a building navigation application as a case study. The application provides pedestrians with real-time directions about their navigation routes [4].

While numerous comparisons have already been made between these two technologies, it is essential to delve deeper by providing fresh perspectives and conducting hands-on experiments that database architects and developers can benefit from. These experiments should thoroughly evaluate key performance metrics such as response time, CPU consumption, and memory utilization. By analyzing these factors, database designers can make more informed decisions tailored to the specific demands of their applications, ensuring optimal efficiency and performance under real-world conditions. This comprehensive approach goes beyond theoretical comparisons, offering practical insights crucial for fine-tuning database systems. The paper proceeds by outlining the related work in Section 2, followed by an in-depth explanation of the methodology in Section 3, covering key aspects such as the databases used, the application environment, the algorithms employed, and the performance metrics chosen for evaluation. In our study, we used an application simulating an indoor navigation system as the testing subject for comparing the two databases. This system incorporates a graph structure and uses the Dijkstra algorithm to compute the shortest paths. Section 4 presents multiple testing scenarios designed to simulate simultaneous user requests within the navigation system. These scenarios were carefully structured to assess how each database performs under varying levels of request complexity. Tests were categorized from the simplest to the most computationally demanding tasks, allowing us to observe the databases’ behavior in diverse conditions. In Section 5, we present the performance outcomes, detailing how each system handled the defined tasks. Lastly, in Section 6, we conclude with our observations and final thoughts based on the analysis of the results.

2. Related Work

Researchers have extensively examined the performance differences between relational and NoSQL databases, exploring both their overall capabilities and their suitability for various application domains.

In our search, we used as keywords “performance”, “Neo4j”, “graph database”, “relational database”, “concurrent access”, “complex queries", "comparison”, “NoSQL”, “navigation”, and “Dijkstra”, which we considered in relation with to our research, combined using Boolean operators like “AND” and “OR”. Studies have shown that traditional relational databases face challenges in handling high-concurrency workloads, particularly with complex transactions. For instance, Elmasri and Navathe [5] discussed the fundamental principles of relational database management systems and highlighted performance bottlenecks associated with traditional locking mechanisms during concurrent access, which can lead to reduced throughput and increased latency in multi-user environments. In contrast, the emergence of NoSQL databases, particularly graph databases, has prompted investigations into their ability to manage complex queries efficiently. Angles and Gutierrez [6] presented a comprehensive overview of graph database models, noting their advantages in traversing relationships efficiently, which can significantly outperform relational databases for certain query types. Their work laid the foundation for understanding how graph databases handle concurrent access compared to their relational counterparts.

Taipalus [7] conducted a systematic literature review on database management system (DBMS) performance comparisons, compiling and analyzing existing research to provide a comprehensive overview of the field. This review aimed to assess how different DBMSs, including both relational and NoSQL systems, have been evaluated in terms of performance. By systematically examining past studies, the authors sought to identify common methodologies, benchmarks, and metrics used to compare databases. Another literature review, [8], highlighted the strength of the NoSQL databases and how they set them apart from the rigid relational ones through their flexible structure, but also their weaknesses, concluded that they are not a replacement for SQL databases. Several researchers have conducted performance analyses comparing NoSQL databases with traditional relational databases, particularly focusing on their effectiveness for application data storage [9]. The paper [10] compared SQL databases with NoSQL graph databases, particularly in the context of physical database tuning techniques. In these studies, SQL databases, which rely on structured schemas and relational models, are analyzed for how tuning methods—such as indexing, partitioning, and query optimization—affect performance. These physical tuning techniques are crucial for improving efficiency in handling complex queries and large datasets. In contrast, NoSQL graph databases, like Neo4j, excel in managing and querying highly interconnected data, such as social networks or recommendation systems. Other scientific papers have explored the performance of graph and relational databases when handling complex queries, providing valuable insights into their comparative strengths and weaknesses [11]. The authors of [12] wrote a technical report presenting a comprehensive comparison between graph databases, like Neo4j, and relational databases, such as MySQL, focusing on their performance across various types of queries. These studies emphasize the structural differences between the two, with Neo4j utilizing graph structures—nodes, edges, and properties—to represent data, while MySQL relies on tables and defined relationships. The research [13] focused on the architecture and performance characteristics of graph databases under concurrent workloads. Their findings suggest that graph databases like Neo4j outperform relational databases in scenarios involving complex, highly interconnected datasets. However, they also noted that the performance gains from concurrent access are dependent on the workload type and the underlying database architecture.

