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Abstract: In the realm of smart grids, machine learning (ML) detectors—both binary (or supervised)
and anomaly (or unsupervised)—have proven effective in detecting electricity theft (ET). However,
binary detectors are designed for specific attacks, making their performance unpredictable against
new attacks. Anomaly detectors, conversely, are trained on benign data and identify deviations from
benign patterns as anomalies, but their performance is highly sensitive to the selected threshold
values. Additionally, ML detectors are vulnerable to evasion attacks, where attackers make minimal
changes to malicious samples to evade detection. To address these limitations, we introduce a hybrid
anomaly detector that combines a Deep Auto-Encoder (DAE) with a One-Class Support Vector
Machine (OCSVM). This detector not only enhances classification performance but also mitigates
the threshold sensitivity of the DAE. Furthermore, we evaluate the vulnerability of this detector to
benchmark evasion attacks. Lastly, we propose an accurate and robust cluster-based DAE+OCSVM ET
anomaly detector, trained using Explainable Artificial Intelligence (XAI) explanations generated by the
Shapley Additive Explanations (SHAP) method on consumption readings. Our experimental results
demonstrate that the proposed XAI-based detector achieves superior classification performance
and exhibits enhanced robustness against various evasion attacks, including gradient-based and
optimization-based methods, under a black-box threat model.

Keywords: security; evasion attacks; explainable artificial intelligence; anomaly detector; electricity
theft; smart grid

1. Introduction

In smart power grids, smart meters (SMs) are used in advanced metering infras-
tructures (AMIs) to enable two-way communication between consumers and electricity
providers for continuous load monitoring and billing purposes [1–4]. However, AMIs are
vulnerable to electricity theft (ET) cyber-attacks, where consumers compromise their SMs
to report false power consumption readings [5–7]. ET poses a significant challenge for
electricity providers, as it can lead to erroneous energy decisions due to reliance on false
power consumption readings in load monitoring and energy management. Moreover, ET
has negative economic consequences, with annual losses estimated in the billions of dollars.
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For example, the annual losses in the United States and Canada can amount to up to six
billion dollars, and these figures are even higher in developing countries [8–11].

Several machine learning (ML)-based ET detectors have been proposed in the litera-
ture. These detectors adopt either supervised or unsupervised detection. In supervised
ET detection, binary detectors are trained using both benign and malicious consumption
readings [5,12,13]. While they achieve high performance on learned (seen) attacks, they
are limited in their ability to detect new (unseen) attacks. In anomaly ET detection, unsu-
pervised detectors are trained using only benign readings to learn benign consumption
patterns [14,15]. Anomaly detectors are effective in detecting new attacks because they
focus on deviations from learned benign patterns rather than specific known attack pat-
terns. However, these detectors achieve high performance only under the assumption of
ideal threshold selection to separate benign and malicious data. Moreover, both binary
and anomaly detectors are vulnerable to adversarial evasion attacks, where malicious
consumers can steal electricity by making a minimal change to low-consumption malicious
readings to evade detection [16–18].

Most of the existing defense mechanisms against evasion attacks, including adversar-
ial training [19], defensive distillation [20], and diversity ensemble [21], are designed for
binary detectors. They also often sacrifice model accuracy to improve robustness against
evasion attacks. On the other hand, there are few defense mechanisms proposed to se-
cure anomaly detectors, including approximate projection [22], principal latent space [23],
and sequential ensemble [24]. These mechanisms are sensitive to threshold settings because
their robustness relies on enhancing decoder output to maximize reconstruction error for
adversarial samples in auto-encoders (AEs) [25].

An intriguing connection has been revealed between adversarial attacks and explain-
able artificial intelligence (XAI), where adversarial evasion samples result in anomalous
XAI model explanations [26,27]. This suggests the potential for using XAI as a defense
mechanism against adversarial evasion attacks [26–29]. XAI is primarily developed to enhance
human understanding of decisions made by ML black-box models. Among XAI techniques,
Shapley Additive Explanations (SHAP) [30] method stands out as one of the most widely
used methods for interpreting ML models. It employs a unified approach to provide expla-
nations for model predictions by utilizing Shapley values, which originate from cooperative
game theory. These Shapley values indicate how each feature in the input data contributes
to the model’s prediction output.

This paper focuses on securing ML-based ET anomaly detectors against adversarial
evasion attacks using XAI. As far as we know, this is the first work that investigates the SHAP
explanations (interpretations) of consumption readings for the detection of evasion attacks by train-
ing on these explanations. Unlike other defense mechanisms, we demonstrate the potential of
XAI to secure anomaly detectors against evasion attacks while maintaining the detector’s
accuracy and relaxing the assumption of selecting ideal threshold values. In particular, we
use SHAP explanations of consumption readings to train a cluster-based hybrid anomaly
detector that combines a Deep Auto-Encoder (DAE) and a one-class support vector ma-
chine (OCSVM). The utilization of XAI alongside DAE+OCSVM anomaly detection brings
multiple benefits, including improved classification performance, enhanced robustness
against evasion attacks, and the ability to detect zero-day attacks without requiring the
selection of optimal threshold value. This occurs because the SHAP explanations effectively
distinguish between normal and abnormal consumption patterns, facilitating the identifi-
cation of anomalies caused by evasion samples. Additionally, training the DAE+OCSVM
anomaly detector on SHAP explanations of consumption readings, rather than the readings
themselves, enhances classification accuracy. Furthermore, while DAE shows the capability
to detect zero-day attacks, its performance is sensitive to the selection of good threshold val-
ues. The incorporation of OCSVM overcomes this problem by automatically determining
the threshold. The main contributions of our work include the following:

