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Abstract: Due to the limitations of low coverage, high repetition rate, and slow convergence speed
of the basic genetic algorithm (GA) in robot complete coverage path planning, the state transition
matrix of the Markov chain is introduced to guide individual mutation based on the genetic mutation
path planning algorithm, which can improve the quality of population individuals, enhancing the
search ability and convergence speed of the genetic algorithm. The proposed improved genetic
algorithm is used for complete coverage path planning simulation analysis in different work areas.
The analysis results show that compared to traditional genetic algorithms, the improved genetic
algorithm proposed in this paper reduces the average path length by 21.8%, the average number of
turns by 6 times, the repetition rate by 83.8%, and the coverage rate by 7.76% in 6 different work areas.
The results prove that the proposed improved genetic algorithm is applicable in complete coverage
path planning. To verify whether the Markov chain genetic algorithm (MCGA) proposed is suitable
for agricultural robot path tracking and operation, it was used to plan the path of an actual land
parcel. An automatic navigation robot can track the planned path, which can verify the feasibility of
the MCGA proposed.

Keywords: agricultural robots; complete coverage path planning; Markov chain; improve genetic
algorithm

1. Introduction

The development of precision agriculture and intelligent agriculture in agricultural pro-
duction has stimulated people’s interest and research in artificial intelligence and robotics
technology. Agricultural robots can replace humans in agricultural production activities
such as farming, spraying pesticides, fertilizing, and harvesting, which can deal with the
challenge of labor shortages, reduce health risks in agricultural production, and save time
and energy [1]. Agricultural robots need to perform various tasks and operate in complex
environments. Compared to robot paths in the industrial field, agricultural robot operations
require paths that can complete full coverage of the farm area. Considering the impact of
the robot’s operations on crop growth, a low path repetition rate is required. Considering
the operational efficiency of the robot, the number of turns should be reduced in the path.
Thus, the complete coverage path planning algorithm is a key issue and hot topic in the
automatic operation of agricultural robots [2]. Gonzalez et al. [3] proposed an extended
BSA algorithm based on the traditional Backtracking Spiral Algorithm (BSA), which can be
extended to most grid-based overlay algorithms. Reciprocating and spiral coverage are
simple and intuitive, but often limited by specific environments and assumptions, lacking
universality and flexibility. Zhu et al. [4] adopted a combination of bio-inspired neural
networks and grids for complete coverage path planning of underwater robots, which can
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successfully avoid dynamic and static obstacles, but the mode was more complex and the
calculation amount of the algorithm was very large. Li et al. [5] utilized the improved
A* (A-Star) algorithm for complete coverage path planning of the sweeping robot, which
effectively enhanced the operating efficiency of the algorithm and reduced the length and
repetition rate of the path planning. De Carvalho et al. [6] studied cleaning robots and
proposed a template-based method to control path execution, integrating the kinematics
of mobile robots into the path planning process. However, the template method relies
on preset path patterns, lacks flexibility, and is difficult to adapt to complex or irregular
environments, leading to low coverage efficiency. To solve the problem of bulldozers easily
falling into dead zones during unmanned operations, Rao Li et al. [7] added machine
operation rules to the bio-inspired neural network algorithm to reduce path repetition rate,
and used the A * algorithm to help bulldozers quickly escape when the machine is stuck in
dead zones. Gaogao Shang et al. considered the height variation and energy consumption
factors in the full coverage path planning for horticultural tractors in mountainous areas [8].
Selek et al. [9] proposed a traversal algorithm that completely covers the work areas based
on the spanning tree coverage algorithm. However, this method has a high repetition
rate and a high number of robot path turns; Le et al. [10] proposed a low repetition rate
complete coverage path planning algorithm using an ant colony algorithm. However, the
total path planned by this traversal algorithm is relatively long, and it is prone to falling
into dead zones when encountering areas with dense obstacles.