In conclusion, the existing research indicates that the choice between relational and graph NoSQL databases should be driven by the specific needs of the application, particularly in terms of the complexity of data relationships, the nature of the algorithms to be executed, and the required level of concurrency and consistency. This paper extends the current body of knowledge by providing a detailed performance comparison between these two database models, focusing on their efficiency in handling complex algorithms and managing concurrent access.

3. Methods

3.1. Databases Used

As working databases, we used Microsoft SQL Server 2019 as the relational database and Neo4j 5.12.0 as the graph NoSQL database.

To model the points and their relationships, we organized the data in the databases as shown in Figure 1. In Neo4j, each node represents a room, elevator, or staircase, and is identified by a unique name. Each relationship represents a path between rooms and includes a weight property. Since paths are assumed to be bidirectional, we created two relationships for each path, as graph database relationships are inherently unidirectional. For SQL Server, we established two tables: one to store node information, such as name and type (room, elevator, or stairs), and another to represent the relationships between these nodes.

The resulting graph contains approximately 80 nodes, which is a relatively small number compared to the potential number of nodes in real-world applications, where thousands could be used. The data in both databases was manually entered based on the building schema that forms the foundation of our navigation application. However, to accelerate the process—particularly for experiments involving a larger number of nodes—scripts or stored procedures could be used for automated data generation. Regardless, the databases can still be created quickly, typically within minutes.

3.2. Application

The application used to test the two databases was designed to simulate an indoor navigation system, allowing users to select a starting point, a destination, and optionally additional points to either pass through or avoid. It was developed following the model–view–controller (MVC) architecture, utilizing a .NET Framework backend and a frontend built with JavaScript and the React.js library.

The application includes the core features of a navigation system, as is seen in Figure 2, but for the purpose of our study, we implemented additional functionalities to gather detailed information for each run. These enhancements include a display at the bottom of the map showing response time, CPU usage, memory usage, and the selected database. We also added an option for users to choose which database to use and a dedicated page for viewing the history of runs along with statistics. For each run, the server receives parameters such as the starting point, destination, points to avoid, and additional points to visit. Based on the user’s database selection, the server connects to the appropriate database and executes a query to retrieve the path and its total weight.

In SQL Server, a stored procedure is called to retrieve the results, whereas in Neo4j, the logic is embedded directly within the C# code, integrating C# logic with Cypher queries, since Neo4j lacks a stored procedure mechanism similar to that in relational databases. Afterward, performance metrics are calculated, and the results are logged, from which the history and statistics are later extracted.

3.3. Algorithms Implemented

To calculate the shortest path between the selected points, the Dijkstra algorithm was employed as it is the most widely used pathfinding algorithm. It solves the single-source shortest-paths problem on a weighted graph G = (V, E) for the case in which all edge weights are nonnegative [14]. However, since the application allows users to add additional points to the path, the algorithm had to be adapted to handle all possible scenarios. Dijkstra’s algorithm is designed to compute the shortest distance between two points, but it does not account for situations where points need to be avoided or added as waypoints, requiring additional code modifications. In Neo4j, the Graph Data Science plugin [15] offers a built-in implementation of Dijkstra, which was used to simplify the query. For SQL Server, the algorithm had to be manually implemented.

In cases where there are no intermediate points, the Dijkstra algorithm can be executed without any additional modifications, as illustrated in the pseudocode in Algorithm 1. Virtual graphs or tables were utilized in this scenario because they are easier to manage and do not impact the original database or its performance. If the user wishes to avoid certain points, these can simply be excluded when constructing the virtual graph or table.