• We propose a hybrid DAE+OCSVM anomaly detector for ET detection. The experi-
mental results indicate that the proposed DAE+OCSVM detector overcomes existing
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limitations in the literature, including the inability of binary detectors to detect new
(unseen) attacks and the sensitivity of DAE anomaly detectors’ performance to the
selection of the optimal threshold;

• We investigate the vulnerability of the DAE+OCSVM anomaly detector to gradient-
and optimization-based evasion attacks. The experimental results indicate its vulnera-
bility to benchmark evasion attacks, including the Fast Gradient Sign Method (FGSM),
Basic Iterative Method (BIM), Carlini Wagner (C&W), Zeroth-Order Optimization
(ZOO), and DeepFool;

• We propose a robust and accurate cluster-based DAE+OCSVM ET anomaly detec-
tor by training it on the SHAP explanations of consumption readings. The design
objectives include enhancing accuracy, robustness, and the ability to detect new ET
cyber-attacks. The experimental results illustrate the robustness of our detector against
all the experimented evasion attacks while maintaining high accuracy.

The remaining sections of this paper are organized as follows. We explore the prior
research conducted in securing ET detection and XAI against adversarial attacks and discuss
the limitations and research gaps in Section 2. In Section 3, the ET cyber-attacks, evasion
attacks, and threat model addressed in this paper are discussed. Moreover, the proposed
robust and accurate ET detector is presented in Section 4. Section 5 discusses the dataset,
experimental scenarios, and performance evaluation. Finally, the paper is concluded in
Section 6.

2. Related Work

This section reviews the state-of-the-art works on securing ML-based ET detectors
against adversarial attacks, and the uses of XAI in the context of adversarial attacks. It also
discusses existing limitations in the literature and our proposed research motivations.

2.1. Securing ET Detectors Against Adversarial Attacks

Few papers in the literature have investigated securing ML-based ET detectors against
adversarial attacks. They consider either binary detectors [31–35] or anomaly detectors [24,36].

Li et al. [31] proposed the SearchFromFree evasion attack algorithm and studied
its impact on binary detectors. The authors assessed the vulnerability of three different
types of neural networks (NNs) and found that malicious consumers could successfully
evade detection, even in black-box threat scenarios, while reporting extremely low energy
consumption measurements. Moreover, they proposed using a distillation approach to
secure ET detectors against evasion attacks. Badr et al. [32] utilized GAN to propose a
new evasion attack. This attack generates fabricated low consumption readings that can
evade a global ET detector with a 97% attack success rate. In contrast to [32], which targets
binary-based global detectors trained on a diverse range of consumption patterns, this work
focuses on a different type of evasion attack that employs gradient-based and optimization-
based methods specifically within anomaly-based detectors. The attack presented in [32] is
inapplicable in our case because we do not use a global detector in this paper. Moreover, in a
previous work by Elgarhy et al. [33–35], they evaluated the robustness of a cluster-based
ET binary detector against gradient- and optimization-based evasion attacks. They further
proposed using parallel ensemble learning to create a robust cluster-based ET detector
under different threat models.

In contrast to [31–35], Takiddin et al. [24] utilized an electricity reading and its neigh-
boring readings to generate evasion samples.The authors observed significant degradation
in the performance of benchmark detectors in black-, gray-, and white-box threat scenarios,
with decreases of up to 22.2%, 26.9%, and 35.8%, respectively. To counter evasion attacks,
they used solely benign data to train a sequential ensemble-based anomaly detector that
improved the ET detection rate under evasion attacks. Moreover, in [36], Takiddin et al.
investigated the impact of poisoning attacks on both general and consumer-based ET
detectors. They showed that both types of detectors suffered from a significant detection
rate deterioration of up to 17% due to these attacks. They proposed a sequential ensemble
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detector based on a DAE with attention, gated recurrent units, and feed-forward NNs,
to enhance the robustness of the detectors, achieving stable detection performance with a
maximum deterioration of only 3% even under strong poisoning attacks.

2.2. XAI and Adversarial Attacks

XAI was originally developed to express the reasoning behind ML model outputs,
thereby enhancing their reliability and trustworthiness. However, it can also play a role
in detecting adversarial evasion attacks [26–28]. This can involve training new detectors
using XAI explanations or providing these explanations to expert analysts for identifying
adversarial samples. Additionally, XAI has been employed to enhance evasion attacks and
develop more sophisticated attack strategies [37,38].

