
Citation: Marcillo, P.; Suntaxi, G.;

Hernández-Álvarez, M. A Privacy-

Preserving Scheme for a Traffic

Accident Risk Level Prediction

System. Appl. Sci. 2024, 14, 9876.

https://doi.org/10.3390/app14219876

Academic Editor: Young-Gab Kim

Received: 6 August 2024

Revised: 22 September 2024

Accepted: 26 September 2024

Published: 29 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Privacy-Preserving Scheme for a Traffic Accident Risk Level
Prediction System
Pablo Marcillo * , Gabriela Suntaxi and Myriam Hernández-Álvarez

Departamento de Informática y Ciencias de la Computación, Escuela Politécnica Nacional, Ladrón de Guevara
E11-25 y Andalucía, Edificio de Sistemas, Quito 170525, Ecuador; gabriela.suntaxi@epn.edu.ec (G.S.);
myriam.hernandez@epn.edu.ec (M.H.-Á.)
* Correspondence: pablo.marcillo@epn.edu.ec

Abstract: Due to the expansion of Artificial Intelligence (AI), especially Machine Learning (ML), it
is more common to face confidentiality regulations about using sensitive data in learning models
generally hosted in cloud environments. Confidentiality regulations such as HIPAA and GDPR seek
to guarantee the confidentiality and privacy of personal information. Input and output data of a
learning model may include sensitive data that must be protected. Adversaries could intercept and
exploit this data to infer more sensitive data or even to determine the structure of the prediction model.
To guarantee data privacy, one option could be encrypting data and making inferences over encrypted
data. This strategy would be challenging for learning models that now must receive encrypted data,
make inferences over encrypted data, and deliver encrypted data. To address this issue, this paper
presents a privacy-preserving machine learning approach using Fully Homomorphic Encryption
(FHE) for a model that predicts risk levels of suffering a traffic accident. Despite the limitations of
experimenting with FHE on machine learning models using a low-performance computer, limitations
that are undoubtedly overcome by using high-performance computational infrastructure, we built
some encrypted models. Among the encrypted models based on Decision Trees, Random Forests,
XGBoost, and Fully Connected Neural Networks (FCNN), the model based on FCNN reached the
highest accuracy (80.1%) for the lowest inference time (8.476 s).

Keywords: security; fully homomorphic encryption; privacy-preserving machine learning; traffic
accident prevention; fully connected neural network

1. Introduction

The Internet of Things (IoT) has evolved in such a way that almost every gadget
used in everyday life has embedded sensors and communication interfaces to exchange
information. Currently, IoT gadgets can generate enormous quantities of data in real-time.
The emergence of big data and AI has made it possible to use these data to detect trends,
recognize patterns, and predict behaviors related to topics of interest. Until a few years ago,
data analysis and its applications covered the challenges and expectations in technology;
however, learning from data has gathered strength and has become a dominant tool in AI.

At present, it is easy to find machine-learning models for areas such as genetics,
healthcare, medical informatics, finances, entertainment, and transportation. In the latter,
there are prediction models for vehicular traffic flow, rail track degradation, vehicle traffic
accidents, and others [1]. The issue of preventing traffic accidents has generated great
interest in the community because of the significant impact that research in this area could
have. Thus, having a learning model to predict risk levels of suffering an accident would
be a great contribution to the general population.

Traffic accidents are not casual events but the sum of factors given in a certain space and
time [2]. Some authors have mentioned serious factors in traffic accidents. For instance, the
authors in [3,4] mentioned unfavorable traffic characteristics, adverse weather conditions,

Appl. Sci. 2024, 14, 9876. https://doi.org/10.3390/app14219876 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14219876
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2647-7478
https://orcid.org/0000-0002-0298-5144
https://orcid.org/0000-0003-4718-0400
https://doi.org/10.3390/app14219876
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14219876?type=check_update&version=1

Appl. Sci. 2024, 14, 9876 2 of 22

driver distraction, and aggressive driving after unusual congestion, and the authors in [5]
confirmed that road geometric characteristics and traffic flow directly impact the number of
traffic accidents in road sections. Other authors [6] have even gone further in determining
the severity of a traffic accident using driver and vehicle information, weather and light
conditions, and road conditions. Therefore, as the learning models use more data from
different sources, they will be more precise in inferring the risk of suffering a traffic
accident. For instance, our Risk Level Prediction System (Section 4.1) uses data from
five heterogeneous sources: driver and vehicle information, weather conditions, traffic
accidents, and road geometric characteristics.

Despite the benefits of learning models, some solutions have been discarded because
of restrictions on using certain information. For example, solutions in healthcare have
been affected by confidentiality regulations regarding patients’ medical records [7]. The
data often contain sensitive information that must be protected from unauthorized access.
Using sensitive information in machine learning models without a data privacy scheme
could cause information leakage and associated consequences. Adversaries can intercept
sensitive information such as the vehicle location, timestamp, or driver’s ID and determine
routes and schedules used by them. Then, we aim to propose a privacy-preserving scheme
that guarantees data privacy even in the presence of adversaries for predicting traffic
accident risk levels.

As is well known, the default mechanism to guarantee data privacy is encryption.
Encrypting sensitive information using traditional encryption methods can be effective;
however, that information must be deciphered to a certain point to train the models and
make inferences, which could result in a serious data privacy issue. In that sense, Homo-
morphic Encryption (HE) provides a solution to ensure the privacy of both information
and models. Based on this requirement, the Privacy-Preserving Machine Learning (PPML)
research area has gained interest in the machine learning community.

Our proposal consists of a privacy-preserving scheme for a system that includes a
learning model that predicts the risk levels of suffering a traffic accident, which is built
under an adversary model and uses Homomorphic Encryption. The adversary model
identifies and describes all adversaries who could take advantage of capturing sensitive
information. Considering those adversaries, our proposal involves processing encrypted
data. In other words, our proposal requires performing operations on encrypted data
without decrypting it before using it in the learning model. Additionally, data must be
encrypted end-to-end and kept encrypted at any time. Thus, we chose Homomorphic
Encryption, specifically Fully Homomorphic (FHE), because it offers unlimited operations
of additions and multiplications over encrypted data, unlike other encryption methods.

Lastly, our contribution is a privacy-preserving scheme based on fully Homomorphic
Encryption for a system that includes a learning model that predicts risk levels of suffering
a traffic accident. It includes a circuit for key generation and inference, where a secret key
is generated for the encryption and decryption of data and results, an encrypted model
for encrypted inference, and an evaluation key for performing operations on encrypted
data. This circuit guarantees that the data and the model are always protected, improving
their privacy and security. In summary, the main idea is a PPML model that can infer
directly from encrypted data and produce encrypted results. Our proposal prevents
adversaries described in the adversary model from replicating models, identifying statistical
characteristics of data, or inferring inputs or outputs of the learning model [8,9].

The rest of this paper is organized as follows. Section 2 presents the state of the art of
this topic. Section 3 presents definitions, concepts, and ideas on Homomorphic Encryption
and security notions. Section 4 describes the initial system, problem definition, adversary
model, our solution, and secrecy proofs. Section 5 presents the design of the experiments
that validate our proposed scheme. Section 6 presents the results of the evaluation of our
privacy-preserving security schema. Finally, Section 7 discusses the most relevant thoughts
about this topic, and Section 8 presents the conclusions of this work.

Appl. Sci. 2024, 14, 9876 3 of 22

2. Related Work

Until a few years ago, the main concerns of authors when building learning models
were the availability of data and, later, the management of a large amount of data. Those
limitations were solved with the spreading of IoT and the emergence of Big Data; however,
the current main concern is the restriction on using sensitive information in the learning
models. Thus, much of the recent research is focused on looking for strategies or mech-
anisms to protect sensitive information used by the learning models. One of them is the
implementation of Homomorphic Encryption in machine learning.

The proposals related to this topic are spread across different research areas and use
different types of Homomorphic Encryption. Table 1 summarizes the most important of the
proposals. In Genetics and Genomics, the authors in [10,11] used HE as the type of encryption
in their proposals. Thus, Hong et al. [10] proposed a secure multi-label tumor classification
model based on a Homomorphic Encryption scheme. This model uses the softmax activation
function and efficient data encryption. Kim et al. [11] proposed a solution to train a HE-based
logistic regression model to identify cardiopathies. The homomorphic scheme works with
real numbers and uses an encoding method for reducing encrypted storage.

In the field of medical informatics, the authors in [12,13] used HE, and those in [7,14]
used FHE as the type of encryption. Thus, Kim et al. [12] proposed a Homomorphic
Encryption scheme for learning models. This scheme allows for creating an encrypted
logistic regression-based model optimized for real number computation and large-scale
datasets. Popescu et al. [13] proposed a privacy-preserving classification model of EEG
signals for seizure detection and alcohol predisposition using HE. Their model uses a
HE-based encoding method that also works with real numbers. Vizitiu et al. [7] proposed a
variant of the Matrix Operation for Randomization and Encryption (MORE) scheme for
deep neural networks. Its applicability to deep learning models has focused on resolving
digit recognition, blood flow circulation, and coronary angiography classification.

