Numerical Investigation of the Slope Stability in the Waste Dumps of Romanian Lignite Open-Pit Mines Using the Shear Strength Reduction Method
Abstract
:1. Introduction
2. General and Theoretical Aspects Regarding Slope Stability
3. Description of Location and Geometry of the Model
4. Simulation Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Espinoza, D.; Goycoolea, M.; Moreno, E.; Newman, A. MineLib: A library of open pit mining problems. Ann. Oper. Res. 2013, 206, 93–114. [Google Scholar] [CrossRef]
- Wetherelt, A.; van der Wielen, K.P. Introduction to open pit mining. In SME Mining Engineering Handbook, 2nd ed.; Society for Mining, Metallurgy, and Exploration Inc: Englewood, CO, USA, 2011; pp. 857–875. [Google Scholar]
- Altiti, H.; Alrawashdeh, R.; Alnawafleh, H. Open pit mining. In Mining Techniques: Past, Present and Future; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Monjezi, M.; Shahriar, K.; Dehghani, H.; Samimi Namin, F. Environmental impact assessment of open pit mining in Iran. Environ. Geol. 2009, 58, 205–216. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Zhang, Z.; Zhou, Y.; Huang, H.; Chang, M. The Evolution of Landscape Patterns and Its Ecological Effects of Open-Pit Mining: A Case Study in the Heidaigou Mining Area, China. Int. J. Environ. Res. Public Health 2023, 20, 4394. [Google Scholar] [CrossRef] [PubMed]
- Bell, F.G.; Donnelly, L.J. Mining and Its Impact on the Environment; CRC Press: London, UK, 2006. [Google Scholar] [CrossRef]
- Dudka, S.; Adriano, D.C. Environmental impacts of metal ore mining and processing: A review. J. Environ. Qual. 1997, 26, 590–602. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Sedighi, A.; Firozjaei, H.K.; Kiavarz, M.; Homaee, M.; Arsanjani, J.J.; Makki, M.; Naimi, B.; Alavipanah, S.K. A historical and future impact assessment of mining activities on surface biophysical characteristics change: A remote sensing-based approach. Ecol. Indic. 2021, 122, 107264. [Google Scholar] [CrossRef]
- Tran, T.N.D.; Nguyen, Q.B.; Le, D.T.L.; Nguyen, T.D.; Vo, N.D.; Gourbesville, P. Evaluate the influence of groynes system on the hydraulic regime in the Ha Thanh River, Binh Dinh Province, Vietnam. In Advances in Hydroinformatics: Models for Complex and Global Water Issues—Practices and Expectations; Gourbesville, P., Caignaert, G., Eds.; Springer Water: Singapore, 2022; pp. 241–254. [Google Scholar] [CrossRef]
- Tran, T.N.D.; Nguyen, Q.B.; Nguyen, T.T.; Vo, N.D.; Nguyen, C.P.; Gourbesville, P. Operational Methodology for the Assessment of Typhoon Waves Characteristics. Application to Ninh Thuan Province, Vietnam. In Advances in Hydroinformatics: Models for Complex and Global Water Issues—Practices and Expectations; Gourbesville, P., Caignaert, G., Eds.; Springer Water: Singapore, 2022; pp. 887–902. [Google Scholar] [CrossRef]
- Saini, V.; Gupta, R.P.; Arora, M.K. Environmental impact studies in coalfields in India: A case study from Jharia coal-field. Renew. Sustain. Energy Rev. 2016, 53, 1222–1239. [Google Scholar] [CrossRef]