Fidel et al. [26] presented a novel detection approach for evasion attacks in binary
deep neural network (DNN) classifiers. They utilized SHAP values computed for the
internal layers of the binary classifier to distinguish between normal and adversarial inputs
across the popular CIFAR-10 and MNIST image classification benchmark datasets. The
proposed adversarially trained detector demonstrates high detection accuracy and strong
generalization ability in detecting various evasion attacks. By varying the hyperparameters
and applying different levels of perturbations, their detector can capture diverse patterns of
adversarial samples. Similarly, in [28], Al-Essa et al. proposed an XAI adversarial training
defense by fine-tuning their technique using the SHAP explanation of FGSM adversarial
samples. They used two benchmark cybersecurity datasets, including Android malware
and network traffic security. Watson et al. [27] introduced an accurate and model-agnostic
explainable detection method for adversarial samples using SHAP values. The proposed
detector achieved a detection accuracy of 77% and 88% on Electronic Health Records
and Chest X-ray datasets, respectively. They introduced both fully and semi-supervised
methods, capable of generalizing to different attack methods without requiring retraining.
Moreover, their work led to an improvement of over 10% in the existing adversarial
detection for both datasets.

Unlike the use of XAI as a defense against adversarial attacks in [26–28], Amich et al. [37]
employed the feature-based explanations of model predictions to guide the crafting of
adversarial samples. Their attack involved adding consequential perturbations, which are
likely to induce model evasion while avoiding non-consequential perturbations that are
unlikely to contribute to evasion. The proposed attack is model-agnostic and applicable
across various threat models, model architectures, and distance metrics. It enhances the
evasion rate of state-of-the-art attacks while requiring fewer perturbations across both
white-box and black-box threat models on the CIFAR-10 and MNIST datasets. Zhang et
al. [38] proposed a white-box and non-targeted attack that generates adversarial inputs
by misleading target DNNs and deceiving their coupled interpretation models, namely,
ADV2. They demonstrated that, with ADV2, the adversary can arbitrarily designate an
input’s prediction and interpretation in skin cancer diagnosis.

2.3. Limitations and Research Gaps

In the context of ET detection, most existing studies focus on designing binary de-
tectors. However, their effectiveness in detecting new attacks is often limited and unpre-
dictable. Anomaly detection offers an alternative solution, but anomaly detectors typically
suffer from low detection accuracy and their performance is highly dependent on finding
an optimal threshold. This is a challenging task, especially when malicious data are not
known. Additionally, both binary and anomaly detectors are vulnerable to adversarial
evasion attacks. While securing binary detectors against evasion attacks has received
extensive attention from the research community, the robustness of anomaly detectors
against such attacks has been less explored. This paper aims to bridge this research gap by
addressing the following limitations:

• Most existing defense mechanisms, such as adversarial training [19] and defensive
distillation [20], are tailored to specific evasion attacks and their performance is



Appl. Sci. 2024, 14, 9897 5 of 18

unpredictable in the case of new attacks. Moreover, these defense mechanisms sacrifice
model accuracy to improve robustness against evasion attacks and are primarily
designed for binary detectors, rendering them unsuitable for anomaly detectors;

• Few defense mechanisms have been proposed for AE-based anomaly detection [22–25].
These mechanisms are primarily utilized for applications other than smart grids,
with only [24] specifically designed for smart grid use. All of these mechanisms
primarily aim to improve the AE’s decoder output to maximize the reconstruction
error for adversarial samples. However, determining the optimal reconstruction error
threshold requires some prior knowledge of the malicious data (i.e., the nature of
attacks), which may not be possible practically.

These limitations are addressed in this paper by proposing a hybrid anomaly detector
that combines DAE and OCSVM to overcome the difficulty in determining the optimal
threshold value. Additionally, we propose using SHAP explanations obtained from con-
sumption readings to train a cluster-based anomaly detector, enhancing both its detection
accuracy and robustness against evasion attacks.

3. Evasion Attacks and Threat Model

In this section, we first present ET attacks and evasion attacks targeted for undetectable
ET and then explain the different types of attackers considered in this paper.

3.1. Evasion and ET Attacks

Jokar et al. [14] have proposed a continuous attack to emulate how a malicious con-
sumer manipulates actual consumption readings to reduce electricity bills. The continuous
attack function, denoted by f1, is modeled by Equation (1), where Eb is the benign (or
actual) reading and β is a constant reduction factor (0 < β < 1).

f1(Eb) = β × Eb (1)

The objective of evasion attack algorithms is to manipulate malicious samples Em,
generated by the continuous attack f1, by introducing slight perturbations to deceive
ET detectors and classify them as benign. The following explains various algorithms
used to create undetectable evasion samples, including gradient-based and optimization-
based algorithms.

Gradient-Based Algorithms. These attack algorithms generate evasion samples using
the cost function gradient with respect to the ML model’s input in both single-step and
multi-step methods. FGSM [19] is a single-step attack. To generate an evasion sample,
it modifies the input sample in the direction (sign) of the gradient to maximize the cost
function of the correct class, as indicated by Equation (2). On the other hand, BIM [39] is a
multi-step attack, modeled by Equation (3). It modifies the input sample like FGSM, then
clips it after each step to keep the perturbation within acceptable limits, thereby generating
an evasion sample. Here, the hyper-parameters (ϵ, α, and I) control the perturbation
amount, y denotes the input sample’s label, θ denotes the ML model’s parameters, Jθ

denotes ML model’s cost function, and ∇ denotes ML model’s gradient.