	
Algorithm 1 Path finding without intermediate points

	
1:

	
Input: start the starting point, finish the finish point, noStairs the “NoStairs” filter,

	

	
avoidedPoints the vector of avoided points

	
2:

	
Output: Path and Weight

	
3:

	
if (a complete map or one with only the noStairs filter applied is used) then

	
4:

	
    if (virtual graph/temporary table does not exist) then

	

	
        //Check if the virtual graph/temporary table already exists in

	

	
        memory

	
5:

	
        Create the corresponding one

	
6:

	
    end if

	
7:

	
else

	

	
    //There are avoided points

	
8:

	
    Create virtual graph/temporary table that excludes the avoided points

	
9:

	
end if

	
10:

	
[tr, weight] = Apply Dijkstra

	
11:

	
Path = tr

	
12:

	
Weight = weight

When intermediate points are involved, the pathfinding algorithm must be executed multiple times. First, the shortest path between the intermediate points must be determined. To increase the complexity, we assumed that the order of visiting the intermediate points does not matter. This means all possible paths connecting the start, intermediate points, and the destination must be calculated and compared to identify the shortest one. The corresponding pseudocode is shown in Algorithm 2.

	
Algorithm 2 Path finding with intermediate points

	
1:

	
Input: start the starting point, finish the finish point, noStairs the “NoStairs” filter,

	

	
avoidedPoints the vector of avoided points, interPoints the vector of intermediate

	

	
points

	
2:

	
Output: Path and Weight

	
3:

	
if (a complete map or one with only the noStairs filter applied is used) then

	
4:

	
    if (virtual graph/temporary table does not exist) then

	

	
        //Check if the virtual graph/temporary table already exists in

	
5:

	
        memory

	
6:

	
        Create the corresponding one

	
7:

	
    end if

	
8:

	
else

	

	
    //There are avoided points

	
9:

	
    Create virtual graph/temporary table that excludes the avoided points

	
10:

	
end if

	
11:

	
if (there are no intermediate points) then

	
12:

	
    Apply Dijkstra

	
13:

	
    Extract Result

	
14:

	
else

	

	
    //Intermediate points are in form of a vector: V = [x1, x2, x3]

	
15:

	
    Weight = 999

	
16:

	
    for (i = 0; i < len(interPoints); i++)

	
17:

	
        [tr, weight] = Apply Dijkstra start – V[0]

	
18:

	
        TempWeight = tr

	
19:

	
        for (i = 0; i < len(interPoints) – 1; i++)

	
20:

	
            [tr, weight] = Apply Dijkstra V[i] – V[i+1]

	
21:

	
            TempWeight += weight

	
22:

	
            TempPath += tr

	
23:

	
        end for

	
24:

	
        [tr, weight] = Apply Dijkstra V[len(interPoints) – 1] – finish

	
25:

	
        TempWeight += weight

	
26:

	
        TempPath += tr

	
27:

	
        if (TempWeight < Weight) then

	
28:

	
            Weight = TempWeight

	
29:

	
            Path = TempPath

	
30:

	
        end if

	
31:

	
        Rotate circularly to the left => V = [x2, x3, x1]

	
32:

	
    end for

	
33:

	
end if

3.4. Performance Metrics

The performance metrics we focused on include response time, CPU usage, and memory usage. These metrics can be calculated after each run for each database, providing insights into performance during runtime. While we plan to use the aforementioned application for measurement, other methods are also available. One alternative is to gather runtime information through the monitoring features of a cloud database service. The local approach, utilizing the application, is particularly beneficial when the database is hosted on the same machine that acts as the server, as it allows for real-time monitoring of resource usage during the algorithm’s execution. Conversely, the cloud approach is more advantageous when the database is located on a different machine than the one running the tests, and when accessing resource usage is not feasible in the same way.

The SQL Server database was hosted on the same machine as the server, while the Neo4j database was located on the AuraDB cloud platform, which runs Neo4j version 5. This choice was primarily driven by the unique characteristics of each database, which necessitated different methods for calculating performance metrics. SQL Server operates directly on the host machine, whereas Neo4j runs through Java Virtual Machine (JVM), leading to variations in CPU usage and memory structure. According to the Neo4j knowledge base [16], memory is organized into two main regions: off-heap and on-heap. On-heap memory refers to the JVM heap, which is responsible for storing runtime data, managing graph transactions, and executing queries. In contrast, off-heap memory includes page-cache memory, which holds graph data, as well as direct memory that contains buffers and internal JVM resources. Attempts to use Neo4j locally did not yield significant results for all performance metrics.