In the field of computer science, the authors in [15–17] used FHE, those in [9,18,19] used
HE, and those in [20] used Partially Homomorphic Encryption (PHE) as the type of encryption.
Thus, Wu et al. [15] proposed a secure and efficient clustering scheme based on K-Means, FHE,
and a ciphertext packing technique that permits parallel computation. This scheme preserves
privacy in database security, clustering results, and data access patterns to prevent inference
attacks. The evaluation of the scheme shows a low computational cost, making it more efficient
compared with similar models. Sun et al. [16] proposed an FHE-based secure classification
model based on Decision Trees. This model supports encoding for real numbers and uses
re-linearization to reduce multiplicative ciphertext and modulus switching techniques for
decreasing multiplicative ciphertext modules and decryption noise. Lee et al. [17] proposed
a privacy-preserving scheme based on FHE for classifying images using neural networks.
This scheme incorporates Rectified Linear Unit (ReLU) and Softmax as activation functions
but with approximation methods to evaluate them and bootstrapping of the RNS-CKKS as
the resampling technique. They applied the scheme to a RestNet-20 model based on FHE.
Li et al. [9] proposed a Homomorphic Encryption scheme based on non-commutative rings
for privacy-preserving machine learning. This scheme uses the conjugacy search problem to
guarantee one-way security. They also proposed Homomorphic Encryption over a ring of
square matrices, which supports the encryption of real numbers. Regarding the performance,
the authors mention that their scheme is efficient at the moment of encryption and decryption
of information and performing homomorphic operations. Sarkar et al. [20] proposed a
genotype imputation technique applied to PHE-based linear models. They also introduced
optimization for data sequence prediction for genotype imputation. After evaluating linear
models and their privacy-preserving equivalents, the results show similar performance for
both, even using large-scale datasets. Cheon et al. [18] proposed a method to optimize the
iterations of the gradient descent algorithm. They implemented the method for logistic
regression models based on HE for the learning phase. This method considerably reduces the
number of iterations of the optimization algorithms, which results in a reduction of time of
the learning process of the encrypted model and a reduction of the storage of encrypted data.

Appl. Sci. 2024, 14, 9876 4 of 22

Finally, the following proposals provide models applied indistinctly to different areas
(financial, medical informatics, and computer science). All three proposals [8,21,22] use
FHE as the type of encyption. Thus, Bajard et al. [8] proposed an FHE-based Support
Vector Machine (SVM) model that includes efficient techniques for polynomial and sign
evaluation. The polynomial evaluation minimizes the multiplicative depth of the circuit,
and the sign evaluation improves the sign approximation by proposing a way to randomize
the iterations. These techniques have improved the value-wise and bit-wise arithmetic.
In addition, Park et al. [21] proposed an algorithm for an SVM model based on gradient
descent with support to FHE. This algorithm was designed for the training phase and to
protect both the model and the training data. The encryption scheme for this approach
supports computations on real numbers.

In addition to work in encryption, several secure schemes have been developed
in recent years to predict traffic accidents using non-encryption-based methods. The
authors in [23] proposed an approach that involves access control and authentication
protocols, ensuring that only authorized entities can access sensitive traffic and vehicle
data. Some studies propose using blockchain to establish a decentralized, tamper-proof
system for storing and sharing traffic data, which can be leveraged for accident prediction
while maintaining integrity and transparency [24]. Liu et al. [25] introduced a federated
learning-based framework to ensure privacy in traffic flow prediction by aggregating model
parameters rather than sharing raw data.

Considering our requirements and the purpose of this work, the analyzed proposals
present limitations. Thus, [9,14–16,18,20] did not include experiments in which encrypted
models using Homomorphic Encryption were evaluated and, therefore, did not provide
accuracy values. Other proposals [8,10,11,19,22] did not present accuracy values for the
unencrypted models to compare their results. In general, none of the proposals were fo-
cused on areas of study such as transportation or similar, specifically road traffic safety. In
Refs. [9–13,18], the authors did not clearly define the Homomorphic Encryption scheme
used, or they mentioned it in general terms. Next, some proposals [7,13,17,21] did not in-
clude an adversary model because they aim to apply Homomorphic Encryption to learning
models rather than provide a privacy-preserving scheme based on HE. Finally, while the
non-encryption-based approaches provide useful mechanisms for ensuring privacy and data
security in traffic accident prediction, they face several limitations compared to FHE For
instance, methods like access control [23], blockchain [24], and federated learning [25] still
expose certain data elements, such as model parameters or metadata, to potential inference
attacks. In contrast, FHE offers stronger privacy guarantees by allowing computations to be
performed directly on encrypted data, ensuring that sensitive information remains fully en-
crypted throughout the process without any data exposure. Additionally, FHE mitigates the
communication overhead and accuracy degradation challenges seen in federated learning
models, providing both superior privacy and efficiency in accident prediction.

Table 1. Proposals of privacy-preserving models using homomorphic encryption

Authors Algorithm Encr. Library Purpose Accuracy
Decr. Encr. Area of Study

Hong et al. [10] Neural Network HE - Secure tumor classification - 85.15 Genetics, Genomics,
and Proteomics

Kim et al. [12] Logistic Regression HE HELR [26]

Classification of

Medical Informatics

•Myocardial infarction 88.43 86.03

•Low birth weight 68.25 69.30

•Physical health status and nutrition 79.26 79.23

•Prostate cancer 68.86 68.85

•Drug abuse treatment 74.43 74.43

Appl. Sci. 2024, 14, 9876 5 of 22

Table 1. Cont.

Authors Algorithm Encr. Library Purpose Accuracy
Decr. Encr. Area of Study

Wu et al. [15] K-Means FHE Seal [27] Privacy-preserving in database security,
clustering, and data access patterns - - Comput. Sci.

Sun et al. [16] Decision Tree FHE HElib [28] Private machine learning - - Comput. Sci.

Lee et al. [17] Neural Network FHE Seal Privacy-preserving machine learning 91.89 92.43 Comput. Sci.

Popescu et al. [13] Polynomial Regression HE -

Privacy-preserving classification model
for

Medical Informatics
•Seizure detection 92.26 92.26

•Alcohol predisposition 79.83 79.83

Li et al. [9]

Logistic Regression,
Naive Bayes, SVM, Deci-
sion Tree, and Random
Forest

HE - Homomorphic encryption scheme
based on non-commutative rings - - Comput. Sci.

Kim et al. [11] Logistic Regression HE HEAAN [29]
Training of a logistic regression model
based on Approximate HE for identifi-
cation of cardiopathies

- 61.72 Genomics

Bajard et al. [8] SVM FHE LIBSVM

Techniques for improving efficiency in
SVM models based on FHE for

Financial,
Medical Informatics,
Comput. Sci.

•Credit card approval - 86.32

•Sonar signals - 89.58

•Diabetes diagnosis - 76.79

•Heart Disease - 81.43

Park et al. [21] SVM FHE HEAAN

FHE-based algorithm for a SVM model
for

Financial,
Medical Informatics,
Comput. Sci.

•Liver disorders 73.00 73.00

•Credit risks 69.00 69.00

•Heart disease 85.00 85.00

•Diabetes diagnosis 73.00 73.00

•Sonar signals 88.00 88.00

Sarkar et al. [20] Logistic Regression and
Neural Network PHE - Privacy-preserving genotype imputa-

tion technique - - Comput. Sci.

Cheon et al. [18] Logistic Regression HE HEML [29] Ensemble method based on HE for lo-
gistic regression - - Comput. Sci.

Vizitiu et al. [7] Neural Network FHE - Privacy-preserving deep learning 98.20 98.20 Medical Informatics

Han et al. [22] Logistic Regression FHE -

Logistic regression on fully homomor-
phically encrypted data applied to Financial and

Comput. Sci.•Credit rating - 80.00

•Image processing - 96.40

Marcano et al. [14] Convolutional Neural
Network FHE - Privacy-preserving model for image

recognition - - Comput. Sci

Han et al. [19] Naive Bayes FHE HEAAN Privacy-preserving classifier for breast
cancer - 97.80 Medical Informatics

3. Preliminaries

In this section, we present information on homomorphic encryption and security notions.

3.1. Homomorphic Encryption

HE permits computation directly on encrypted data without deciphering it [30]. Gen-
erally, an HE scheme has four functions: KeyGen, Enc, Dec, and Eval [31]. First, the function
KeyGen generates the public and secret keys. The equation is presented as follows:

(pk, sk)←− KeyGen() (1)

where pk is the public key and sk is the secret key.