The genetic algorithm (GA) is a well-known, meta-heuristic technique for addressing
static mobile robot global path planning (MRGPP) issues [11]. However, genetic algorithms
have certain shortcomings, such as a simple evolutionary process, inefficient population
initialization, and a lack of prediction for the trend of random event changes. Therefore,
robots with different job requirements will improve their path planning using GA based on
specific operation requirements and environments. In automated guided vehicles (AGV)
path planning by GA, Qihao Liu et al. [12] proposed integrating the shop scheduling
scheme, operation sequencing, and transportation task assignment of vehicles into genetic
factor coding, and designed a neighborhood searching strategy for critical paths to improve
the effectiveness of local path search on AGV. In autonomous underwater vehicle (AUV)
path planning, Kun Hao et al. [13] proposed an adaptive GA for AUV global path planning,
which is used to optimize the global path based on the collision detection mechanism.
Yang Ning et al. [14] proposed a path planning cost function based on the ocean current
model to improve GA for the shortest time required to guide AUVs. In autonomous mobile
robot path planning, Mohd N. Ab Wahab et al. [15] proposed an enhanced GA, a linear rank-
based, or clearance-based, probabilistic road map (CBPRM) technique that overcomes these
shortcomings. The new model guides the population initialization process by using the
fitness score of each cell in the environment, lowering the number of infeasible pathways
created. Zarevich et al. [16] proposed a pathfinding optimization process using GA, and
its evaluation criteria for the path are path length and travel time. Yu-Ju Chen et al. [17]
opposed a path planning algorithm based on the Markov decision process, which is used
for the point-to-point path planning of wheeled robots.

Among the existing agricultural robot or unmanned vehicle full coverage path plan-
ning algorithms, the template method, bio-inspired neural network algorithm, and GA
have advantages, but shortcomings limit their applicability and efficiency in different
operating areas. In the application of GA, the traditional GA performs well in various
optimization problems, but has limitations in solving complete coverage path planning
problems, such as slow convergence speed, easily getting stuck in local optima, sensitive pa-
rameter settings, and low efficiency when dealing with large work areas. Therefore, based
on the traditional GA, the paper introduced the state transition matrix of Markov chains
that can constrain random methods to guide population individuals to mutate, thereby
improving the individual quality of the population, which will enhance the search ability
and convergence speed of the algorithm, and improve the applicability and efficiency of
path planning for different work areas.
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Section 2 is materials and methods including the work area modeling analysis, the
algorithm improvement based on Markov chain, the path evaluation function analysis, and
the design of the path planning algorithm. Section 3 is the simulation analysis and field
experiments. Section 4 is the conclusion.

2. Materials and Methods

This section mainly includes the modeling method for the work area, the improvement
of the genetic algorithm based on Markov chain, the analysis of the path evaluation function,
and the design of complete coverage path planner.

2.1. Modeling Method for Work Area

The grid map method is used to establish a map model of the work area [18]. The
simplicity and intuitiveness of raster maps make the representation and understanding of
spatial data easy and especially suitable for detailed analysis and visualization of spatial
variables such as terrain and landforms. Meanwhile, the regularity and uniformity of raster
data structures make the storage, retrieval, and processing of spatial data more efficient. In
addition, the grid method can flexibly control the accuracy of modeling by adjusting the
grid size. The steps for using the grid method for environment modeling are as follows:

L. Calculate the length and width of the work area based on the coordinates of the
boundary points of the work area.

II.  Using the operating width of agricultural robots as the grid size, divide the map into
multiple grids of the same size.

III.  Represent the position of each grid in latitude and longitude coordinates in the form
of Bi, Li.

IV.  Define the properties of the grid: boundary or obstacle grid (impassable area), unas-
signed grid, and worked grid.

2.2. Improved Genetic Algorithm Based on Markov Chain

John Holland proposed the GA in the early 1970s. The algorithm simulates natural
selection, replication, crossover, and mutation in biological evolution, starting from the
initial population and gradually evolving into individuals that are more suitable for the
environment. Through continuous reproduction and iteration, the algorithm eventually
stabilizes and finds the optimal or approximate solution. However, the algorithm can not
predict the trend of random event changes. In the path planning of agriculture robots, the
convergence speed of algorithms is slow, resulting in a high repetition rate of agricultural
operation paths and low coverage of operations.

The state sequence and transition probability matrix of the Markov chain is used to
predict the future state and change the trend of random events [19]. It is a stochastic process
that describes the transition from one state to another in the state space. In other words, the
probability of the state changing to X at step n + 1 depends only on the state at step n and
does not depend on the states of all steps before step n. The mathematical definition of a
homogeneous Markov chain is as follows:

If {X(n),n=0,1, 2,3, ...} is a discrete state space and has non-negative parameters
(state space is I), then it satisfies the following equation:

Pij = (X(n +1) = jIX(0) = io, X(I) = i1, X(n = 1) = in-y, X(n) = 1),
= P{X(n + 1) = j|X(n) = i}

In Equation (1), {X(n)} is a homogeneous Markov chain, P is the probability of state
transition, and X(n) is the state at time point n.