Memory usage displayed a consistent linear pattern, while CPU usage appeared to exceed 100% capacity when the same methods were employed.

The method for measuring time is consistent across both databases and is conducted on the server. We use the C# Stopwatch variable to calculate the difference between the start time—when the user’s request reaches the server—and the finish time—when the result is returned from the database. For memory usage, particularly with SQL Server, we utilized the System.Diagnostics library [17] in C# to retrieve the amount of memory used by the database during the query execution. In the case of Neo4j, AuraDB provides the capability to monitor the heap memory utilized during query execution.

To compute CPU usage, a more complex formula is required since calling a function from System.Diagnostics alone is insufficient. We employed the PerformanceCounter class from System.Diagnostics to obtain the percentage of total time during which all processes utilize the CPU. Subsequently, we selected all processes associated with the desired database using the Process class, also from System.Diagnostics, and computed the total time for these processes. The final CPU usage percentage was calculated using Equation (1). This method was applied only to SQL Server. For Neo4j, since the database is hosted on a cloud platform, it was not feasible to perform calculations on the test machine, and the results were obtained directly from AuraDB.

 c p u _ % u s a g e = e x e c u t i o n _ t i m e × p r o c e s s e s _ t o t a l _ t i m e i n t e r e s t _ p r o c e s s e s _ t i m e

(1)

3.5. Machine Specifications

	
Operating system: Microsoft Windows 11;

	
Processor: Intel Core i9-10885H CPU @ 2.40 GHz, 8 cores, 16 logical processors;

	
RAM memory: 32 Gb.

These conditions are outlined here to provide context for how the databases were created and the algorithms were executed. To replicate this experiment, a less powerful machine can be used, provided it meets the minimum requirements for running the databases.

4. Testing Scenarios

For testing purposes, we utilized Apache JMeter, version 5.6.3, a software tool that enables the creation of test plans to simulate simultaneous requests from multiple users. Each scenario comprises a thread group, where the number of simulated threads can be specified, an HTTP Request that defines the protocol, URL path, request type, and parameters, and a results list that allows for the analysis of each thread’s response. The parameters for each thread are assigned using randomly generated variables.

In this study, we developed two test plans—one for each database—with 50 threads simulated concurrently and seven randomly generated variables, including the starting point, finish point, two points to avoid, and three intermediate points. To maximize the coverage of scenarios, we established five test cases: one involving manual execution multiple times, and four utilizing the Apache JMeter test plans described above, each with different parameter configurations:

	
Starting point, finish point, and three intermediate and two avoided points;

	
Starting and finishing points (with no intermediate or avoided points);

	
Starting and finishing points, with only one intermediate point;

	
Starting and finishing points, with two avoided points.

It is important to note that the tests were run multiple times before drawing any conclusions. This was carried out to validate the methods used to calculate the performance metrics and to eliminate any possibility of interference that could impact the final results.

5. Results

For each run of the application, whether manually from the browser or through Apache JMeter, the response time was calculated and recorded in the server’s response sequence. The output data were written into the logs, which were ultimately used to draw the graphs in the statistics section of the application, as seen in Figure 3 and Figure 4.

To generate the memory usage graphs that can be seen in Figure 5 and Figure 6, the same method used for tracking response time was applied for SQL Server. However, for Neo4j, since the instance was not hosted on the testing machine, the graph was obtained directly from AuraDB’s monitoring tool. For SQL Server, the machine’s overall memory was measured, while for Neo4j, the JVM heap memory was monitored throughout the tests.

An important point to note is that when the Neo4j database received multiple complex requests simultaneously—each requiring paths with several intermediate and avoided points—it ultimately failed to respond and crashed with an OutOfMemory error. This type of error warrants special attention, as it is a common issue encountered with Neo4j. Notably, AuraDB provides a dedicated monitoring tool for this purpose, as shown in Figure 7. The heap memory allocated by the JVM is set by default based on the host machine’s resources, but it does not account for scenarios where the database is frequently accessed concurrently. In such cases, the recommended solutions are to either increase the memory resources of the machine or modify the neo4j.config file to manually allocate additional heap memory for transaction executions.