Appl. Sci. 2024, 14, 9876 6 of 22

The function Enc performs an encryption operation. The following equation represents
the transformation from plaintext into ciphertext:

c←− Enc(pk, p) (2)

where c is a ciphertext, pk is the public key, and p is a plaintext.

The function Dec performs a decryption operation. The following equation represents
the transformation from ciphertext into plaintext:

p←− Dec(sk, c) (3)

where p is a plaintext, sk is the secret key, and c is a ciphertext.

HE schemes also have the function Eval. This function evaluates a circuit (e.g., a
machine learning model). The equation is presented as follows:

Eval(pk, C, c0, . . . , cn) (4)

where pk is the public key, C is a circuit, and c0, . . . , cn = Enc(pk, p0, . . . , pn).

As a result, the following equation establishes that the result of circuit C on plaintext
is equal to performing the Enc, Eval, and Dec functions:

Dec(sk, Eval(pk, C, Enc(pk, p0, . . . , pn))) = C(p0, . . . , pn) (5)

Depending on the type and number (depth) of operations, HE schemes can be classified
as Partially Homomorphic Encryption, Somewhat Homomorphic Encryption (SHE), and
Fully Homomorphic Encryption. The following is a short description of the schemes
mentioned above.

3.1.1. Partially Homomorphic Encryption

PHE allows performing an unlimited number of a single type of allowed operations
on encrypted data. The algorithms used for applications in which PHE schemes are applied
support only additions or multiplications, not both. Among the major PHE schemes are
RSA, GM, El-Gamal, Benaloh, NS, OU, Pailier, DJ, KTX, and Galbraith [32].

3.1.2. Somewhat Homomorphic Encryption

SHE allows performing a limited number of available evaluation operations. The
weakness of this scheme is that the maximum number of operations is limited because the
size of the ciphertext increases with each operation. Concerning SHE schemes, the major
ones are Yao, SYY, BGN, and IP [32].

3.1.3. Fully Homomorphic Encryption

FHE permits performing an unlimited number of operations from the available ones.
Different research areas have received FHE because of its applicability in real-life ap-
plications. Also, because of its mathematical concepts, implementing FHE schemes is
complex. The major schemes are Ideal Lattice-based, Over Integers, RLWE-based, and
NTRU-like [32].

Section 4.3 will mention the type of Homomorphic Encryption used in our privacy-
preserving scheme and the justification for selecting it.

3.2. Security Notions

A security notion guarantees that any cryptographic construction to be implemented
is secure enough given a certain environment. A security notion combines a security goal
and an attack model. The following are the major security goals.

Appl. Sci. 2024, 14, 9876 7 of 22

3.2.1. Indistinguishability

Indistinguishability is a security notion that establishes whether a Public-Key Encryp-
tion (PKE) is secure. If a cryptosystem has this notion, the adversary cannot distinguish
cyphertexts from plaintexts. In cryptography, there are some security notions in terms of
indistinguishability [33].

• Indistinguishability under Chosen-Plaintext Attack (IND-CPA): This is the most basic
security notion. In this case, a passive (computationally limited) adversary, given a pk,
cannot distinguish the cyphertexts of a pair of messages.

• Indistinguishability under Chosen-Ciphertext Attack (IND-CCA): This is the standard
security notion for PKE. In this case, an active adversary, given a pk and even a
decryption oracle, cannot distinguish the cyphertexts of a pair of messages.

3.2.2. Non-Malleability

Non-Malleability is a security goal in which the adversary cannot create a new cypher-
text (c2) from an original cyphertext (c1) that comes up with a new plaintext (p2) that is
meaningfully related to the original plaintext (p1). Similar to Indistinguishability, there are
some security notions in terms of Non-Malleability based on the CPA and CCA attacks:
NM-CPA and NM-CCA.

4. Materials and Methods

In this section, we present a risk level prediction system for traffic accident prevention,
its security risks, and a security approach for it.

4.1. Risk Level Prediction System for Traffic Accident Prevention

Our system is based on in-vehicle and infrastructure domains. The in-vehicle domain
consists of Onboard Units (OBUs) and Application Units (AUs) installed in the vehicles,
and the infrastructure domain consists of vehicles equipped with OBUs and AUs that can
communicate with external networks through Roadside Units (RSUs). This system uses
Amazon Web Service (AWS) services for storage, processing, model training, and deploying
information. This system consists of three components or modules called agents. Those
agents are built on vehicular scanners, Global Positioning System (GPS) receptors, heart
rate and oxygen saturation monitors, cloud services, and mobile apps. Figure 1 presents
the architecture of the Risk Level Prediction System.

Figure 1. Architecture of the Risk Level Prediction System.

Appl. Sci. 2024, 14, 9876 8 of 22

The Risk Level Prediction System consists of three main agents: acquisition, processing,
and response.

First, the acquisition agent is a mobile app that recollects data from an On-board
Diagnostic (OBD) scanner, GPS receptor, and a smartwatch to track the driver’s heart
rate. It also retrieves information from a weather service and a traffic accident database to
collect data on weather conditions and the number of accidents in a specific location. The
acquisition agent uses the current releases of AccuWeather, S3, and DynamoDB services.

Second, the processing agent is a cloud-based tool that processes driving data (driver
and vehicle information, weather conditions, traffic accidents, and road characteristics)
and returns the risk level through machine learning models. The processing agent uses the
current releases of S3, Sagemaker, and DynamoDB services.

Finally, the response agent is a mobile app that mainly retrieves the traffic accident
risk level from the processing agent and presents it to the drivers using notifications and
alerts. The response agent relies on the current release of DynamoDB service.

4.2. The Privacy-Preserving Scheme
4.2.1. Problem Definition

Considering the system architecture, vehicles, roadside units, and cloud services
exchange messages with each other. Malicious adversaries can intercept those messages,
which include sensitive information such as date, time, location data, vehicle ID, driver’s
ID, and more information that can be inferred. For instance, adversaries can determine
the routes and schedules used by their victims using vehicle location and the message
timestamp. Adversaries could identify the vehicle and establish a driver’s profile. This
information could even be sold to criminals who could use it to kidnap the driver and steal
the vehicle in the worst-case scenario.

4.2.2. Adversary Model

According to the system architecture (Figure 2), the adversaries can be located within
or outside of the Vehicular Ad-Hoc Network (VANET), in any other network (e.g., a mobile
network), or the cloud service network. In other words, they can be part or not of a
network and can be an authorized or unauthorized user. Depending on the location of
the adversaries, they can perform different attacks. For instance, when adversaries are
in the middle of the communication between the vehicles and roadside units, they can
perform a Man-in-the-Middle (MitM) attack. Similarly, they can perform a replay attack
by eavesdropping the communication channel to intercept messages, which they will then
fraudulently resend. Additionally, they can perform a tampering attack by maliciously
altering the messages exchanged between vehicles and roadside units.

Our adversary model considers adversaries Type I, II, III, and IV with their assump-
tions and capabilities. These adversaries can act like honest but curious or malicious users.
Table 2 presents the adversary model. A description of those types is presented as follows.

• Type I is an internal adversary who is an authorized user of a VANET. They can act
like an honest and curious adversary and listen to the communication channel to
intercept messages.

• Type II is an external adversary who is not an authorized user of a VANET and
is located between the VANET and a roadside unit. They can perform Tampering,
Impersonation, MitM, Denial of Service (DoS), Replay, and other attacks.

• Type III is an external adversary who uses any other network, for instance, the Internet.
They can perform DoS, Malware Injection, and other attacks.

• Type IV is an internal adversary who is an authorized user of the cloud service provider
network. Similarly to Type 1, they can act like an honest and curious adversary.

Appl. Sci. 2024, 14, 9876 9 of 22

Figure 2. Location of adversaries into the system architecture.

Table 2. Adversary model.

Class Scope Target Assumptions Capabilities

Type I Internal VANET Member of the ve-
hicular network

They can only listen to chan-
nel communication and inter-
cept messages

Type II External VANET Not a member of the
vehicular network

They can perform Tampering,
Impersonation, MitM, DoS,
Replay, and other attacks.

Type III External DSRC/CV2X Member of the any
other network

They can perform DoS,
Hijacking, Malware Injection,
Side-Channel, Man-in-the-
Cloud, and other attacks.

Type IV Internal
Cloud
Service
Provider

Member of the
cloud service
provider network

They can only listen to chan-
nel communication and inter-
cept messages.

4.3. Our Security Approach

Considering that, first, approximately one of every two proposals use any cryptog-
raphy to improve their security [34], and second, the messages circulating in the telecom-
munications infrastructure include sensitive information, and also taking into account that
adversaries with specific capabilities can compromise security requirements, we consider
the cryptographic mechanisms as a solution to guarantee the confidentiality and integrity
of the information.