Based on the current state, the Markov chain prediction predicts future states by the
state transition probability matrix. Therefore, the state transition probability matrix is the
core of the Markov chain prediction. The mathematical expression of the state transition
probability matrix is written as follows:
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Let X = {Xn, n > 0} be a homogeneous Markov chain. The one-step transition proba-
bility matrix is P = (Pj); jes;
Pj = P(X(n + 1) = j|Xu(0) = i) = P(X; = j|Xo = i) (2)
Thus,

P > 0, P =1 ©)

jes
Equations (2) and (3) are the fundamental properties of transition probability matrices.
As shown in Figure 1, the individuals of the population are the set of path points
from the starting point to the target point, and the decimal grid number set is used as the
encoding form of the individuals. For example, an encoded possible solution set can be
represented as: {1,2,3,6,5,4,7,8,9,12, 11, 10}, where 1-10 are all grid numbers.

Grid number 1 ) 3 m-n

Grid features || Finished | | Unfinished |! Unfinished | | Unfinished |
I 2. 2 \ 2 1&___1

Chromosome H 1 | > | 3 | - [ |
_____________________________ |

Figure 1. Gene coding method.

Basic genetic algorithms [20] generate new solutions through gene crossover. Here,
the state transition matrix in the Markov chain is proposed to guide the changes in gene
sequences (solution vectors). The process simulates the mutation and selection process
in genetic algorithms, using constrained random methods to generate new individuals.
Assuming the initial solution setis {1,2,3,6,5,4,7,8,9, 12, 11, 10}, the process randomly
selects a location to slice the solution set and removes the latter half of the solution set. For
example, choosing to slice backward at grid position 4 results in a solution set of {1, 2, 3, 6,
5,4,0,0, 0,0 0, O}. Starting from the fourth grid at the end of the sliced solution set,
it generates subsequent grid numbers as the new solution set. Starting from grid 4, the
reachable grid is {1, 2, 5, 8, 7}. Since grid 5 has already been traversed, to reduce coverage,
the possibility of retroversion grid 5 will not be considered. Therefore, the path reachable
by grid 4is {1, 2, 8, 7}.

As shown in Figure 2, when the robot moves from grid 1 to grid 4 and its current
position is grid 4, to reduce the repetition rate of path planning and improve navigation
efficiency, the specific work rules were set during the calculation of the state transition
matrix: (i) The transition probability from grid 4 to grid 1 is set to 0, which can prevent
the robot from returning to the traversed position; (ii) the transition probability from grid
4 to itself is also set to 0, which can ensure that the robot does not stagnate at its current
position; (iii) the transition probabilities to the other four reachable grids are set to be equal
value, all at 0.25, to ensure that the robot traverses the other areas uniformly.

0.25
2 5 8
0.25 T 0.25

J«——4—1>7
0 0 0.25

Figure 2. Path probability distribution.
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Define the value P(i,j) of matrix P at a certain position P(j/i), which is the probability
of transitioning from state i to state j. Therefore, the state transition matrix is:

025 025 0 025 025
0 0 0 O 0

0
0
0
0 (4)
0
0

o o o o
o o o o
o o oo
o o O O
o o o O

Since the state transition matrix of the Markov chain converges to a stable probability
distribution independent of the initial state probability distribution, the probability matrix
is as follows:

P=[0 025 025 0 025 0.25] (5)

The probability matrix generates the next reachable region based on the probability
distribution of the transition matrix. For example, if the next arrived area is grid 8, then
the current solution set is {1, 2, 3, 6, 5, 4, 8, J, J, J, [J, OJ}. starting from grid 8, the next
reachable area is generatetd, and this process is repeated until all grids have been traversed.