Em + ϵ . sign
(
∇Em Jθ(Em, y, θ)

)
(2)

clip(−ϵ,+ϵ)

(
Emi + α . sign

(
∇Emi

Jθ(Emi , y, θ)
))

(3)

Optimization-Based Algorithms. These attack algorithms solve an optimization prob-
lem to generate evasion samples. C&W [40] minimizes the changes that δ made to a
malicious sample to be classified as benign as indicated by Equation (4), where r > 0
represents a regularization parameter and Z[(Em)] represents the predicted probability
(i.e., logits layer representation) that Em belongs to input label y as malicious and target
label t as benign. However, ZOO [41] operates under the constraint of lack of direct access
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to the gradients of the model and can only observe the model’s output for a given input.
It modifies the loss function f (Em, t) in Equation (4) such that it only depends on the
output of the model F and the desired class label t. Therefore, it computes an approximate
gradient using a finite difference method instead of actual backpropagation on the targeted
model and solves the optimization problem via zeroth-order optimization, as indicated by
Equation (5). DeepFool [42] is an efficient optimization-based iterative method. It aims to
identify the smallest perturbation δ that is capable of inducing misclassification by shifting
the input across the decision boundary at each iteration i, as indicated by Equation (6).
Unlike gradient-based attacks, optimization-based attacks require additional computational
resources, making the generation of evasion samples more expensive.

minimizeδ D(Em, Em + δ) + r · f (Em, t)

f (Em, t) = maxy ̸=t[Z(Em)]y − [Z(Em)]t
(4)

minimizeδ D(Em, Em + δ) + r · f (Em, t)

f (Em, t) = maxy ̸=t[log(F(Em))]y − [log(F(Em))]t
(5)

minimizeδ ||δ||2
sign( f (Emi + δ)) ̸= sign( f (Emi−1))

(6)

3.2. Threat Model

In this paper, we consider a black-box threat model where the attacker exploits trans-
ferability [43] using five adversarial evasion attacks, including FGSM, BIM, C&W, ZOO,
and DeepFool. In this threat model, the attacker does not know the training dataset, model
architecture, and the fact that the defense model uses XAI. Therefore, he/she trains a
surrogate model of different architectures, including a convolutional neural network (CNN)
and a feed-forward neural network (FFNN) on a different training dataset. After that,
he/she attacks the surrogate model utilizing benchmark evasion attacks to generate eva-
sion samples, as illustrated in Figure 1. These samples are then sent to the defense model,
hoping that they evade it.

CNN

X1

CNN FFNN

X1 X48X3X2

Evasion Attacks
  FGSM-BIM-C&W-ZOO-DeepFool  

Malicious Samples
(Dataset Different from Defense's Dataset)

Evasion Samples

ET Detector
(Defense Model)

Figure 1. Black-box threat model.
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4. Proposed Robust and Accurate ET Anomaly Detector

This section first explains the architecture of the proposed robust and accurate ET
anomaly detector and then it discusses the rationale behind its design.

4.1. The Proposed Detector’s Architecture

The proposed anomaly detector consists of four components: clustering, XAI, DAE,
and OCSVM, as illustrated in Figure 2. The first component is a clustering algorithm that
divides electric utility consumers into groups based on their associated metadata, which
directly influences their electricity consumption, such as maximum contracted power,
house size, occupancy, etc. [32]. Here, we utilize the K-means clustering algorithm to
divide consumers into groups based on their consumption levels due to the absence of
metadata in the dataset. The second component is the XAI SHAP method that extracts SHAP
explanations from the consumption readings. Here, we extract the SHAP explanations for
the consumption reading samples. The SHAP algorithm [30] computes Shapley values
for each feature (i.e., consumption reading) in each sample across all data samples. These
values are determined based on the marginal contribution calculated using a reference
subset through iterative calculations. Figure 3 shows an example of the SHAP values for the
top-20 features (readings). Practically, we train using all the features (i.e., explanations for
all 48 readings). The third component is a DAE that generates latent space representations
for the SHAP explanations. The fourth component is an OCSVM that uses the latent
space representations to detect ET. Figure 2 depicts both phases of the proposed detector,
including training and inference.

Cluster 2

Cluster 3

Cluster 4 Cluster 5

Kmeans Clustering

Cluster 1
1

Cluster Consumer's Consumption Data.

Extract XAI SHAP Values for each cluster model.

Train DAE on SHAP Values within each cluster.

Train OCSVM on Latent Space within each cluster. 

1
2
3
4

1
2
3
4

Training Inference

XAI SHAP

Latent
Space

Encoder Decoder
Reconstruction Loss

DAE

XAI1

XAI48

XAI1

XAI48

XAI2XAI2

XAI3XAI3

XAI47
XAI47

OCSVM

Cluster-based Detector
MaliciousBenign

Assign Consumer's data to cluster.

Extract XAI SHAP Values.

Extract Latent space from DAE Encoder.

OCSVM Predict if sample Malicious or Benign. 

3
2

4

Cluster 2

Cluster 3

Cluster 4 Cluster 5

Kmeans Clustering

Cluster 1
1

Cluster Consumer's Consumption Data.