Appl. Sci. 2024, 14, 9876 10 of 22

We initially considered using public key cryptography. While it could work, there is
a risk of authorized adversaries within the cloud service provider network intercepting
sensitive information once it is unencrypted to be processed. Then, we analyzed the imple-
mentation of a cryptography computing technique, specifically HE, as a solution. Despite
the high computational cost of using HE, we chose this technique because we need to per-
form operations over encrypted data. Also, using this type of cryptography would prevent
internal or external adversaries from seeing the content of the messages, which is possible
because the processing would be done over encrypted data. Thus, our privacy-preserving
scheme will be based on Homomorphic Encryption, specifically Fully Homomorphic En-
cryption. We chose FHE rather than Partially or Somewhat Homomorphic Encryption
because it can perform unlimited evaluation operations from many available operations.

Referring to the Risk Level Prediction System for Traffic Accident Prevention, our
scheme will permit encrypting the outgoing data provided by the acquisition agent, pro-
cessing that encrypted data through the processing agent with its encrypted learning model,
and sending back the encrypted result to the response agent. This circuit is performed
without decrypting the data at any time. Figure 3 presents our privacy-preserving scheme
for the learning model.

Figure 3. Privacy-preserving scheme for the learning model.

4.3.1. Privacy-Preserving Scheme Algorithms

We develop two algorithms that involve quantizing, encrypting, inferring, decrypting,
and de-quantizing tasks. Algorithm 1 is designed for the client side, while Algorithm 2
is designed for the server side. Algorithm 1 starts with generating secret and evaluation
keys through the KeyGen method. Then, the evaluation key is sent to the server through
the SendKey method. Once the client receives the confirmation from the server, the input
data are quantized (Quantization transforms values from a continuous domain R (Real
numbers) to a discrete domain I (Integers)) through the QuantizeInput method and then
the input data are encrypted through Encrypt method. Encrypted input is sent to the server
to predict the output through MakeInference method. Finally, the client must wait until
the server returns the encrypted output to decrypt and de-quantize it through Decrypt
and DequantizeInput methods. As for Algorithm 2, it consists of two methods: SaveKey
and MakeInference. SaveKey is responsible for storing the evaluation key sent from the
client, while MakeInference predicts the output using the evaluation key and sends back
the encrypted message containing the result to the client.

Appl. Sci. 2024, 14, 9876 11 of 22

Algorithm 1 Tasks on the client side.

Require: Message input, Message output
Ensure: int riskLevel

1: Initialize: boolean newKeys⇐ True, boolean received⇐ False, riskLevel⇐ 0;
2: (secretKey, evalKey)⇐ KEYGEN(newKeys);
3: received⇐ SAVEKEY(evalKey); ▷ Waiting for server response
4: quantized⇐ QUANTIZEINPUT(input);
5: encrypted⇐ ENCRYPT(secretKey, quantized); ▷ It uses FHE
6: if received = True then
7: output⇐ MAKEINFERENCE(encrypted); ▷ Waiting for server response
8: if output ̸= None then
9: decrypted⇐ DECRYPT(secretKey, result);

10: riskLevel⇐ DEQUANTIZEINPUT(decrypted);
11: end if
12: end if

Algorithm 2 Tasks on the server side.

1: Initialize: boolean evalKey⇐ None, int riskLevel = 0, Message output⇐ None;
2: function SAVEKEY(key)
3: evalKey⇐ key;
4: return True
5: end function
6: function MAKEINFERENCE(input)
7: if evalKey ̸= None then
8: output⇐ PREDICT(evalKey, input);
9: end if

10: return output
11: end function

4.3.2. Secrecy Proofs

The following lemmas and proofs demonstrate that our proposed scheme is secure
under our Section 4.2.2. Thus, we declare four lemmas and their respective proofs.

Lemma 1. Given a vehicular network V , a cloud provider network C, a set of authorized users of V
(Uv), a user u ∈ Uv, a pair of messages (mi , mo) ∈M, a server s ∈ C, and an adversary A such
that A ∈ Uv (Type I according to our Section 4.2.2), our algorithm guarantees that mi sent by u
from V to C or mo sent by s from C to V are IND-CPA secure even if A intercepts mi or mo in V .

Proof of Lemma 1. Let sku be the secret key of u, eku be the evaluation key of u, and a
pair of messages (mi, mo) such that (mi, mo) ∈ M. First, u sends eku to s in C where the
encrypted learning model is hosted (Algorithm 1 line 3 and Algorithm 2 line 2). Second, u
encrypts mi using sku and FHE (Algorithm 1 line 5). Third, u sends the encrypted message
cmi to s. Fourth, s makes an inference using the encrypted model and returns the result in
cmo to u (Algorithm 1 line 7 and Algorithm 2 line 6). It is assumed that A is located in V
and A can listen to the communication channel. Finally, since A ∈ Uv, A intercepts (cmi or
cmo) and eku and tries to decrypt cmi or cmo . However, A cannot decrypt cmi or cmo because
sku is required (Algorithm 1 line 9). Given that the FHE algorithm is IND-CPA [35], our
algorithm guarantees that mi sent by u from V to C or mo sent by s from C to V are secure
even if A intercepts mi or mo in V .

Lemma 2. Given a vehicular network V , a cloud provider network C, a set of authorized users of
V (Uv), a user u ∈ Uv, another vehicular network Z , a set of authorized users of Z (Uz), a pair of
messages (mi , mo) ∈M, a server s ∈ C, and an adversary A such that A ∈ Uz, but A /∈ Uv (Type

Appl. Sci. 2024, 14, 9876 12 of 22

II according to our Section 4.2.2), our algorithm guarantees that mi sent by u from V to C or mo
sent by s from C to V are IND-CPA secure even if A intercepts mi or mo in Z .

Proof of Lemma 2. Let sku be the secret key of u, eku be the evaluation key of u, and a
pair of messages (mi, mo) such that (mi, mo) ∈ M. First, u sends eku to s in C, where the
encrypted learning model is hosted (Algorithm 1 line 3 and Algorithm 2 line 2). Second, u
encrypts mi using sku and FHE (Algorithm 1 line 5). Third, u sends the encrypted message
cmi to s. Fourth, s makes an inference using the encrypted model and returns the result
in cmo to u (Algorithm 1 line 7 and Algorithm 2 line 6). It is assumed that A is located in
Z and A perform any attack to gain privileges in V . Finally, A intercepts cmi or cmo and
eku and tries to decrypt cmi or cmo . However, A cannot decrypt cmi or cmo because sku is
required (Algorithm 1 line 9). Given that the FHE algorithm is IND-CPA, our algorithm
guarantees that mi sent by u from V to C or mo sent by s from C to V are secure even if A
intercepts mi or mo in Z .

Lemma 3. Given a vehicular network V , a cloud provider network C, a set of authorized users
of V (Uv), a user u ∈ Uv, the Internet network I , a set of authorized users of I (Ui), a pair of
messages (mi , mo) ∈M, a server s ∈ C, and an adversary A such that A ∈ Ui, but A /∈ Uv (Type
III according to our Section 4.2.2), our algorithm guarantees that mi sent by u from V to C or mo
sent by s from C to V are IND-CPA secure even if A intercepts mi or mo in any place of I .

Proof of Lemma 3. Let sku be the secret key of u, eku be the evaluation key of u, and a
pair of messages (mi, mo) such that (mi, mo) ∈ M. First, u sends eku to s in C where the
encrypted learning model is hosted (Algorithm 1 line 3 and Algorithm 2 line 2). Second, u
encrypts mi using sku and FHE (Algorithm 1 line 5). Third, u sends the encrypted message
cmi to s. Fourth, s makes an inference using the encrypted model and returns the result in
cmo to u (Algorithm 1 line 7 and Algorithm 2 line 6). It is assumed that A is located in any
place of I andA perform any attack to intercept information of V . Finally,A intercepts (cmi

or cmo) and eku and tries to decrypt cmi or cmo . However, A cannot decrypt cm because sku
is required (Algorithm 1 line 9). Given that the FHE algorithm is IND-CPA, our algorithm
guarantees that mi sent by u from V to C or mo sent by s from C to V are secure even if A
intercepts mi or mo in I .

Lemma 4. Given a vehicular network V , a set of authorized users of V (Uv), a user u ∈ Uv, a cloud
provider network C, a set of authorized users of C (Uc), a pair of messages (mi, mo) ∈M, a server s
∈ C, and an adversary A such that A ∈ Uc, but A /∈ Uv (Type IV according to our Section 4.2.2),
our algorithm guarantees that mi sent by u from V to C or mo sent by s from C to V are IND-CPA
secure even if A intercepts mi or mo in C.