- Popović, V.; Miljković, J.Ž.; Subić, J.; Jean-Vasile, A.; Adrian, N.; Nicolăescu, E. Sustainable Land Management in Mining Areas in Serbia and Romania. Sustainability 2015, 7, 11857–11877. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Chaulya, S.; Prasad, G. Slope Failure Mechanism and Monitoring Techniques. In Sensing and Monitoring Technologies for Mines and Hazardous Areas: Monitoring and Prediction Technologies; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–86. [Google Scholar] [CrossRef]
- Jiayin, H.; Baoan, H.; Xiangjun, T.; Jin, C.; Long, L. Concept and Practice of Open-pit Mining Area Restoration and Reuse—Taking an Open-pit Coal Mining Area in Datong, Shanxi as an Example. In E3S Web of Conferences; EDP Sciences: Ulys, France, 2020; Volume 145, p. 02014. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, S.-T.; Yang, F.-W.; Wang, Z.-X.; Zhang, H.; Ma, K.; Li, X.-J. Monitoring and Analysis of Dynamic Response for Open-Pit Mine with Inside Inclined Shafts under Train Loading. Metals 2021, 11, 1681. [Google Scholar] [CrossRef]
- Blight, G.E.; Fourie, A. Catastrophe revisited–disastrous flow failures of mine and municipal solid waste. Geotech. Geol. Eng. 2005, 23, 219–248. [Google Scholar] [CrossRef]
- Kocaman, S.; Tavus, B.; Nefeslioglu, H.A.; Karakas, G.; Gokceoglu, C. Evaluation of Floods and Landslides Triggered by a Meteorological Catastrophe (Ordu, Turkey, August 2018) Using Optical and Radar Data. Geofluids 2020, 2020, 8830661. [Google Scholar] [CrossRef]
- Kainthola, A.; Verma, D.; Gupte, S.S.; Singh, T.N. A coal mine dump stability analysis—A case study. Geomaterials 2011, 1, 1–13. [Google Scholar] [CrossRef]
- Behera, P.K.; Sarkar, K.; Singh, A.K.; Verma, A.K.; Singh, T.N. Dump slope stability analysis—A case study. J. Geol. Soc. India 2016, 88, 725–735. [Google Scholar] [CrossRef]
- Kolapo, P.; Oniyide, G.O.; Said, K.O.; Lawal, A.I.; Onifade, M.; Munemo, P. An Overview of Slope Failure in Mining Operations. Mining 2022, 2, 350–384. [Google Scholar] [CrossRef]
- Harish, P.; Chandar, K.R. A review on stability analysis of coal mine dumps. Int. J. Min. Miner. Eng. 2024, 15, 1–14. [Google Scholar] [CrossRef]
- Yang, Z.; Ding, X.; Liu, X.; Wahab, A.; Ao, Z.; Tian, Y.; Bang, V.S.; Long, Z.; Li, G.; Ma, P. Slope Deformation Mechanisms and Stability Assessment under Varied Conditions in an Iron Mine Waste Dump. Water 2024, 16, 846. [Google Scholar] [CrossRef]
- Xu, C.Y.; Liu, Q.S.; Tang, X.H.; Sun, L.; Deng, P.H.; Liu, H. Dynamic stability analysis of jointed rock slopes using the combined finite-discrete element method (FDEM). Comput. Geotech. 2023, 160, 105556. [Google Scholar] [CrossRef]
- Masoudian, M.S.; Zevgolis, I.E.; Deliveris, A.V.; Marshall, A.M.; Heron, C.M.; Koukouzas, N.C. Stability and characterisation of spoil heaps in European surface lignite mines: A state-of-the-art review in light of new data. Environ. Earth Sci. 2019, 78, 505. [Google Scholar] [CrossRef]
- Popescu, F.D.; Radu, S.M.; Andras, A.; Brinas, I.; Marita, M.-O.; Radu, M.A.; Brinas, C.L. Stability Assessment of the Dam of a Tailings Pond Using Computer Modeling—Case Study: Coroiești, Romania. Appl. Sci. 2024, 14, 268. [Google Scholar] [CrossRef]
- Bishop, A.W. The use of the Slip Circle in the Stability Analysis of Slopes. Géotechnique 1955, 5, 7–17. [Google Scholar] [CrossRef]