Extract SHAP explanations for each cluster.

Train DAE on SHAP explanations within each cluster.

Train OCSVM on Latent Space within each cluster. 

1
2
3
4

1
2
3
4

Training Inference

XAI SHAP

Latent
Space
(LS)

Encoder Decoder
Reconstruction Loss

DAE

XAI1

XAI48

XAI1

XAI48

XAI2XAI2

XAI3XAI3

XAI47
XAI47

OCSVM

Cluster-based Detector
MaliciousBenign

Assign Consumer's data to cluster.

Extract SHAP explanations.

Extract Latent space from DAE Encoder.

OCSVM Predict if sample Malicious or Benign. 

3
2

4

Figure 2. The proposed XAI-based robust and accurate ET anomaly detector.
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(b) PRECON Dataset.
Figure 3. SHAP values: top-20 features (readings).

4.2. The Rationale Behind the Detector’s Design

The rationale behind our robust and accurate ET detector is illustrated as follows:

1. There is a trade-off between the level of generalization and robustness against evasion
attacks in ML-based detectors [16,44,45]. Therefore, since a cluster-based detector
requires less generalization, it leads to increased robustness compared to global
detectors. This is because the cluster-based model is trained on data with close
consumption patterns, resulting in superior performance and robustness [32,33]. To
probe more deeply into the reasons behind this superiority, we applied principal
component analysis (PCA) to the consumption readings of the dataset in global
and cluster-based settings, as shown in Figure 4 and Figure 5, respectively. PCA
allows one to reduce the dimensionality, which facilitates the visualization of complex
relationships within the data. Analyzing the plots of the first two PCA components in
these figures reveals a notable overlap between benign and malicious consumption
patterns in the global setting as opposed to the cluster-based setting. Therefore, we
opted for a cluster-based detector rather than a global detector;

2. There is a deep connection between XAI model explanations and adversarial eva-
sion samples. Intuitively, a model’s XAI explanation leads to robustness against
adversarial evasion samples because evasion samples often result in anomalous XAI
explanations [27,29]. To delve deeper into the reasons behind this, we applied PCA to
the SHAP explanations of the consumption readings of the dataset in a cluster-based
setting, as shown in Figure 6. It is evident from the figure that the SHAP explanations
of benign and malicious consumption patterns are significantly distinct. Additionally,
upon examining the cumulative variance explained by the principals component, we
observe that approximately 90% of the data variance is explained by the first two
components of the XAI explanations, compared to only 50% for the consumption
readings. Therefore, SHAP explanations are capable of compressing larger amounts of
information more efficiently than consumption readings, i.e., with a lower number of
PCA components. Consequently, our detector is trained using the SHAP explanations
of consumption readings, rather than the readings themselves;

3. Unsupervised anomaly detectors are trained solely on benign data to detect various
malicious activities by identifying deviations from learned benign patterns without
needing malicious datasets during the training phase. However, they use malicious
data to determine the ideal reconstruction threshold for superior detection perfor-
mance. Comparing DAE and OCSVM anomaly detectors, the DAE achieves superior
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detection performance because its deep structure extracts relevant features from the
input data, thereby enhancing detection [15,46]. However, the performance of the
DAE is susceptible to threshold selection. Conversely, the OCSVM does not require
finding optimal threshold values, which may be difficult to find without any knowl-
edge of malicious data [47]. Therefore, we propose a hybrid anomaly detector that
combines DAE and OCSVM, achieving superior performance while eliminating the
need for determining optimal threshold values.

(a) IRISH Dataset. (b) PRECON Dataset
Figure 4. PCA applied to global consumption readings.

(a) IRISH Dataset. (b) PRECON Dataset
Figure 5. PCA applied to cluster-based consumption readings (e.g., Cluster 1).

(a) IRISH Dataset. (b) PRECON Dataset
Figure 6. PCA applied to the cluster-based SHAP explanations of consumption readings (e.g.,
Cluster 1).

5. Performance Evaluation

This section starts with a description of the dataset, followed by the experimental
setup and evaluation metrics. Then, it delves into the experimental results.

5.1. Dataset
5.1.1. IRISH Dataset

The IRISH dataset [48] was created by Electric Ireland and the Sustainable Energy
Authority of Ireland. It contains only benign electricity consumption readings from 3639 res-
idential consumers (Cirish) recorded at half-hourly intervals. The data span 536 days and
were collected between 2009 and 2010.
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5.1.2. PRECON Dataset

The PRECON dataset [49] was collected over a period of one year, capturing electricity
consumption patterns for 42 residential consumers (Cprecon) with varied demographics
in Lahore, Pakistan, at 1 minute intervals. The dataset spans 321 days and was collected
between 2018 and 2019.

5.1.3. Dataset Preparation

The dataset is collected from benign residential consumers. However, practical data
collection processes can lead to issues such as erroneous data, missing values, and uninten-
tional anomalies (outliers). These issues can arise from equipment failures, inaccuracies,
aging components, transmission errors, and poor connections. Therefore, we first use the
preparation methods outlined in [50–52] to ensure that this dataset is clean and free from
these issues. Then, we use the cleaned dataset in our experiments to detect intentional
cyber-attacks. Due to a lack of publicly available malicious consumption datasets, we use
the continuous attack f1, specified in Equation (1), to generate corresponding malicious
samples from the benign samples.