Proof of Lemma 4. Let sku be the secret key of u, eku be the evaluation key of u, and a
pair of messages (mi, mo) such that (mi, mo) ∈ M. First, u sends eku to s in C, where the
encrypted learning model is hosted (Algorithm 1 line 3 and Algorithm 2 line 2). Second, u
encrypts mi using sku and FHE (Algorithm 1 line 5). Third, u sends the encrypted message
cmi to s. Fourth, s makes an inference using the encrypted model and returns the result in
cmo to u (Algorithm 1 line 7 and Algorithm 2 line 6). It is assumed thatA is located in C and
A can listen to the communication channel. Finally, since A ∈ Uc, A intercepts (cmi or cmo)
and eku and tries to decrypt cmi or cmo . However, A cannot decrypt cmi or cmo because sku
is required (Algorithm 1 line 9). Given that the FHE algorithm is IND-CPA, our algorithm
guarantees that mi sent by u from V to C or mo sent by s from C to V are secure even if A
intercepts mi or mo in C.

4.3.3. Complexity Analysis

In this subsection, we analyze the complexity of our proposal.

Appl. Sci. 2024, 14, 9876 13 of 22

Data Preprocessing

We preprocessed the data by performing tasks such as filtering relevant columns. This
process is performed in polynomial time, i.e., O(n), where n is the number of elements or
size of the input. There is no significant computational overhead at this stage.

FHE Complexity

Since our security approach uses FHE, one has to analyze the complexity of the
following steps: Key Generation (Algorithm 1-line 2), Compiling (Algorithm 1-line 4),
Encryption 1-line 5, and Inference (Algorithm 2-line 6).

• Key Generation: For Homomorphic Encryption, the key generation process involves a
polynomial operation depending on the security level (number of bits) [36]. Then, the
complexity of this step is O(b), where b is the number of bits used according to the
security level.

• Compiling: The compilation process in FHE refers to preparing a model (such as a
decision tree or neural network) to be used in encrypted form, specifically transforming
it into a format where computations can be performed homomorphically [37]. The
model compilation phase involves operations like quantization, ciphertext packing,
and transformation of operations into homomorphic equivalents. This compilation
task has a quadratic time complexity as encryption is applied to each element [36].
Then, the complexity of this step is O(n2), where n is the number of elements or size
of the input.

• Encryption: We use a privacy-preserving machine learning framework to implement
our scheme (see Section 5.2.2). This framework uses TFHE (Torus Fully Homomorphic
Encryption) [36] or similar lattice-based encryption schemes. The complexity of
encrypting a message in TFHE is typically linear in the size of the plaintext (which is
impacted by the quantization bit-width), and polynomial in the security parameter [37].
Then, for this framework, the encryption complexity is O(n × λ), where n is the
number of bits in the quantized plaintext, i.e., size of the input (e.g., a 4-bit or 8-bit
quantized value), and λ is the security parameter, which typically grows with the
required level of encryption strength.

• Inference: In this framework, the complexity of FHE-based inference is the sum of the
complexities of the individual operations required for the model and the complexity
of the homomorphic operations. For decision trees, for instance, the complexity per
prediction depends on the depth d of the tree, i.e., the complexity of the unencrypted
model is O(d). Next, in the encrypted model, since each comparison and decision
involves homomorphic operations, the complexity of a single prediction is O(d× λ2),
where d is the depth of the decision tree and λ2 represents the cost of each homomor-
phic operation. That is, the complexity is quadratic in the security parameter (λ2) [37]
and linear in the depth d of the tree or the complexity model that is being used.

5. Experiments

In this section, we describe the design, configuration, and implementation of the
experiments.

5.1. Design

We designed two sets of experiments, each one consisting of 16 experiments. Both
use a real driving dataset described in the Section 5.2.3. The first set uses models based on
Decision Trees (DT), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Multilayer
Perceptron (MLP), and their equivalent homomorphic models. The first set uses two types
of model configurations (default and optimal), which can be encrypted or unencrypted.
The second set uses models based only on RF. In total, we conduct 32 experiments as
part of this work. Finally, we use cross-validation with three folds to obtain the optimal
configurations for the models, and we split the data into 70% for training and 30% for
testing to evaluate models.

Appl. Sci. 2024, 14, 9876 14 of 22

5.2. Setup
5.2.1. Computer Specs and Software

We performed all the experiments on a computer with an AMD Ryzen 5 processor
(Advanced Micro Devices, Inc., Santa Clara, CA, USA) (6 cores and 12 threads) at 2.10 GHz,
34 GB of RAM, and one GPU (Radeon Graphics card) (Advanced Micro Devices, Inc., Santa
Clara, CA, USA) at 1.8 GHz. The computer, equipped with a Windows 11 operating system,
required additional software such as Docker (4.23.0) [38], WSL (2) [39], Python (3.8.10) [40],
and glibc (2.31) [41].

5.2.2. Specialized Libraries

Our scheme uses Concrete ML (1.16) [42], a PPML set of tools based on Fully Ho-
momorphic Encryption, to convert the learning model to its FHE equivalent. There is a
Docker container, which includes all the software to run Concrete ML. This library is also
available via the packet manager for Python (pip) [43]. An installation guide is available
on the Concrete ML website. Its current version (1.6) supports the Python versions 3.8,
3.9, and 3.10. Our scheme also uses pandas (1.4.4) [44] for data analysis and manipulation,
scikit-learn (1.1.13) [45] for building machine learning and neural network models, and
pytorch (1.13.1) [46] for deep learning using graphics processing units (GPU).

5.2.3. Datasets

We used the public-access driving dataset POLIDriving [47] to train and test the
learning models. POLIDriving contains more than 61 K observations, 32 attributes from
five heterogeneous sources, and four classes (low, medium, high, and very high) rep-
resenting the levels of risk of suffering a traffic accident. It includes time, speed, rpm,
throttle position, engine temperature, engine load value, heart rate, current weather, visibil-
ity, precipitation, accidents on site, design speed, accidents by time, and others. For the
experiments, we selected 1980 labeled observations and 14 attributes.

5.2.4. Models

Considering the algorithms/models used in related works (Table 1) and the available
built-in models on Concrete ML, we considered tree-based models and neural networks.
Thus, we chose Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting
(XGB) among tree-based models and Fully Connected (FCNN) among neural networks.

5.3. Configurations

The best configurations for the learning models were found after performing hyperpa-
rameter tuning. The hyperparameters and values for the learning models are presented as
follows (Table 3). We provide four configurations for each model. The first two refer to the
default and the optimal configuration for the unencrypted model, and the other two for the
encrypted model. Some configurations include hyperparameters that are only applied to
encrypted models.

Table 3. Configurations for encrypted and unencrypted learning models.

Algorithm Configuration Hyperparameters

1
Decision Tree

Default criterion=‘gini’, max_depth=None, min_samples_leaf=1, min_samples_split=2,
splitter=‘best’, random_state=42, *n_bits=6

2 Optimal criterion: ‘gini’, max_depth=15, min_samples_leaf=1, min_samples_split=2, split-
ter=‘best’, random_state=42, *n_bits=5

Appl. Sci. 2024, 14, 9876 15 of 22

Table 3. Cont.

Algorithm Configuration Hyperparameters

3
Random Forest

Default criterion=‘gini’, max_depth=4, max_features=‘sqrt’, min_samples_leaf=1,
min_samples_split=2, n_estimators=20, random_state=42, n_jobs=1, *n_bits=6

4 Optimal criterion=‘entropy’, max_depth=15, max_features=‘sqrt’, min_samples_leaf=1,
min_samples_split=2, n_estimators=10, random_state=42, n_jobs=1, *n_bits=4

5
XGBoost

Default learning_rate=None, max_depth=3, n_estimators=20, random_state=42, n_jobs=1,
*n_bits=6

6 Optimal learning_rate=0.1, max_depth=15, n_estimators=10, random_state=42, n_jobs=1,
*n_bits=5

7
FCNN

Default hidden_layers=1, activation_function=None, criterion=‘entropy’, opti-
mizer=‘adam’, learning_rate=0.01, max_epochs=10

8 Optimal hidden_layers=2, activation_function=‘relu’, criterion=‘entropy’, optimizer=‘adam’,
learning_rate=0.01, max_epochs=100, *n_w_bits=4, *n_a_bits=4

* Only for encrypted models. criterion refers to the quality of a split. max_epochs is the maximum # of iterations.
random_state control the randomness of data or splitting. n_jobs is the # of jobs to run in parallel. n_bits is the #
of bits for quantization.

5.4. Key Performance Metrics

We use the metrics shown in Table 4 to evaluate the unencrypted and encrypted models.

Table 4. Key performance metrics.

Metric
Description

Unencrypted Model Encrypted Model

Training time It refers to the time it takes to train
the learning model.

It refers to the time it takes to train
the learning model using unen-
crypted data.

Compiling time Not applicable.

It refers to the time it takes to con-
vert a model into a code machine
that executes the same model
over encrypted data.

Key generation time Not applicable.
It refers to the time spent gener-
ating the keys for encrypting and
decrypting information.

Inference time It refers to the time it takes to per-
form the predicting task.

It refers to the time it takes to
perform quantizing, encrypting,
predicting, decrypting, and de-
quantizing tasks.