- Janbu, N. Applications of Composite Slip Surfaces for Stability Analysis. In Proceedings of the European Conference on the Stability of Earth Slopes, Stockholm, Sweden, 20–25 September 1954. [Google Scholar]
- Morgenstern, N.; Price, V. The Analysis of the Stability of General Slip Surfaces. Geotechnique 1965, 15, 79–93. [Google Scholar] [CrossRef]
- Spencer, E. A Method of analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces. Géotechnique 1967, 17, 11–26. [Google Scholar] [CrossRef]
- Fredlund, D.G. Analytical methods for slope stability analysis. In Proceedings of the 4th International Symposium on Landslides, Toronto, ON, Canada, 16–21 September 1984; Volume 1, pp. 229–250. [Google Scholar]
- Duncan, J.M. State of the art: Limit equilibrium and finite-element analysis of slopes. J. Geotech. Eng. ASCE 1996, 122, 577–596. [Google Scholar] [CrossRef]
- Ulusay, R.; Çaglan, D.; ArIkan, F.; Yoleri, M.F. Characteristics of biplanar wedge spoil pile instabilities and methods to improve stability. Can. Geotech. J. 1996, 33, 58–79. [Google Scholar] [CrossRef]
- Nguyen, V.U.; Nemcik, J.A.; Chowdhury, R.N. Some practical aspects of spoil pile stability by the two-wedge model. Min. Sci. Technol. 1984, 2, 57–68. [Google Scholar] [CrossRef]
- El-Ramly, H.; Morgenstern, N.; Cruden, D. Lodalen slide: A probabilistic assessment. Can. Geotech. J. 2016, 43, 956–968. [Google Scholar] [CrossRef]
- Husein Malkawi, A.I.; Hassan, W.F.; Abdulla, F. Uncertainty and reliability analysis applied to slope stability. Struct. Saf. 2000, 22, 161–187. [Google Scholar] [CrossRef]
- Abdulai, M.; Sharifzadeh, M. Probability Methods for Stability Design of Open Pit Rock Slopes: An Overview. Geosciences 2021, 11, 319. [Google Scholar] [CrossRef]
- Chuaiwate, P.; Jaritngam, S.; Panedpojaman, P.; Konkong, N. Probabilistic Analysis of Slope against Uncertain Soil Parameters. Sustainability 2022, 14, 14530. [Google Scholar] [CrossRef]
- Chakraborty, R.; Dey, A. Probabilistic slope stability analysis: State-of-the-art review and future prospects. Innov. Infrastruct. Solut. 2022, 7, 177. [Google Scholar] [CrossRef]
- Antolini, F.; Barla, M.; Gigli, G.; Giorgetti, A.; Intrieri, E.; Casagli, N. Combined finite–discrete numerical modeling of runout of the Torgiovannetto di Assisi rockslide in central Italy. Int. J. Geomech. 2016, 16, 04016019. [Google Scholar] [CrossRef]
- Koner, R.; Chakravarty, D. Numerical analysis of rainfall effects in external overburden dump. Int. J. Min. Sci. Technol. 2016, 26, 825–831. [Google Scholar] [CrossRef]
- Yang, Y.; Hong, Z. Direct Approach to Treatment of Contact in Numerical Manifold Method. Int. J. Geomech. 2017, 17, e4016012. [Google Scholar] [CrossRef]
- Nguyen, P.M.V.; Wrana, A.; Rajwa, S.; Różański, Z.; Frączek, R. Slope Stability Numerical Analysis and Landslide Prevention of Coal Mine Waste Dump under the Impact of Rainfall—A Case Study of Janina Mine, Poland. Energies 2022, 15, 8311. [Google Scholar] [CrossRef]