2.3. Design of Path Fitness Function

In the iterative process of the genetic algorithm, numerous individuals will be gener-
ated. To select the optimal solution, it is necessary to design a reasonable fitness function to
assess the performance of individual paths. The fitness function can evaluate the efficiency
and applicability of each path. Considering the requirements of agricultural robots for
paths, the evaluation factors proposed include the coverage rate, repetition rate, smooth-
ness of the paths, and operation time. The path selected through the fitness function can
not only maximize the efficiency of the task but also take into account the smoothness of
the path and the task time. The designed fitness function is as follows:

A N{u;si ‘
1.hﬂ{’}+wl‘Nr+w3'/f92(t)dt+w4'N5 ©)
Ah NP 0

Fx) = w
where, the Ay, ﬂ{UiSi } /Ay, is the coverage rate of the path, S' is the ith path, the {U; Si)
is the set of paths, and Ay, is the total operation area. The N, /N, is the repetition rate of
path, the N, is the grids of the repeated operation, and the N, is the completed operation

grids of the whole field. The fotf 0% (t)dt is the smoothness of the path, and the position
of the rotation angle of the steering wheel of the robot is related to the smoothness of the
path. The N; is the number of turns. The w; ~w, represents the weight coefficients of each
evaluation indicator. Different types of target requirements can be met by adjusting the
size of the weight coefficients.

In fitness function (1), the dimensions of coverage and repetition rate functions are
between [0-1]. However, the dimensions of the path smoothness function are relatively
large, so data normalization is required for comparison or comprehensive evaluation.
There are three common normalization methods: the maximum normalization method, the
standard score normalization method, and the median normalization method [18]. Due
to the fixed range of the front wheel steering angle for agricultural robots (—40°~40°), the
maximum normalization method is adopted as follows:

]norm = (I - ]min )/(]max - ]min) (7)

where, J,;i and [0y are the minimum and maximum values of the path smoothness within
the predetermined evaluation range, respectively. In order to generate a safe, efficient,
and trackable path that satisfies the kinematic constraints of the robot, a cubic B-spline
curve [21] is used to smooth the path. The curvature k of each path point in the turning
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path segment is obtained through sampling, and the maximum curvature kmax of each path
point is constrained. Therefore, as long as each path point meets the requirements, the
entire path must satisfy the constraint conditions, and the final generated path sequence
can satisfy the kinematic constraints of the robot and have continuity.

In the fitness function design, this paper does not use the method of gene crossover to
generate new solutions based on the traditional GA. Instead, it employs the state transition
matrix in a Markov chain to guide the evolution of gene sequences (i.e., solution vectors).
This process simulates the mutation and selection mechanisms in genetic algorithms, using
a constrained random method to generate new individuals. The pseudocode for the fitness

function is shown in Algorithm 1 below.

Algorithm 1: Pseudocode for Fitness Function Design

Input: Ga_x, marko_p, Cell_Location
Output: Fitness Function Value

e S o T G S gy

NN N
L2

NN
ISUBIN-

NN
O

=
oul N B AN AN C L R S S

—_

N

Initialize parameter settings

Set the weight of the objective function: wy, wy

Set the values for path smoothness: Jiax, [inin

Calculate path coverage and repetition rate

N<—Ga_x Number of rows (Population size)

M<Ga_x Number of columns (Gene length)
ForindividualI,i € Nin N

temp<—Ga_x[i: N — 1]

valuel<—Coverage«—Number of no-repeat elements (temp)

value2<—Repetition<—Number of no-repeat elements (temp) —M + 1

If Ga_x[i,N] #1
Initialization steps step = 1
While temp_marko_p(1,Ga_x(i, end)) = 0
Using marko_p update temp_marko_p
Step count increases automatically
End
Coverage<—Coverage—setp
End if
Calculate path smoothness
Calculate the vectors of two adjacent vectors

Calculate the angle between two vectors value3<Path_smoothness<— fot odt

If last grid of the path sequence is not the starting point

Calculate the norm of the position and starting point vectors, and update the

smoothness of the path
End if

value<—w; X valuel + wyp x value2 — (value3 — Jyin)/ (Jmax —

Return value
End

2.4. Design of Complete Coverage Path Planner

Based on the basic GA, the state transition matrix (6) of the Markov chain is used to
guide the mutation of the gene sequence, generating new individuals through random and
guided methods. The pseudocode of the algorithm is shown in Algorithm 2.