For the IRISH dataset, we consider only C ′
irish = 200 consumers from the total resi-

dential consumers (Cirish). As a result, we have a total of 214,400 samples, divided into
2 categories: 107,200 benign samples and 107,200 malicious samples (generated using the
continuous attack function f1). For the PRECON dataset, we used all consumers Cprecon,
applying the continuous attack function f1 to generate corresponding malicious samples
for these consumers. Thus, the data are balanced, meaning that there is an equal number of
benign and malicious samples in both datasets. The IRISH dataset was utilized to evaluate
both the classification performance and the robustness of our proposed detector. In contrast,
the PRECON dataset was employed specifically to assess the classification performance of
the detector. This is because the PRECON dataset contains a limited number of consumers,
preventing the effective partitioning of the data into separate attacker and defense sides.

5.2. Experimental Setup

We employed various Python 3.11.6 libraries for different tasks, including sklearn [53]
for performance assessment, matplotlib [54] for data visualization, keras [55] for detector
training, and pandas and numpy for data preparation. To train binary detectors, we merged
the benign and malicious data for each consumer. For anomaly detectors, we only consider
benign data. We then split the merged data into testing and training sets with a 1:2 ratio.
Global detectors are built using the data from all consumers. Additionally, the selected
data are divided into K clusters using the K-means algorithm, where K = 5 in the IRISH
dataset and K = 1 in the PRECON dataset due to the limited number of consumers in the
latter dataset. This division is used to build cluster-based detectors utilizing data from
consumers within the same cluster.

To ensure a fair comparison among all detectors, we tuned their hyper-parameters and
utilized the optimal values. For OCSVM, the optimal values are as follows: kernel = ‘rbf’,
gamma = ‘auto’, and nu = ‘0.03’. Table 1 summarize the optimal values for a DAE detector
and the attacker’s detectors (FFNN and CNN). The description values in these tables
correspond to the layer type, number of neurons, and activation function. In terms of the
hyper-parameters for adversarial evasion attacks, we explored a different range for each
parameter and selected values that effectively bypass the ET detector while maximizing
theft profit. For FGSM and BIM attacks, the optimal values are as follows: α is a portion of
optimal ϵ for I = 100 and 0.01 < ϵ < 0.5. For CW, ZOO, and DeepFool attacks, the optimal
values are as follows: maximum iterations = 100, decrease factor = 0.6, learning rate = 0.01,
and maximum perturbation = 0.5. Our experiments were conducted using the high-
performance cluster of Tennessee Technological University.
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Table 1. The optimal hyper-parameters for the DAE defense detector and the FFNN and CNN
attacker detectors.

DAE FFNN CNN

Input, 48, Linear Input, 48, Linear Input, 48, Linear
Dense, 200, Tanh/ReLU Dense, 96, Linear Conv1D, 128, ReLU
Dense, 100, Tanh/ReLU Dense, 192, ReLU Dense, 256, ReLU
Dense, 50, Tanh/ReLU Dense, 387, ReLU Dense, 128, ReLU
Dense, 32, Tanh/ReLU Dense, 768, ReLU Dense, 64, Sigmoid
Dense, 50, Tanh/ReLU Dense, 192, ReLU Output, 2, Softmax

Dense, 100, Tanh/ReLU Dense, 200, ReLU
Dense, 200, Tanh/ReLU Output, 2, Softmax

Output, 48, Linear

5.3. Evaluation Metrics

We have used the following metrics to evaluate our detector and assess the vulnerabil-
ity to adversarial evasion attacks.

– Accuracy (ACC) represents the percentage of the test samples accurately classified
by the detector to the total number of samples in the test dataset. It is calculated
as follows:

ACC(%) =
TP + TN

TP + TN + FP + FN
× 100. (7)

– False Alarm (FA), known also as the false positive rate (FPR), represents the percent-
age of the false positive samples out of the total number of negative samples. It is
calculated as follows:

FA(%) =
FP

FP + TN
× 100. (8)

– Detection Rate (DR), known also as true positive rate (TPR) and recall, represents the
percentage of the true positive samples out of the total number of positive samples. It
is calculated as follows:

DR(%) =
TP

TP + FN
× 100. (9)

– Precision (PR) represents the percentage of true positive samples out of the total
number of samples identified by the detector as positive. It is calculated as follows:

PR(%) =
TP

TP + FP
× 100. (10)

– F1-score (F1) represents a statistical measure of both the precision and the detection
rate. It is calculated as follows:

F1(%) =
2 ∗ PR ∗ DR

PR + DR
× 100. (11)

– Highest difference (HD)represents the difference between the detection rate and the
false alarm. It is calculated as follows:

HD(%) = DR(%)− FA(%). (12)

Equations (7)–(12) are derived from the values within the confusion matrix (TP, TN,
FN, and FP). TP represents the count of correctly classified malicious samples, known
as true positive. TN is the count of correctly classified benign samples, known as true
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negative. FN is the count of malicious samples incorrectly classified as benign, known
as false negative. FP is the count of benign samples incorrectly classified as malicious,
known as false positive.