Accuracy
It refers to the number of correct
predictions about the total num-
ber of predictions.

It refers to the number of correct
predictions about the total num-
ber of predictions.

6. Results

We evaluated the models using the metrics described in Section 5.4. Thus, Table 5
presents the results of the experiments using the POLIDriving dataset, and Table 6 presents
the results of evaluating a Random Forest-based model using different configurations.

Appl. Sci. 2024, 14, 9876 16 of 22

Table 5. Experimental results using the POLIDriving dataset.

Experiment Algorithm Encrypted Configuration
Training

Time
Compiling

Time
Key Gen.

Time
Inference

Time Accuracy

[s] [s] [s] [s/Sample]

1

Decision Tree

No
Default 0.157 - - 0.000078 82.0

2 Optimal 0.136 - - 0.000056 85.9

3
Yes

Default 0.126 2.440 0.784 17.959156 82.0

4 Optimal 0.126 2.482 0.744 18.139494 85.9

5

Random Forest

No
Default 0.136 - - 0.000016 69.7

6 Optimal 0.835 - - 0.000672 85.0

7
Yes

Default 0.133 2.345 0.867 12.965843 69.7

8 Optimal 0.990 8.496 0.758 181.197287 85.0

9

XGBoost

No
Default 0.274 - - 0.000029 81.5

10 Optimal 0.983 - - 0.000622 84.8

11
Yes

Default 0.218 2.413 0.853 24.494245 81.5

12 Optimal 1.249 7.523 0.644 207.799554 84.8

13
No

Default 1.255 - - 0.000015 71.0

14 Fully Connected Optimal 11.860 - - 0.000041 80.1

15 Neural Network
Yes

Default 1.243 1.928 1.391 2.484339 71.0

16 Optimal 13.033 3.615 3.966 8.476462 80.1

Both unencrypted and encrypted models are trained using unencrypted data, resulting
in no significant difference in training time between them. For instance, the decision tree-
based model (Table 5, Experiments 2 and 4) reached training times of 0.136 and 0.126 s, the
Random Forest-based model (Expts. 6 and 8) reached training times of 0.835 and 0.990 s,
the XGBoost-based model (Expts. 10 and 12) reached training times of 0.983 and 1.249 s,
and the FCNN-based model (Expts. 14 and 16) reached training times of 11.860 and 13.033 s
According to Concrete ML, model training includes a quantization task performed after or
before the training itself, depending on the model type. In that way, the models generated
by Concrete ML experience higher training times than scikit-learn models.

Concerning compiling times, the decision tree-based model (Table 5, Expts. 3 and 4)
obtained times of 2.440 s and 2.482 s using a default and optimal configuration, respectively.
Compiling times are similar in this case because of the similarity of the configurations.
For the other models that use optimal configurations, the compiling times are higher than
models using default configurations. For instance, the Random Forest-based model (Expts.
7 and 8) obtained times of 2.345 and 8.496 s, the XGBoost-based model (Expts. 11 and 12)
obtained times of 2.413 and 7.523 s, and the FCNN-based model (Expts. 15 and 16) obtained
1.928 and 3.615 s.

The key generation times for the tree-based models are similar (>0.6 and <0.9 s). Those
models reached values of 0.784 (Table 5, Expt. 3), 0.744 (Expt. 4), 0.867 (Expt. 7), 0.758
(Expt. 8), 0.853 (Expt. 11), and 0.644 s (Expt. 12) using default and optimal configurations.
In the case of the neural network-based models, there is a considerable increase compared
to the results of the previous models. These last models reached values of 1.391 (Expt. 15)
and 3.966 s (Expt. 16).

As expected, inference times are much higher in encrypted models than unencrypted
ones. The results show that these differences are extremely high for some experiments,
especially for the Random Forest and XGBoost-based models. For instance, Decision Tree-
based models obtained times of 0.000078 (Table 5, Expt. 1) and 17.959156 s (Expt. 3) for
unencrypted and encrypted models, respectively. However, the XGBoost-based models

Appl. Sci. 2024, 14, 9876 17 of 22

reached times of 0.000622 (Expt. 10) and 207.799 s (Expt. 12). The best results were obtained
from the FCNN-based models, which reached values of 0.000041 (Expt. 14) and 8.476 s
(Expt. 16).

Concerning the accuracy of the models, the results show no difference between en-
crypted and unencrypted ones. For instance, the Decision Tree-based models show an
accuracy of 82.0 (Table 5, Expts. 1 and 3) for the unencrypted and encrypted models; the
Random Forest-based models show an accuracy of 85.0 (Expts. 6 and 8) for both models;
and the XGBoost-based models show accuracies of 84.8 (Expts. 10 and 12) for the unen-
crypted and encrypted models. Figure 4 presents a comparative analysis of the encrypted
models using optimal configurations.

Additionally, we performed experiments to verify how the complexity of encrypted
models affects the evaluation metrics. We chose the model based on RF because the
difference in accuracy between the model using the default configuration and the one
using the optimal configuration is greater, so any trend in values can be identified more
easily. We also chose two parameters for hyperparameter tuning: depth and estimators.
The results of these experiments are shown in Table 6, and the analysis of these results and
the trends of each of the evaluation metrics are shown in Figure 5. Since it is difficult to
determine if a configuration makes the model more or less complex than another when
both parameters are increasing, we grouped the experiments into different sets (Groups 1
to 4). In these sets, only one of both parameters increases, so it is easy to determine that the
current configuration makes the model more complex than the previous one.

Table 6. Evaluation of an FHE-based Random Forest model using different configurations.

Experiment Group
Parameters Training

Time
Compiling

Time
Key Generation

Time
Inference

Time Accuracy

Depth Estimators [s] [s] [s] [s]

1

1

5 5 0.155 1.987 0.747 5.267986 68.5

2 5 10 0.159 2.116 0.711 10.328380 69.7

3 5 20 0.312 3.299 0.719 21.743675 73.9

4 5 30 0.300 2.498 0.778 34.756006 74.4

5

2

10 5 0.359 3.801 0.545 64.507635 79.6

6 10 10 0.542 5.642 0.501 132.744697 83.7

7 10 20 1.093 10.623 0.554 266.056506 85.7

8 10 30 1.793 14.107 0.521 410.044873 86.9

9

3

20 5 0.533 6.089 0.562 98.318843 81.0

10 20 10 1.255 9.475 0.533 187.311936 83.5

11 20 20 2.903 17.774 0.531 257.538898 85.2

12 20 30 2.992 21.486 0.642 697.009592 84.5

13

4

30 5 0.550 5.317 0.518 71.353805 81.0

14 30 10 1.026 10.651 0.559 149.668607 83.5

15 30 20 2.189 15.220 0.537 294.049088 85.2

16 30 30 3.072 22.392 0.653 805.031174 84.5

RandomForest (max_depth=depth, n_estimators=estimators, criterion=‘entropy’, random_state=42, n_bits=4,
n_jobs=1).

The results confirmed that the values of the metrics (training, compiling, and inference
times) increase as the model gets more complex. For instance, Group 2 (Expts. 8–12) goes
from 0.359 to 1.793 s for training time, from 3.801 to 14.107 s for compiling time, and from
64.507 to 410.044 s for inference time. In the case of key generation time, it is not affected

Appl. Sci. 2024, 14, 9876 18 of 22

largely by the hyperparameter tuning. Those times vary between 0.501 s and 0.778 s. As
can be seen in Figure 5, key generation time remains stable for all the experiments.

Figure 4. Analysis of the results obtained in evaluating the encrypted models using their optimal
configurations (Table 5).

Figure 5. Analysis of the results obtained in evaluating the encrypted model based on Random Forest
(Table 6).

Considering that the model used in Experiment 1 (Table 6) is less complex in terms of
the number of depths and estimators and the one used in Experiment 8 is more complex,
we identified an ascending trend in accuracy (see Figure 5). Thus, it increased from 68.5
(depth = 5, estimators = 5) to 86.9 (depth = 10, estimators = 30). The other metrics also
suffered increases; some increases were huge. For instance, the compiling time increased
from 1.987 (Expt. 1) to 14.107 s (Expt. 8), and the inference time increased from 5.267 to
410.044 s (see Figure 5).

Appl. Sci. 2024, 14, 9876 19 of 22

7. Discussion

The inference times for encrypted models in all experiments are very high and un-
thinkable for real-time applications. In the first experiments, the results show a linear
increase between inference time and model complexity; however, it turns to an exponen-
tial relation as model complexity keeps increasing. It is important to mention that the
experiments were performed on a desktop computer with limited resources rather than
on a high-performance server. Undoubtedly, these times will significantly decrease on a
powerful server.

As expected, the unencrypted and encrypted models with the same configurations
reach similar accuracy values. This result demonstrates the correct operation of Homomor-
phic Encryption in the learning models. Also, we noted a slight improvement in accuracy
as hyperparameters change their values, which could be obvious as we are looking for the
best configuration for the models; however, the inference time is greatly affected by tuning
the models. This fact demonstrates that a complex model with better accuracy would affect
the model performance by greatly increasing the inference time.