- Guanhua, Q. Stability analysis of nonhomogeneous and anisotropic stepped slopes under the influence of earthquakes. Heliyon 2023, 9, e15057. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Q.; Abdelaziz, A.; Tang, X.; Grasselli, G. Simulating the entire progressive failure process of rock slopes using the combined finite-discrete element method. Comput. Geotech. 2022, 141, 104557. [Google Scholar] [CrossRef]
- Rudra, E.S.C.K.; Gadepaka, P.R.; Rai, R.; Jaiswal, A. Numerical analysis of dump slope stability using material properties obtained by parallel gradation method. Min. Technol. Trans. Inst. Min. Metall. 2024, 133, 31–41. [Google Scholar] [CrossRef]
- Xu, H.; He, X.; Shan, F.; Niu, G.; Sheng, D. Machine Learning in the Stochastic Analysis of Slope Stability: A State-of-the-Art Review. Modelling 2023, 4, 426–453. [Google Scholar] [CrossRef]
- Mahmoodzadeh, A.; Alanazi, A.; Hussein Mohammed, A.; Hashim Ibrahim, H.; Alqahtani, A.; Alsubai, S.; Babeker Elhag, A. Comprehensive analysis of multiple machine learning techniques for rock slope failure prediction. J. Rock Mech. Geotech. Eng. 2023, in press. [CrossRef]
- Meng, J.; Mattsson, H.; Laue, J. Three-dimensional Slope Stability Predictions Using Artificial Neural Networks. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 1988–2000. [Google Scholar] [CrossRef]
- Ji, J.; Zhang, C.; Gui, Y.; Lü, Q.; Kodikara, J. New Observations on the Application of LS-SVM in Slope System Reliability Analysis. J. Comput. Civ. Eng. 2017, 31, 06016002. [Google Scholar] [CrossRef]
- Falae, P.O.; Agarwal, E.; Pain, A.; Dash, R.K.; Kanungo, D.P. A Data Driven Efficient Framework for the Probabilistic Slope Stability Analysis of Pakhi Landslide, Garhwal Himalaya. J. Earth Syst. Sci. 2021, 130, 167. [Google Scholar] [CrossRef]
- Cundall, P.A. A computer model for simulating progressive, large-scale movements in blocky rock systems. In Proceedings of the International Symposium on Rock Mechanics, Nancy, France, 4–6 October 1971; Volume 1, pp. 8–11. [Google Scholar]
- Regassa, B.; Xu, N.; Mei, G. An equivalent discontinuous modeling method of jointed rock masses for dem simulation of mining-induced rock movements. Int. J. Rock Mech. Min. Sci. 2018, 108, 1–14. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, Z.; Zhang, D.; Wang, H.; Li, X. Assessment of Fabric Characteristics with the Development of Sand Liquefaction in Cyclic Triaxial Tests: A DEM Study. Soil Dyn. Earthq. Eng. 2024, 176, 108343. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.; Mei, G.; Xu, N. A statistics-based discrete element modeling method coupled with the strength reduction method for the stability analysis of jointed rock slopes. Eng. Geol. 2020, 264, 105247. [Google Scholar] [CrossRef]
- Gupta, G.; Sharma, S.K.; Singh, G.S.P.; Kishore, N. Numerical Modelling-Based Stability Analysis of Waste Dump Slope Structures in Open-Pit Mines—A Review. J. Inst. Eng. India Ser. D 2021, 102, 589–601. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Lane, P.A. Slope stability analysis by finite elements. Geotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
- Dyson, A.P.; Tolooiyan, A. Optimisation of strength reduction finite element method codes for slope stability analysis. Innov. Infrastruct. Solut. 2018, 3, 38. [Google Scholar] [CrossRef]