Algorithm 2: Improved Genetic Algorithm Based on Markov Chain

Input: field_length, field_width, robot length: length, operation width: swath, Initial population size:

N, maximum number of iterations: max_iter
Output: Optimal path sequence, Optimal individual fitness value

1:
2:
3:

Grid the field and calculate the center point of the grid
For each x from 0 to field_length in step length
For each y starts from 0 to field-width in step swath




Appl. Sci. 2024, 14, 9868

70f13

Algorithm 2: Cont.

4: Calculate and store the coordinates of each grid
5 Establish solution set Ga_x

6: For each grid

7. Ifiis an odd row

8: Number in order

9: Else

10: Number in reverse order

11: Generate distance matrix marko_r

12:  Foriranges from 1 to the total numeber of grids
13:  For j ranges from 1 to the total number of grids

14: Ifi#j

15: Calculate the distance between grid i and j

16: Save to marko_r [i, j]

17: Generate state transition matrix marko_p

18:  For i range each grid

19: Find the grid j with the minimum distance

20: Calculate transition probability based on minimum distance
21: Save to marko_p [i, j]

22: Optimizing paths using Markov chains

23:  For iter < [i : max_iter]
24: For Every individual i

25: Generate new gene sequences using marko_p

26: Calculate the fitness value of a new gene sequence

27:  1If Fitness of the new gene sequence > Current optimal fitness
28: Update the optimal fitness value and optimal path sequence
29: Determine and output the optimal solution

30: End

The algorithm is executed once each time the robot performs a task, meaning the
algorithm runs once per task. The sampling accuracy of the path points is set to 0.01 m.

3. Simulation Analysis of Path Planning Algorithm Based on Improved
Genetic Algorithm

Based on the above analysis, a complete coverage path planning simulation platform
was developed using MATLAB’s APP Designer toolbox (version 2020). The platform
can achieve the following functions: visual display of the full coverage paths and out-
put evaluation indicators, such as coverage rate, repetition rate, number of turns, path
length, etc.

3.1. Simulation System

The simulation platform interface is shown in Figure 3. The simulation interface
consists of four parts: the path visualization window, input module, output module, and
start button; The path visualization window is used to display the paths planned by the
complete coverage path planning algorithm within the work area. The input module is
used to set simulation parameters. The output module can output the results of path
planning. The start button is used to start running the simulation system.

In the simulation, path planning is performed on multiple lands of different areas
that can verify the adaptability of the proposed full coverage path planning algorithm in
handling work areas of different areas. The lands are 1400 m?, 500 m2, 150 m?, 30 m2, 18 m?,
and 8 m? respectively. Due to the operating width of the agricultural robot being 1 m, the
areas of 70 x 20 m, 50 x 10 m, and 30 x 5 m can all be considered large-scale operating
areas. For the convenience of discussion, the improved genetic algorithm based on the
Markov chain is abbreviated as MCGA, and the basic genetic algorithm is abbreviated
as GA.
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Figure 3. GUI of complete coverage path planning. The ¥ is the entrance, and the yellow line
indicates the planned path. Black dots indicate the grid that has been traversed.

3.2. Simulation Experiment and Analysis

In simulation, the weight coefficients of the fitness function (1) need to be determined.
The initial values of the weight coefficients are set based on experience, with the main goal
of improving coverage and reducing repetition rate. The weights of the smoothness of
the path and the steering are assigned as 0.1, which improves the smoothness of the path
and work efficiency. By observing the impact of different weight coefficients on simulation
results, the weights are gradually adjusted to ensure that the weight coefficients fully reflect
the importance of different performance indicators. The final weighting coefficients are
work coverage rate weight wy = 0.7, repetition rate weight w, = 0.1, path smoothness weight
w3 = 0.1, and number of turns weight wy = 0.1. The simulation parameters set system are
shown in Table 1.

Table 1. Simulation parameters of complete coverage path planning.

Parameter Value
Operation width 1m
Length 70m

Width 20m

Minimum turning radius 19m
Initial population size 2500
Maximum number of iterations 1000

Path point sampling rate 0.01m

The coordinates of the boundary points of the work area in the simulation are A
(33.42,107.4), B (33.4202,107.4), C (33.4202,107.4007), and D (33.42,107.4007). A total of
1400 grids were generated in this simulation, and all the above parameters were inputed
into the full coverage path planning simulation platform.