The CPU usage for both databases was monitored in the same way as memory usage. The results can be seen in Figure 8 and Figure 9 In the case of Neo4j, the 100% spike indicates the moment when the instance was overwhelmed by requests, leading to a crash with an OutOfMemory error.

6. Discussion

Figure 3 provides a detailed illustration of the response times for SQL Server, showcasing how these times vary depending on the length of the computed path. This variation clearly demonstrates the direct influence of the number of iterations required by the Dijkstra algorithm. As additional intermediate points are introduced along the path, the response time increases noticeably due to the need for multiple executions of the algorithm. Furthermore, data from manual testing by individual users reveal that SQL Server consistently maintains a stable average response time, even when handling concurrent requests from multiple users. Conversely, Figure 4 displays the response times for Neo4j, which are markedly higher than those of SQL Server, particularly under conditions where multiple users are simultaneously accessing the system. This stark difference in performance underscores how the complexity of the underlying algorithms can significantly impact the application’s overall responsiveness. Such a factor is especially critical in scenarios where timely responses are essential for the user experience or system efficiency.

Figure 5 illustrates the memory usage pattern for SQL Server, showing a steady increase during operation, particularly when requests involve avoided points. This increase is due to the creation of additional virtual tables for each user, leading to progressively higher memory consumption. In contrast, Figure 6 presents the memory usage data for Neo4j running on AuraDB. The graph reveals that Neo4j’s heap memory usage fluctuates significantly, ranging from 25% to 75%, on a system equipped with 8 GB of RAM and 2 CPUs. Despite the relatively small dataset involved, this variation suggests that Neo4j is noticeably more resource-intensive than SQL Server. This finding highlights Neo4j’s greater demand for hardware resources, which becomes a crucial consideration in resource-constrained environments where efficient memory and CPU usage is essential for maintaining performance.

The CPU performance results bring the OutOfMemory issue into even sharper focus. As shown in Figure 8, SQL Server maintains remarkable stability, even under the heaviest workloads, with CPU utilization never exceeding 1.5%. This stability stands in stark contrast to Neo4j, which, as depicted in Figure 9, experiences a sudden and dramatic spike in CPU usage, reaching 100%. This spike directly precedes the machine running Neo4j crashing, making it clear that the database struggles with high loads. To complete all tests, we were forced to reduce the number of simulated threads for Neo4j to just 30. This behavior reveals a significant vulnerability of Neo4j when it comes to handling concurrent user access, which poses a major limitation for using the database in environments with multiple simultaneous users. While increasing hardware resources could theoretically address some of these issues, such an approach may be impractical in real-world applications where graphs may contain thousands of nodes and relationships and where hundreds of users may access the system simultaneously. Scaling resources to meet these demands would not only be costly but also potentially hindered by hardware limitations. Additionally, providing prompt responses to all users is critical in modern applications. A server crash resulting in lost connections and unanswered queries is unacceptable. The findings from this experiment clearly demonstrate that Neo4j’s inability to handle concurrent access reliably makes it unsuitable for scenarios where multiple users need to interact with the database simultaneously.

These findings emphasize that, in real-world scenarios, there is no universal solution for data storage. The optimal choice of database technology is highly dependent on the specific requirements of the application. In some instances, a hybrid approach—leveraging multiple database systems—can be particularly advantageous. This strategy allows for more efficient management of data storage and relationships, while also catering to varied needs such as generating statistical reports, conducting data analytics, or tracking user activity. Relational databases are known for their robustness and stability, especially when dealing with structured data and complex queries. However, NoSQL databases offer a level of flexibility that complements the more rigid structure of relational databases, making them well-suited for handling unstructured or semi-structured data. This flexibility can help address certain limitations inherent to traditional relational models, such as scalability or adaptability in dynamic environments. By combining the strengths of both relational and NoSQL systems, developers can better meet the diverse demands of modern applications, ensuring more comprehensive and efficient data management.