- Sun, G.; Lin, S.; Zheng, H.; Tan, Y.; Sui, T. The virtual element method strength reduction technique for the stability analysis of stony soil slopes. Comput. Geotech. 2020, 119, 103349. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Humpheson, C.; Lewis, R.W. Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique 1975, 25, 671–689. [Google Scholar] [CrossRef]
- Griffiths, D.V. Finite Element Analyses of Walls, Footings and Slopes. Ph.D. Thesis, Univ. of Manchester, Manchester, UK, 1981. [Google Scholar]
- Naylor, D.J. Finite Elements and Slope Stability. In Numerical Methods in Geomechanics. NATO Advanced Study Institutes Series; Martins, J.B., Ed.; Springer: Dordrecht, Germany, 1982; Volume 92, pp. 229–244. [Google Scholar] [CrossRef]
- Smith, I.M.; Griffiths, D.V. Programming the Finite Element Method; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1988. [Google Scholar]
- Matsui, T.; San, K.-C. Finite Element Slope Stability Analysis by Shear Strength Reduction Technique. Soils Found. 1992, 32, 59–70. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Z.; Shi, B.; Wong, J.K. Feasibility study of strain based stability evaluation of locally loaded slopes: Insights from physical and numerical modeling. Eng. Geol. 2016, 208, 39–50. [Google Scholar] [CrossRef]
- Zou, P.; Zhao, X.; Meng, Z.; Li, A.; Liu, Z.; Hu, W. Sample Rocks Tests and Slope Stability Analysis of a Mine Waste Dump. Adv. Civ. Eng. 2018, 2018, 6835709. [Google Scholar] [CrossRef]
- Meng, W.; Wang, H.; Cai, M.; Zhang, Q. Multi. scale strength reduction method for heterogeneous slope using hierarchical FEM/DEM modeling. Comput. Geotech. 2019, 115, 103164. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, G.; Zheng, H. Stability analysis of soil-rock-mixture slopes using the numerical manifold method. Eng. Anal. Bound. Elem. 2019, 109, 153–160. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, G.; Zheng, H.; Yan, C. An improved numerical manifold method with multiple layers of mathematical cover systems for the stability analysis of soil-rock-mixture slopes. Eng. Geol. 2020, 264, 105373. [Google Scholar] [CrossRef]
- Dyson, A.P.; Griffiths, D.V. An Efficient Strength Reduction Method for Finite Element Slope Stability Analysis. Comput. Geotech. 2024, 174, 106593. [Google Scholar] [CrossRef]
- Itasca. FLAC Version 7.0 User’s Manual; Itasca Consulting Group, Inc: Minneapolis, MN, USA, 2011. [Google Scholar]
- Itasca. 3DEC 9.0 User’s Manual; Itasca Consulting Group, Inc: Minneapolis, MN, USA, 2011. [Google Scholar]
- Brinkgreve, R.B.J.; Engin, E.; Swolfs, W.M. PLAXIS 3D 2013 User Manual; Plaxis BV: Delft, The Netherlands, 2013. [Google Scholar]
- Tran, T.N.D.; Ahmed, Z.; Nguyen, Q.B. Application of Plaxis for calculating the construction stability and soft embankment in protecting Ha Thanh river, Binh Dinh Province. In Proceedings of the 2nd Conference on Sustainability in Civil Engineering (CSCE’20), Department of Civil Engineering Capital University of Science and Technology, Islamabad, Pakistan, 12 August 2020; pp. 418–425. [Google Scholar]
- Rocscience. Phase2 v6.0—A Two-Dimensional Finite Element Analysis Program; ROCSCIENCE Inc: Toronto, ON, Canada, 2005. [Google Scholar]