The path planning results are shown in the Figure 4a,b displays the optimal fitness
values for each generation during the iteration process of MCGA and GA. In Figure 4b,
it can be seen that the initial fitness value of MCGA is higher than that of GA, which
is due to the guiding role of using Markov chains in the initial population generation
process. By selecting initial individuals with high fitness values based on the transition
probabilities between states, the quality of the solution set can be improved. Secondly,
after 393 iterations, the fitness function value of MCGA reached the optimal value of 11.8
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and remained stable in subsequent iterations. The fitness function value of GA reached
its optimal value of 11.63 after 980 iterations, thus proving that MCGA has significantly
higher efficiency in finding the optimal solution over GA, and has a faster convergence
speed and higher fitness level.

: : : 130 , : , : I
107.4008 - 4 . —_ A
Path planed —— 125 205¢h MCGA ]
120 | S i
107.4006 | 1 115 - g
2 Qll0F 980ch |
%107.4004 B - 7'?,10.5 L .
= =
Q @100 - .
[T
107.4002 - 1 B&5r ]
FH 90 - 4
107.4000 |- . 51 ]
1 1 80 T
33.4200 33.4201 33.4202 1 1 L 1 I 1
Latitude 0 200 400 600 EOO 1000
Iteration times
(a) (b)
Figure 4. Path planning results of MCGA: (a) Path planning results; (b) Fitness value iteration curve.
The path planning for other field size regions has also been executed by GA and
MCGA, and the important results of path planning for MCGA and GA algorithms are
shown in Table 2. Compared to GA, the path length planned by MCGA is reduced by an
average of 21.8%, the number of turns is reduced by an average of 6 times, the repetition
rate is reduced by 83.8%, and the coverage rate is increased by 7.76%. These results show
that the proposed approach significantly improves the quality of complete coverage path
planning by combining Markov chains with genetic algorithms.
Table 2. Comparison of algorithm effectiveness between MCGA and GA.
Pathlength (m) Number of Turns Repetition (%) Coverage Rate
Field Si
ield Size GA MCGA GA MCGA GA MCGA GA MCGA
70 x 20m 1689.3 1507.2 96 82 23.1 6.707 85.63% 96.42%
50 x 10m 615.2 499.4 35 28 10.6 3.7 87.52% 98.35%
30 x 5m 182.7 136.1 11 7 8.3 2.6 90.5% 99.13%
10 x 3m 54.6 43.3 9 5 6.5 0.8 96.4% 99.6%
6 x3m 28.5 20.3 6 4 3.4 0 99.4% 100%
4x2m 12.5 9.3 4 3 22 0 100% 100%
Improve 21.8% 6 83.8% 7.76%

3.3. Field Experiment

In order to verify whether the MCGA proposed is suitable for agricultural robot path
tracking and operation, it is next used to plan the path of an actual land parcel, and an
automatic navigation robot is used to track the planned path, which can verify the per-
formance of the proposed MCGA. A suitable agricultural robot experimental system is
built for tracking the planned path. The agricultural robot experimental system adopts
car-like robots. As shown in Figure 5a, the chassis of the robot (Agilent Robotics Com-
pany, HUNTER-SE, Santa Clara, CA, USA) is an electrically rear wheel drive with front
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wheel electrically steering. The wheelbase of HUNTER-SE is 550 mm, the track width
is 520 mm, its length is 820 mm, the width is 640 mm and the work width is 1 m. The
minimum turning radius is 1.9 mm. As shown in Figure 5b, a navigation system (Shanghai
Lianshi, RTK-GPS, Shanghai, China, positioning accuracy: 2.5 cm), radar sensor (Shenzhen
SLAMTEC company, RPLidaR-A1, Shanghai, China), and IMU inertial sensor (Shenzhen
WIT, HWT101CT-232, Shenzhen, China) are installed on the HUNTER-SE.

Hoala

(a) (b)

Figure 5. Robot platform construction: (a) Robot chassis; (b) Robot with GPS navigation system.