7. Conclusions

In conclusion, we evaluated the performance of two widely used database systems—one relational and one graph NoSQL—by examining their capabilities in handling concurrent access and executing complex queries within a test application.

Neo4j, a graph NoSQL database, excels at simplifying data modeling and query writing, particularly through its available plugins, which reduce the need for manual coding. This ease of integration, especially between Cypher queries and C# logic, makes Neo4j highly suitable for applications requiring sophisticated relationship analysis. However, its tendency to produce OutOfMemory errors and its high resource demands can limit its viability in environments that require extensive concurrent access. Despite these challenges, Neo4j remains a strong option for use cases involving large, interconnected datasets—such as recommendation systems or fraud detection—explaining its growing popularity in these fields.

On the other hand, Microsoft SQL Server, a relational database, has proven to be a highly resilient and reliable system, capable of managing complex stored procedures and supporting a high number of concurrent users efficiently. Its robustness in handling multiple simultaneous requests contributes to its continued dominance as one of the most commonly used database systems in enterprise environments.

By addressing both the strengths and limitations of these databases, we provide clearer guidance for selecting the appropriate system based on the specific needs of the application.

For future research, it is essential to expand the scope by exploring the behavior of storage systems in a wider range of contexts. Studies should adopt diverse methodologies to evaluate how these systems perform across various environments, such as mobile applications, different programming languages, and a variety of application types with distinct requirements. This broader investigation would provide a more comprehensive understanding of database performance in real-world scenarios.

Moreover, further research should delve into the performance of databases within distributed systems, where data are stored and managed across multiple instances. Such an investigation would offer valuable insights into how different database technologies handle decentralized frameworks, particularly in terms of synchronization, consistency, fault tolerance, and scalability. By focusing on these areas, future studies can shed light on the potential strengths and limitations of various storage solutions in complex, distributed infrastructures.

Author Contributions

Conceptualization, E.L., A.O. and A.D.I.; methodology, E.L., A.O. and A.D.I.; software, E.L.; validation, E.L. and A.O.; investigation, E.L.; writing—original draft preparation, E.L.; writing—review and editing, E.L. and A.O.; supervision, A.O. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding authors.

Conflicts of Interest

The authors declare no conflicts of interest.

References

	

Transact-SQL Reference (Database Engine). Available online: https://learn.microsoft.com/en-us/sql/t-sql/ (accessed on 3 June 2024).

	

Oracle. 17 Use Cases for Graph Databases and Graph Analytics. Available online: https://www.oracle.com/a/ocom/docs/graph-database-use-cases-ebook.pdf (accessed on 13 September 2024).

	

Webber, J. The Top 10 Use Cases of Graph Database Technology, Unlock New Possibilities with Connected Data. Available online: https://go.neo4j.com/rs/710-RRC-335/images/Neo4j-Top-10-Use-Cases-EN-US.pdf (accessed on 13 September 2024).

	

Damian, I.; Ionita, A.D.; Anton, S.O. Community- and Data-Driven Services for Multi-Policy Pedestrian Routing. Sensors 2022, 22, 4515. [Google Scholar] [CrossRef] [PubMed]

	

Elmasri, R.; Navathe, S.B. Fundamentals of Database Systems, 7th ed.; Pearson: London, UK, 2015. [Google Scholar]

	

Angles, R.; Gutierrez, C. Survey of graph database models. ACM Comput. Surv. (CSUR) 2008, 40, 1–39. [Google Scholar] [CrossRef]

	

Taipalus, T. Database management system performance comparisons: A systematic literature review. J. Syst. Softw. 2024, 208, 111872. [Google Scholar] [CrossRef]

	

Khan, W.; Kumar, T.; Cheng, Z.; Raj, K.; Roy, A.; Luo, B. SQL and NoSQL Databases Software architectures performance analysis and assessments—A Systematic Literature review. Big Data Cogn. Comput. 2023, 7, 97. [Google Scholar] [CrossRef]

	