- Rocscience. Slide v5.0—A Slope Stability Program Based on Limit-Equilibrium Analysis; ROCSCIENCE Inc: Toronto, ON, Canada, 2003. [Google Scholar]
- COMSOL. COMSOL Multiphysics 5.3. Reference Manual; COMSOL AB: Stockholm, Sweden, 2017. [Google Scholar]
- Wu, D.; Deng, T.; Duan, W.; Zhang, W. A coupled thermal-hydraulic-mechanical application for assessment of slope stability. Soils Found. 2019, 59, 2220–2237. [Google Scholar] [CrossRef]
- Shao, W.; Bogaard, T.; Bakker, M. How to use COMSOL multiphysics for coupled dual-permeability hydrological and slope stability modeling. Procedia Earth Planet. Sci. 2014, 9, 83–90. [Google Scholar] [CrossRef]
- Sysala, S.; Tschuchnigg, F.; Hrubesova, E.; Michalec, Z. Optimization variant of the shear strength reduction method and its usage for stability of embankments with unconfined seepage. Comput. Struct. 2023, 281, 107033. [Google Scholar] [CrossRef]
- Sysala, S.; Hrubešová, E.; Michalec, Z.; Tschuchnigg, F. A Rigorous Variant of the Shear Strength Reduction Method and Its Usage in Slope Stability. In Challenges and Innovations in Geomechanics. IACMAG 2022. Lecture Notes in Civil Engineering; Barla, M., Di Donna, A., Sterpi, D., Insana, A., Eds.; Springer: Cham, Switzerland, 2022; Volume 288. [Google Scholar] [CrossRef]
- Zhang, C.; Duan, P.; Cheng, Y.; Chen, N.; Huang, H.; Xiong, F.; Dong, S. A 2-D stability analysis of surrounding rock of underground liquified natural gas storage cavern based on COMSOL Multiphysics. Energy Geosci. 2024, 5, 100301. [Google Scholar] [CrossRef]
- Popescu, F.D.; Radu, S.M.; Andraș, A.; Brînaș, I.; Budilică, D.I.; Popescu, V. Comparative Analysis of Mine Shaft Hoisting Systems’ Brake Temperature Using Finite Element Analysis (FEA). Materials 2022, 15, 3363. [Google Scholar] [CrossRef] [PubMed]
- Andras, A.; Brînas, I.; Radu, S.M.; Popescu, F.D.; Popescu, V.; Budilica, D.I. Investigation of the Thermal Behaviour for the Disc-Pad Assembly of a Mine Hoist Brake Using COMSOL Multiphysics. Acta Tech. Napoc. Ser. Appl. Math. Mech. Eng. 2021, 64, 227–234. [Google Scholar]
- Oberhollenzer, S.; Tschuchnigg, F.; Schweiger, H.F. Finite element analysis of slope stability problems using non-associated plasticity. J. Rock Mech. Geotech. Eng. 2018, 10, 1091–1101. [Google Scholar] [CrossRef]
- Schweiger, H.F.; Tschuchnigg, F. Strength reduction technique with finite element method for slopes without stabilisation measures. Ground Eng. 2022, 1, 27–34. [Google Scholar]
- Davis, E.H. Theories of plasticity and failure of soil masses. In Soil Mechanics: Selected Topics; Lee, I.K., Ed.; Elsevier: New York, NY, USA, 1968. [Google Scholar]
- U.M.C. Lupoaia, Oltenia Energy Complex 2021–2023; Oltenia Energy Complex: Târgu Jiu, Romania, Internal Report; nonpublic document. (In Romanian)
- U.M.C. Roșiuța, Oltenia Energy Complex 2020–2022; Oltenia Energy Complex: Târgu Jiu, Romania, Internal Report; nonpublic document. (In Romanian)
- Geologic Lab Ltd. Test Reports No. 014533/from 23.11.2021; Geologic Lab Ltd.: Călan, Romania, 2021. [Google Scholar]
- Lazăr, M.; Faur, F. Stability and Arrangement of Slopes. Examples of Calculation; Universitas: Petrosani, Romania, 2015; ISBN 978-973-741-453-3. (In Romanian) [Google Scholar]