After the automatic navigation robot platform is built, the Jiangsu University play-
ground is selected as the experiment site for path planning and path-tracking experiments.
As shown in Figure 6, the blue box represents the experimental area, which is 68 m long
and 17 m wide. The latitude and longitude coordinates of the four boundary points
are A (32.202038,119.509920), B (32.202160,119.510625), C (32.202013,119.510659), and D
(32.201895,119.509959), respectively. The Pentagram symbol is the starting point of agri-
cultural robot operation and the black squares are the divided grids in the figure. Due
to the farm tools on a robot, the robot’s operating width is set to 1 m, which means the
size of each grid is 1 m x 1 m. The initial parameters of the robot are set as follows: the
speed is 0.5 m/s, the heading angle is 0, and the coordinate of the start point is (32.202010,
119.510658). The proposed MCGA is used to plan the robot’s path in the experimental area,
and the path coordinate points are output in the form of latitude and longitude.

09959

95 A
D& 5018951193

Figure 6. Test site map.



Appl. Sci. 2024, 14, 9868

11 0f 13

The robot’s state parameters need to be collected during the experiment. Considering
that ROS (Robot Operating System) is an open-source operating system suitable for robot
development, it provides a structured communication layer on top of the host operating
system of heterogeneous computing clusters [22]. The Rosbag tool of the ROS framework
can provide an effective method for recording, replaying, analyzing, and processing data.
By capturing data streams, the Rosbag can help researchers and developers quickly repro-
duce experimental scenarios based on offline data in repeatable, low-cost analysis, and
debugging. Therefore, the ROS is used for sensor data collection and analysis. The ROS
toolbox in MATLAB (2020 version) is used to extract and process the data packet that
was recorded using the Rosbag tool. The ROS toolbox can provide an interface to connect
MATLAB and Simulink (2020 version) with ROS. The toolbox includes MATLAB functions
and Simulink blocks, which can visualize and analyze ROS data by recording, importing,
and replaying the Rosbag files. Figure 7 shows the experimental site where the robot tracks
the planned path.

Figure 7. Testing site.

After the experiment is completed, the data is extracted by the ROS toolbox and a
planned robot tracking trajectory map is drawn. The trajectory and tracking trajectory of
the path planning are shown in Figure 8, with the X axis representing longitude and the Y
axis representing latitude. In the figure, the solid line is the planned path trajectory and
desired path, and the point line is the trajectory tracked by the robot. From Figure 8, it can
be seen that the robot can complete trajectory tracking along the planned path line. Using
the planned path as a reference, the root mean square error of the robot’s lateral position is
0.369 m, the average lateral error is 0.228 m, and the maximum lateral error is 0.566 m, as
shown in Table 3. After on-site inspection of the trajectory points with significant lateral
errors, it was found that the locations with large errors have some bumpy terrains, which
indicates that the terrain on the ground has a certain impact on the walking trajectory of
robots. In summary, the experimental results demonstrate the effectiveness and feasibility
of the MCGA.

Table 3. Tracking performance of experimental environments.

RMSE (m) Average Error (m) Maximum Error (m)

0.369 0.228 0.566
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Figure 8. Robot tracking trajectory and path planning.

4. Conclusions

To solve the problems of low coverage, high repetition rate, and slow convergence
speed of basic genetic algorithms in dealing with complete coverage path planning prob-
lems in a farmland environment, the paper introduced the Markov chain state transition
matrix, which could guide the changes in gene sequences (solution vectors). The process
simulates the mutation and selection process in genetic algorithms, using constrained
random methods to generate new individuals. A complete covered path planner based on
an improved genetic algorithm is designed.

A path planning simulation platform was built by MATLAB’s APP Designer toolbox.
The improved genetic algorithm designed is analyzed on the 6 different sizes field in the
simulation platform. The simulation results show that compared with traditional genetic
algorithms, the proposed improved genetic algorithm reduces the average path length by
21.8%, decreased the average number of turns by 6 times, decreased the repetition rate by
83.8%, and increased the coverage rate by 7.76%. The improved genetic algorithm proposed
has significantly better performance and adaptability than traditional genetic algorithms in
different work areas.

The improved genetic algorithm proposed is then used for path planning on the
experimental site, which is applied to robot path tracking experiments. The experimental
data shows that the walking trajectory of the robot is continuous, with a root mean square
error of 0.369 m in lateral position and a maximum lateral error of 0.566 m.

The MCGA proposed in this article has been proven effective and adaptable in both
simulation and practical environments. However, in the face of the complexity of agricul-
tural robot operating environments, further research and improvement are still needed
in existing studies. For example, research on the improvement of MCGA based on envi-
ronmental factors and specific agricultural operation requirements of concave and convex
plots with different shapes.
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