The time required to generate keys for tree-based models remains almost constant even
if hyperparameters increase their values, except for neural network-based models, where
the key generation time increases considerably. These results are expected since tree-based
models are more computationally efficient than neural network-based models, which are
more intensive. Similarly, training and compiling times vary as the hyperparameters vary.
Thus, training time varies smoothly, and compiling time varies greatly.

Considering all the issues discussed previously, ideally, the aim would be to build
a model that is so complex that its inference time is relatively low. In other words, there
must be a balance between model complexity and model performance regarding inference
time. Thus, the challenge is finding and tuning a model so that encryption, inference, and
decryption times are low and its accuracy high.

The proposed system performs well with smaller datasets, but its performance de-
pends on the hardware, particularly for the Fully Homomorphic Encryption (FHE) oper-
ations. As explained in the complexity analysis (Section 4.3.3), the system’s complexity
increases with larger datasets. However, the system’s scalability can be improved in cloud-
based environments by leveraging parallel processing and distributed computing. Each
critical stage—key generation, compilation, encryption, and inference—can be optimized
using cloud resources. While Homomorphic Encryption introduces significant overhead,
especially in terms of computation and encryption complexity, modern cloud infrastructure
allows these processes to be scaled across multiple nodes, improving efficiency without
compromising security. Furthermore, the system can be optimized by balancing the security
parameter λ against the desired performance, making it viable for large-scale applications.
Another alternative is the nascent field of Federated Learning, in which a decentralized and
distributed training process is performed to avoid sharing private data with a centralized
server and sharing the computational cost among the parties.

Among all encrypted models, we noted that the model based on FCNN with the opti-
mal configuration presents the best results, a balance between performance and efficiency.
Additionally, we considered that although training and compilation times are high, these
processes are performed only once during the model deployment. This model reached
the highest accuracy for the lowest inference time (see Figure 4). Considering only the
accuracy of the models, we confirmed that all other models obtained better accuracy values
than the model based on FCNN. As discussed previously, the high computational cost
can be resolved without problem using high-performance computational infrastructure.
Therefore, the models based on Decision Trees, Random Forests, and XGBoost should not
be discarded but should be contemplated in future analyses where this limitation has been
resolved. Generally, high-performance servers run real-time applications, so deploying a
real-time risk-level prediction system that counts with an additional security layer is fully
viable in terms of performance and efficiency.

Appl. Sci. 2024, 14, 9876 20 of 22

8. Conclusions and Future Work

We designed a privacy-preserving scheme for a traffic accident risk level prediction
system that guarantees information confidentiality by making it unreadable for adversaries
who can capture that information through an attack. This scheme is based on Fully
Homomorphic Encryption (FHE). It guarantees that incoming and outgoing data of the
prediction system are IND-CPA secure even if an attacker intercepts its data. Considering
the adversary model, our privacy-preserving scheme protects the system from adversaries
located in vehicular and cloud service provider networks and the Internet, as established
in secrecy lemmas and proofs.

The high computational cost of performing operations over encrypted data affected
the results, especially those related to inference time, which was as expected in line with
the Section 4.3.3. These results allowed us to determine the weaknesses and challenges
of implementing FHE. Despite these limitations, it is entirely feasible to implement FHE
over learning models. Implementing FHE on a high-performance server will dramatically
decrease the value of the key performance metrics. This scenario will even permit looking
for the model configuration that offers the best performance without worrying about
efficiency (shortest times).

Future work must include evaluating the privacy-preserving scheme using other
specialized libraries (e.g., Seal and OpenFHE). Additionally, this evaluation must be per-
formed in a production environment provided by a cloud service provider to confirm the
real values of the evaluation metrics. This evaluation will provide information to determine
how far the complexity of the learning model, at the expense of efficiency, is relevant. In
other words, if it is necessary to sacrifice the complexity of the learning model by getting
low response times.

Finally, we plan to implement federated learning on cloud service providers (e.g., Amazon
Web Service and Google Clouds) as an alternative for preserving data privacy. The idea is
that data vehicle and driver’s data, which include sensitive information such as vehicle
and driver’s ID and location, are processed into the acquisition modules. Information
from the other data sources (weather conditions, traffic accidents, and road geometric
characteristics), which do not include sensistive information and are public access, are
processed from the centralized server.

Author Contributions: Conceptualization, P.M. and G.S.; methodology, P.M. and G.S.; investigation,
P.M.; writing—original draft preparation, P.M.; writing—review and editing, P.M., G.S. and M.H.-Á.;
supervision, G.S. and M.H.-Á. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: Our recognition to VIIV (Vicerrectorado de Investigación, Innovación y Vincu-
lación) of Escuela Politécnica Nacional.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Marcillo, P.; Valdivieso Caraguay, Á.L.; Hernández-Álvarez, M. A Systematic Literature Review of Learning-Based Traffic

Accident Prediction Models Based on Heterogeneous Sources. Appl. Sci. 2022, 12, 4529. [CrossRef]
2. Yuan, Z.; Zhou, X.; Yang, T. Hetero-convlstm: A deep learning approach to traffic accident prediction on heterogeneous spatio-

temporal data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
London, UK, 19–23 August 2018; pp. 984–992.

3. Huang, T.; Wang, S.; Sharma, A. Highway crash detection and risk estimation using deep learning. Accid. Anal. Prev. 2020,
135, 105392. [CrossRef] [PubMed]

http://doi.org/10.3390/app12094529
http://dx.doi.org/10.1016/j.aap.2019.105392
http://www.ncbi.nlm.nih.gov/pubmed/31841865

Appl. Sci. 2024, 14, 9876 21 of 22

4. Basso, F.; Basso, L.J.; Bravo, F.; Pezoa, R. Real-time crash prediction in an urban expressway using disaggregated data. Transp.
Res. Part C Emerg. Technol. 2018, 86, 202–219. [CrossRef]

5. Glavić, D.; Mladenović, M.; Stevanovic, A.; Tubić, V.; Milenković, M.; Vidas, M. Contribution to accident prediction models
development for rural two-lane roads in Serbia. Promet-Traffic Transp. 2016, 28, 415–424. [CrossRef]

6. Kodepogu, K.; Manjeti, V.; Siriki, A. Machine learning for road accident severity prediction. Mechatron. Intell. Transp. Syst. 2023,
2, 211–226. [CrossRef]

7. Vizitiu, A.; Nitja, C.I.; Puiu, A.; Suciu, C.; Itu, L.M. Applying deep neural networks over homomorphic encrypted medical data.
Comput. Math. Methods Med. 2020, 2020, 3910250. [CrossRef]

8. Bajard, J.C.; Martins, P.; Sousa, L.; Zucca, V. Improving the efficiency of SVM classification with FHE. IEEE Trans. Inf. Forensics
Secur. 2019, 15, 1709–1722. [CrossRef]

9. Li, J.; Kuang, X.; Lin, S.; Ma, X.; Tang, Y. Privacy preservation for machine learning training and classification based on
homomorphic encryption schemes. Inf. Sci. 2020, 526, 166–179. [CrossRef]

10. Hong, S.; Park, J.H.; Cho, W.; Choe, H.; Cheon, J.H. Secure tumor classification by shallow neural network using homomorphic
encryption. BMC Genom. 2022, 23, 284 . [CrossRef]

11. Kim, A.; Song, Y.; Kim, M.; Lee, K.; Cheon, J.H. Logistic regression model training based on the approximate homomorphic
encryption. BMC Med. Genom. 2018, 11, 23–31. [CrossRef]

12. Kim, M.; Song, Y.; Wang, S.; Xia, Y.; Jiang, X. Secure logistic regression based on homomorphic encryption: Design and evaluation.
JMIR Med. Inform. 2018, 6, e8805. [CrossRef] [PubMed]

13. Popescu, A.B.; Taca, I.A.; Nita, C.I.; Vizitiu, A.; Demeter, R.; Suciu, C.; Itu, L.M. Privacy preserving classification of eeg data using
machine learning and homomorphic encryption. Appl. Sci. 2021, 11, 7360. [CrossRef]

14. Marcano, N.J.H.; Moller, M.; Hansen, S.; Jacobsen, R.H. On fully homomorphic encryption for privacy-preserving deep learning.
In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 1–6.