Győrödi, C.A.; Dumşe-Burescu, D.V.; Zmaranda, D.R.; Győrödi, R.Ş.; Gabor, G.A.; Pecherle, G.D. Performance Analysis of NoSQL and Relational Databases with CouchDB and MySQL for Application’s Data Storage. Appl. Sci. 2020, 10, 8524. [Google Scholar] [CrossRef]

	

Khan, W.; Ahmad, W.; Luo, B.; Ahmed, E. SQL Database with physical database tuning technique and NoSQL graph database comparisons. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 March 2019; pp. 110–116. [Google Scholar] [CrossRef]

	

Kotiranta, P.; Junkkari, M.; Nummenmaa, J. Performance of Graph and Relational Databases in Complex Queries. Appl. Sci. 2022, 12, 6490. [Google Scholar] [CrossRef]

	

Jain, M.; Khanchandani, A.; Rodrigues, C. Performance Comparison of Graph Database and Relational Database; Technical Report; Computer Science Department, San Jose State University: San Jose, CA, USA, 2023. [Google Scholar] [CrossRef]

	

Robinson, I.; Webber, J.; Eifrem, E. Graph Databases: New Opportunities for Connected Data, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015. [Google Scholar]

	

Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]

	

Neo4j Documentation. Available online: https://neo4j.com/docs/ (accessed on 13 September 2024).

	

Neo4j Knowledge Base. Available online: https://neo4j.com/developer/kb/ (accessed on 3 June 2024).

	

NET API Documentation. Available online: https://learn.microsoft.com/en-us/dotnet/api/ (accessed on 13 September 2024).

[image: Applsci 14 09867 g001]

Figure 1. Database structure for (a) SQL Server database; (b) graph database.

Figure 1. Database structure for (a) SQL Server database; (b) graph database.

[image: Applsci 14 09867 g001]

[image: Applsci 14 09867 g002]

Figure 2. The main page of the application.

Figure 2. The main page of the application.

[image: Applsci 14 09867 g002]

[image: Applsci 14 09867 g003]

Figure 3. SQL response times for the case with (a) no intermediate/avoided points; (b) two avoided points; (c) only one intermediate point; (d) three intermediate and two avoided points; and (e) manual runs.

Figure 3. SQL response times for the case with (a) no intermediate/avoided points; (b) two avoided points; (c) only one intermediate point; (d) three intermediate and two avoided points; and (e) manual runs.

[image: Applsci 14 09867 g003]

[image: Applsci 14 09867 g004a][image: Applsci 14 09867 g004b]

Figure 4. Neo4j response times for the case with (a) no intermediate/avoided points; (b) two avoided points; (c) only one intermediate point; (d) three intermediate and two avoided points; and (e) manual runs.

Figure 4. Neo4j response times for the case with (a) no intermediate/avoided points; (b) two avoided points; (c) only one intermediate point; (d) three intermediate and two avoided points; and (e) manual runs.

[image: Applsci 14 09867 g004a][image: Applsci 14 09867 g004b]

[image: Applsci 14 09867 g005]

Figure 5. SQL memory usage in % for case with three intermediate and two avoided points.

Figure 5. SQL memory usage in % for case with three intermediate and two avoided points.

[image: Applsci 14 09867 g005]

[image: Applsci 14 09867 g006]

Figure 6. Neo4j (AuraDB) heap usage in % during all tests.

Figure 6. Neo4j (AuraDB) heap usage in % during all tests.

[image: Applsci 14 09867 g006]

[image: Applsci 14 09867 g007]

Figure 7. Neo4j (AuraDB) OutOfMemory errors during all tests.

Figure 7. Neo4j (AuraDB) OutOfMemory errors during all tests.

[image: Applsci 14 09867 g007]

[image: Applsci 14 09867 g008]

Figure 8. SQL Server CPU usage for case with three intermediate and two avoided points.

Figure 8. SQL Server CPU usage for case with three intermediate and two avoided points.

[image: Applsci 14 09867 g008]

[image: Applsci 14 09867 g009]

Figure 9. Neo4j (AuraDB) CPU usage during all tests.

Figure 9. Neo4j (AuraDB) CPU usage during all tests.

[image: Applsci 14 09867 g009]

	
	
Disclaimer/Publisher’s Note: The statements, opinions