5.4. Experimental Results

We have conducted three experiments. First, we compare the classification perfor-
mance of a state-of-the-art DAE-based and a DAE+OCSVM ET anomaly detector. Second,
we assess the vulnerability of the DAE+OCSVM ET anomaly detector to gradient-based
adversarial evasion attacks using transferability. Third, we evaluate the proposed XAI-
based DAE+OCSVM ET anomaly detector in terms of classification performance and its
robustness against both gradient-based and optimization-based adversarial evasion attacks
under a black-box threat model.

5.4.1. Experiment 1

In this experiment, since shallow (or traditional) anomaly detectors (e.g., OCSVM,
Isolation Forest) generally achieve lower classification performance compared to deep
anomaly detectors, we focused on deep anomaly detection. Therefore, we first trained
global deep anomaly detectors using DAE and DAE+OCSVM. Then, we evaluated their
performance using ACC, DR, FA, PR, F1, and HD. Table 2 compares the performance of
three global anomaly detectors: DAE (With-malicious), where the threshold is determined
using a malicious electricity consumption dataset; DAE (No-malicious), where the threshold
is calculated without using a malicious electricity consumption dataset; and our proposed
detector DAE+OCSVM (No-malicious), which does not require a threshold because OCSVM
can automatically determine it. From all evaluation metrics in this table, it is evident that the
performance of DAE (No-malicious) is limited due to the absence of a malicious electricity
consumption dataset, which leads to incorrect threshold selection. Conversely, DAE (With-
malicious) achieves good performance under the impractical assumption of ideal threshold
selection based on the availability of a real malicious electricity consumption dataset, which
is not available. Moreover, DAE+OCSVM (No-malicious) achieves superior performance
(e.g., ACC is 93.61% and DR is 96.74%) without the need for the calculation of a threshold
or knowledge on malicious electricity consumption data because OCSVM can determine
the threshold automatically during the training phase. Therefore, the existing DAE-based
methods are only effective when there are known malicious samples, as shown in the
DAE (With-malicious). However, in more practical situations where malicious samples are
unknown, these methods perform poorly, as shown in the DAE (No-malicious). In contrast,
our proposed detector DAE+OCSVM (No-malicious) achieves high performance without
needing malicious samples.

Table 2. The performance comparison between the existing ET anomaly detectors and the proposed
ET anomaly detector (DAE+OCSVM).

Model Type ACC DR FA PR F1 HD

DAE [15,24] (With-malicious) 91.63 92.92 9.67 90.58 91.74 83.25
DAE [15,24] (No-malicious) 51.32 3.33 0.67 83.29 6.41 2.66
DAE+OCSVM (No-malicious) 93.61 96.74 9.51 91.05 93.81 87.23

Note: Malicious samples are used during the threshold selection process.

5.4.2. Experiment 2

In this experiment, we evaluate the robustness of the DAE+OCSVM anomaly de-
tector against benchmark adversarial evasion attacks (FGSM and BIM) using different
attacker’s model architectures (CNN and FFNN). Table 3 presents the experimental results.
The results, including ACC, DR, PR, F1, and HD values, demonstrate the vulnerability of
the DAE+OCSVM anomaly detector to evasion attacks. Taking the CNN-based attacker
model as an example, we observe that the ACC, DR, PR, F1, and HD values decrease from



Appl. Sci. 2024, 14, 9897 13 of 18

93.22%, 97.48%, 89.82%, 93.49%, and 86.43%, respectively, under no evasion to 70.21%,
51.47%, 82.33%, 63.34%, and 40.38%, respectively, under the FGSM attack and to 67.80%,
46.65%, 80.85%, 59.16%, and 35.56%, respectively, under the BIM attack. Additionally,
the FA metric remain unchanged and align with the values in Table 2 because the attacker
generates adversarial evasion samples only from malicious ones. These results demon-
strate the transferability of adversarial evasion attacks across different ML models, even
when the attacker’s surrogate model has a different architecture from the defense model.
The performance reduction after launching the adversarial evasion attacks proves the severity of
these attacks. This emphasizes the need to secure the DAE+OCSVM ET anomaly detector
against adversarial evasion attacks while maintaining high accuracy, as is discussed in
Experiment 3.

Table 3. The vulnerability of the DAE+OCSVM anomaly detector to evasion attacks.

ACC DR PR F1 HD

No Evasion 93.22 97.48 89.82 93.49 86.43

CNN-based Attacker FGSM 70.21 51.47 82.33 63.34 40.38
BIM 67.80 46.65 80.85 59.16 35.56

FFNN-based Attacker FGSM 71.47 53.99 83.01 65.43 42.09
BIM 68.46 47.96 81.28 60.32 38.87

5.4.3. Experiment 3

In this experiment, we first compare DAE+OCSVM with and without the proposed
defense (XAI and clustering) in terms of classification performance, as shown in Table 4.
Next, we evaluate the robustness of DAE+OCSVM with and without the proposed defense
(XAI and clustering) against gradient-based (FGSM and BIM) and optimization-based
evasion attacks (CW, ZOO, and DeepFool). The results of these robustness evaluations are
provided in Figures 7 and 8 in terms of DR. It is worth noting that the difference between the
DR before (i.e., with no evasion) and after attacks represents the severity of the attacks (i.e., attack
success rate). The detailed findings from this experiment are as follows:

Table 4. Comparison of DAE+OCSVM with and without the proposed defense (XAI and clustering)
in terms of classification performance.