15. Wu, W.; Liu, J.; Wang, H.; Hao, J.; Xian, M. Secure and efficient outsourced k-means clustering using fully homomorphic
encryption with ciphertext packing technique. IEEE Trans. Knowl. Data Eng. 2020, 33, 3424–3437. [CrossRef]

16. Sun, X.; Zhang, P.; Liu, J.K.; Yu, J.; Xie, W. Private machine learning classification based on fully homomorphic encryption. IEEE
Trans. Emerg. Top. Comput. 2018, 8, 352–364. [CrossRef]

17. Lee, J.W.; Kang, H.; Lee, Y.; Choi, W.; Eom, J.; Deryabin, M.; Lee, E.; Lee, J.; Yoo, D.; Kim, Y.S.; et al. Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network. IEEE Access 2022, 10, 30039–30054. [CrossRef]

18. Cheon, J.H.; Kim, D.; Kim, Y.; Song, Y. Ensemble method for privacy-preserving logistic regression based on homomorphic
encryption. IEEE Access 2018, 6, 46938–46948. [CrossRef]

19. Han, B.; Kim, Y.; Choi, J.; Shin, H.; Lee, Y. Fully homomorphic privacy-preserving naive Bayes machine learning and classification.
In Proceedings of the 11th Workshop on Encrypted Computing & Applied Homomorphic Cryptography, Copenhagen, Denmark,
26 November 2023; pp. 91–102.

20. Sarkar, E.; Chielle, E.; Gürsoy, G.; Mazonka, O.; Gerstein, M.; Maniatakos, M. Fast and scalable private genotype imputation
using machine learning and partially homomorphic encryption. IEEE Access 2021, 9, 93097–93110. [CrossRef]

21. Park, S.; Byun, J.; Lee, J.; Cheon, J.H.; Lee, J. HE-friendly algorithm for privacy-preserving SVM training. IEEE Access 2020,
8, 57414–57425. [CrossRef]

22. Han, K.; Hong, S.; Cheon, J.H.; Park, D. Logistic regression on homomorphic encrypted data at scale. In Proceedings of the AAAI
Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 9466–9471.

23. Yu, S.; Lee, J.; Lee, K.; Park, K.; Park, Y. Secure authentication protocol for wireless sensor networks in vehicular communications.
Sensors 2018, 18, 3191. [CrossRef]

24. Syed, T.A.; Siddique, M.S.; Nadeem, A.; Alzahrani, A.; Jan, S.; Khattak, M.A.K. A novel blockchain-based framework for vehicle
life cycle tracking: An end-to-end solution. IEEE Access 2020, 8, 111042–111063. [CrossRef]

25. Liu, Y.; James, J.; Kang, J.; Niyato, D.; Zhang, S. Privacy-preserving traffic flow prediction: A federated learning approach. IEEE
Internet Things J. 2020, 7, 7751–7763. [CrossRef]

26. Kim, M. HELR. Available online: https://github.com/K-miran/HELR (accessed on 1 June 2024).
27. Microsoft. SEAL. Available online: https://github.com/microsoft/SEAL (accessed on 1 June 2024).
28. Halevi, S. HElib. Available online: https://github.com/homenc/HElib (accessed on 1 June 2024).
29. Kim, A. HEAAN. Available online: https://github.com/kimandrik/HEAAN (accessed on 1 June 2024).
30. Podschwadt, R.; Takabi, D.; Hu, P.; Rafiei, M.H.; Cai, Z. A survey of deep learning architectures for privacy-preserving machine

learning with fully homomorphic encryption. IEEE Access 2022, 10, 117477–117500. [CrossRef]
31. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on

Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.
32. Acar, A.; Aksu, H.; Uluagac, A.S.; Conti, M. A survey on homomorphic encryption schemes: Theory and implementation. ACM

Comput. Surv. (Csur) 2018, 51, 1–35. [CrossRef]
33. Faust, S.; Masny, D.; Venturi, D. Chosen-ciphertext security from subset sum. In Public-Key Cryptography–PKC 2016, Proceedings of

the 19th IACR International Conference on Practice and Theory in Public-Key Cryptography, Taipei, Taiwan, 6–9 March 2016; Proceedings,
Part I; Springer: Berlin/Heidelberg, Germany, 2016; pp. 35–46.

http://dx.doi.org/10.1016/j.trc.2017.11.014
http://dx.doi.org/10.7307/ptt.v28i4.1908
http://dx.doi.org/10.56578/mits020403
http://dx.doi.org/10.1155/2020/3910250
http://dx.doi.org/10.1109/TIFS.2019.2946097
http://dx.doi.org/10.1016/j.ins.2020.03.041
http://dx.doi.org/10.1186/s12864-022-08469-w
http://dx.doi.org/10.1186/s12920-018-0401-7
http://dx.doi.org/10.2196/medinform.8805
http://www.ncbi.nlm.nih.gov/pubmed/29666041
http://dx.doi.org/10.3390/app11167360
http://dx.doi.org/10.1109/TKDE.2020.2969633
http://dx.doi.org/10.1109/TETC.2018.2794611
http://dx.doi.org/10.1109/ACCESS.2022.3159694
http://dx.doi.org/10.1109/ACCESS.2018.2866697
http://dx.doi.org/10.1109/ACCESS.2021.3093005
http://dx.doi.org/10.1109/ACCESS.2020.2981818
http://dx.doi.org/10.3390/s18103191
http://dx.doi.org/10.1109/ACCESS.2020.3002170
http://dx.doi.org/10.1109/JIOT.2020.2991401
https://github.com/K-miran/HELR
https://github.com/microsoft/SEAL
https://github.com/homenc/HElib
https://github.com/kimandrik/HEAAN
http://dx.doi.org/10.1109/ACCESS.2022.3219049
http://dx.doi.org/10.1145/3214303

Appl. Sci. 2024, 14, 9876 22 of 22

34. Marcillo, P.; Tamayo-Urgilés, D.; Valdivieso Caraguay, Á.L.; Hernández-Álvarez, M. Security in V2I Communications: A
Systematic Literature Review. Sensors 2022, 22, 9123. [CrossRef]

35. Fauzi, P.; Hovd, M.N.; Raddum, H. On the IND-CCA1 security of FHE schemes. Cryptography 2022, 6, 13. [CrossRef]
36. Frery, J.; Stoian, A.; Bredehoft, R.; Montero, L.; Kherfallah, C.; Chevallier-Mames, B.; Meyre, A. Privacy-preserving tree-based

inference with fully homomorphic encryption. Cryptology ePrint Archive 2023.
37. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. TFHE: fast fully homomorphic encryption over the torus. J. Cryptol. 2020,

33, 34–91. [CrossRef]
38. Docker Inc. Docker. Available online: https://www.docker.com/ (accessed on 1 June 2024).
39. Microsoft. WSL. Available online: https://learn.microsoft.com/en-us/windows/wsl/ (accessed on 1 June 2024).
40. Python Software Foundation. Python. Available online: https://www.python.org/ (accessed on 1 June 2024).
41. GNU Project. The GNU C Library. Available online: https://www.gnu.org/software/libc/ (accessed on 1 June 2024).
42. Zama. Concrete ML. Available online: https://docs.zama.ai/concrete-ml/ (accessed on 1 June 2024).
43. Bicking, I. The packet installer for Python. Available online: https://pypi.org/project/pip/ (accessed on 1 June 2024).
44. McKinney, W. Powerful Python data analysis toolkit. Available online: https://pypi.org/project/pandas/ (accessed on 1

June 2024).
45. Scikit-learn Developers. Scikit-learn. Available online: https://scikit-learn.org/ (accessed on 1 June 2024).
46. The Linux Foundation. Pytorch. Available online: https://pypi.org/project/torch/ (accessed on 1 June 2024).
47. Marcillo, P.; Arciniegas-Ayala, C.; Valdivieso Caraguay, Á.L.; Sanchez-Gordon, S.; Hernández-Álvarez, M. POLIDriving: A

Public-Access Driving Dataset for Road Traffic Safety Analysis. Appl. Sci. 2024, 14, 6300. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s22239123
http://dx.doi.org/10.3390/cryptography6010013
http://dx.doi.org/10.1007/s00145-019-09319-x
https://www.docker.com/
https://learn.microsoft.com/en-us/windows/wsl/
https://www.python.org/
https://www.gnu.org/software/libc/
https://docs.zama.ai/concrete-ml/
https://pypi.org/project/pip/
https://pypi.org/project/pandas/
https://scikit-learn.org/
https://pypi.org/project/torch/
http://dx.doi.org/10.3390/app14146300

	Introduction
	Related Work
	Preliminaries
	Homomorphic Encryption
	Partially Homomorphic Encryption
	Somewhat Homomorphic Encryption
	Fully Homomorphic Encryption

	Security Notions
	Indistinguishability
	Non-Malleability

	Materials and Methods
	Risk Level Prediction System for Traffic Accident Prevention
	The Privacy-Preserving Scheme
	Problem Definition
	Adversary Model

	Our Security Approach
	Privacy-Preserving Scheme Algorithms
	Secrecy Proofs
	Complexity Analysis

	Experiments
	Design
	Setup
	Computer Specs and Software
	Specialized Libraries
	Datasets
	Models

	Configurations
	Key Performance Metrics

	Results
	Discussion
	Conclusions and Future Work
	References