- Lazar, M.; Faur, F.; Apostu, I.-M. Stability Conditions in Lignite Open Pits from Romania, Case Study: Oltețu Open Pit. Appl. Sci. 2022, 12, 9607. [Google Scholar] [CrossRef]
- Faur, F.; Apostu, I.-M.; Lazăr, M. Reassessment of the Stability Conditions in the Lignite Open Pits of Oltenia (Romania) in Relation to the New Local Seismic Context as an Imperative for Sustainable Mining. Sustainability 2024, 16, 1384. [Google Scholar] [CrossRef]
- Cheng, Y.M.; Lansivaara, T.; Wei, W.B. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput. Geotech. 2007, 34, 137–150. [Google Scholar] [CrossRef]
Material Property | Symbol | Non-Associative Plasticity (Material 1) | Associative Plasticity (Material 2) |
---|---|---|---|
Young modulus | E | 25 MPa | 25 MPa |
Poisson’s ratio | ν | 0.35 | 0.35 |
Cohesion | C | 18 kPa | 18 kPa |
Angle of friction | φ | 30° | 30° |
Angle of dilatation | ψ | 0° | 30° |
Density | ρ | 1900 kg/m3 | 1900 kg/m3 |
Result | Unit | Associative Flow Rule with ψ = 15° | |||
---|---|---|---|---|---|
A = 30° | A = 35° | A = 40° | A = 45° | ||
FOS | 1 | 2.09 | 1.86 | 1.68 | 1.53 |
∆ (compared to ψ = 30°) | % | 0.95 | 1.61 | 1.78 | 1.96 |
Property | Variable | Value | Unit | Group |
---|---|---|---|---|
Young modulus | E | E_soil | Pa | Base |
Poisson’s ratio | ν | nu_soil | 1 | Base |
Density | ρ | rho_soil | kg/m3 | Base |
Cohesion | C | c_p | Pa | Mohr-Coulomb |
Angle of friction | φ | phi_p | rad | Mohr-Coulomb |
Result | Unit | Non-Associative Flow Rule | |||
---|---|---|---|---|---|
A = 30° | A = 35° | A = 40° | A = 45° | ||
FOS | 1 | 2.03 | 1.79 | 1.61 | 1.45 |
Equivalent plastic strain | 1 | 0–0.26 | 0–0.26 | 0–0.26 | 0–0.26 |
Displacement magnitude | m | 0–0.072 | 0–0.072 | 0–0.072 | 0–0.072 |
Associative flow rule | |||||
FOS | 1 | 2.11 | 1.89 | 1.71 | 1.56 |
Equivalent plastic strain | 1 | 0–0.23 | 0–0.23 | 0–0.23 | 0–0.23 |
Displacement magnitude | m | 0–0.072 | 0–0.072 | 0–0.072 | 0–0.072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, F.D.; Andras, A.; Radu, S.M.; Brinas, I.; Iladie, C.-M. Numerical Investigation of the Slope Stability in the Waste Dumps of Romanian Lignite Open-Pit Mines Using the Shear Strength Reduction Method. Appl. Sci. 2024, 14, 9875. https://doi.org/10.3390/app14219875
Popescu FD, Andras A, Radu SM, Brinas I, Iladie C-M. Numerical Investigation of the Slope Stability in the Waste Dumps of Romanian Lignite Open-Pit Mines Using the Shear Strength Reduction Method. Applied Sciences. 2024; 14(21):9875. https://doi.org/10.3390/app14219875
Chicago/Turabian StylePopescu, Florin Dumitru, Andrei Andras, Sorin Mihai Radu, Ildiko Brinas, and Corina-Maria Iladie. 2024. "Numerical Investigation of the Slope Stability in the Waste Dumps of Romanian Lignite Open-Pit Mines Using the Shear Strength Reduction Method" Applied Sciences 14, no. 21: 9875. https://doi.org/10.3390/app14219875
APA StylePopescu, F. D., Andras, A., Radu, S. M., Brinas, I., & Iladie, C. -M. (2024). Numerical Investigation of the Slope Stability in the Waste Dumps of Romanian Lignite Open-Pit Mines Using the Shear Strength Reduction Method. Applied Sciences, 14(21), 9875. https://doi.org/10.3390/app14219875