Dataset ACC DR FA PR F1 HD

No Defense 93.61 96.74 9.51 91.05 93.81 87.23

IRISH

Proposed (C1-XAI) 97.75 100.00 4.49 95.70 97.80 95.51
Proposed (C2-XAI) 97.28 100.00 5.45 94.83 97.35 95.55
Proposed (C3-XAI) 97.60 100.00 4.80 95.42 97.65 95.20
Proposed (C4-XAI) 97.79 100.00 4.41 95.78 97.84 95.59
Proposed (C5-XAI) 97.75 100.00 4.49 95.70 97.80 95.51

PRECON
No Defense 85.31 86.41 15.75 83.99 85.18 70.66

Proposed (C-XAI) 92.69 96.88 11.34 89.13 92.84 85.54

• Table 4 compares the classification performance (ACC, DR, FA, PR, F1, and HD)
of DAE+OCSVM with and without the proposed defense. It is evident from this
table that the proposed defense improves all the classification performance metrics,
which indicates an ability to accurately distinguish between benign and malicious
samples. This improvement occurs because the use of clustering allows detectors to
train on data with close consumption patterns, which leads to parameters closer to the
optimal detector’s parameters for individual consumption patterns (i.e., lower level of
generalization). Additionally, the use of XAI distinctly separates benign and malicious
consumption patterns, leading to easier ET detection. Additionally, Figure 9 shows
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the Precision–Recall (PR) and Receiver Operating Characteristic (ROC) curves. These
figures provide a visual representation of the performance comparison. They indicate
that our proposed detectors achieve higher performance, as evidenced by the values
of AUC_PR and AUC_ROC, demonstrating that the proposed detectors enhance ET
detection in both the IRISH and PRECON datasets;

• Figure 7 compares the robustness of DAE+OCSVM with and without the proposed
defense against CNN-based attacker model in terms of DR. The difference between
the DR before (i.e., with no evasion) and after attacks represents the severity of
the attacks or attack success rate (ASR). In No Defense, the DR shows a minimal
decrease from 97.48% to 46.65% under BIM attack. However, with the proposed
defense, the DR values remain above 90% for all attacks across clusters C1-XAI to
C5-XAI. Figure 8 compares the robustness of DAE+OCSVM with and without the
proposed defense against the FFNN-based attacker model in terms of DR. Here,
the difference between the DR before and after the attacks also reflects the severity
of the attacks ASR. In No Defense, the DR shows a minimal decrease from 97.48%
to 47.96% under BIM attack. However, with the proposed defense, the DR values
remain above 90% for all attacks across clusters C1-XAI to C5-XAI. It is evident from
those DR values that the proposed anomaly detector achieves a promising level of
robustness. This is attributed to the use of clustering, which results in a lower level
of generalization, and XAI, which facilitates the separation of benign and anomalous
consumption patterns, as shown in Figure 5 and Figure 6, respectively. Moreover,
the deep structure of the proposed detector extracts relevant features from the SHAP
explanations of consumption readings, thereby facilitating the detection of anomalous
XAI explanations caused by these adversarial evasion attacks.
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Figure 7. Comparison of the robustness of DAE+OCSVM with and without the proposed defense
against CNN-based evasion attacks in terms of DR.
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Figure 9. PR and ROC curves of DAE+OCSVM with and without the proposed defense (XAI and
clustering).

6. Discussion and Conclusions

In this paper, we have investigated the effectiveness of using XAI in ET anomaly
detection. First, we proposed a hybrid DAE+OCSVM anomaly detector that not only
achieves superior detection performance but also overcomes the threshold sensitivity of
DAE anomaly detection. Second, we showed that the DAE+OCSVM anomaly detector is
vulnerable to benchmark evasion attacks. Third, we proposed a defense strategy to bolster
this ET anomaly detector using XAI and clustering. The utilization of XAI (i.e., the proposed
detector trained on the SHAP explanations of consumption readings) facilitates the distinct
separation of benign and anomalous consumption patterns, leading to much easier and
more robust ET detection. Moreover, the utilization of clustering enhances robustness by
reducing the level of generalization. The experimental results illustrate that our detector
demonstrates significant robustness against various evasion attacks, including gradient-
based and optimization-based. With no defense, the DR is reduced from 97.48% to up to
46.65% under evasion attacks. However, with the proposed defense, the minimum DR
values are 92.58%, 93.34%, 98.62%, 92.88%, and 92.29% for clusters C1-XAI to C5-XAI,
respectively. These DR values reflects the significant detection capabilities and robustness
of the proposed detector. As future work, we aim to explore different explanation (XAI)
methods to enhance trust and reliability, as well as to assess the performance of our
proposed detector under a white-box threat model. While the black-box threat model is
considered the most realistic, it is important to evaluate the detector’s effectiveness as the
attacker’s level of knowledge increases.
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