Research on Nanometer Precision Measurement Method of High Order Even Aspheres
Abstract
:1. Introduction
2. Methods
2.1. Null Compensation Interferometry with a CGH
2.2. Correction of Mapping Distortion for the Result of Surface Shape
2.3. Absolute Testing of Optical Aspheres
3. Experiments and Results
3.1. Experimental Setup
3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Hu, H.; Wang, X.; Luo, X.; Zhang, G.; Zhao, W.; Wang, X.; Liu, Z.; Xiong, L.; Qi, E.; et al. Challenges and Strategies in High-Accuracy Manufacturing of the World’s Largest SiC Aspheric Mirror. Light Sci. Appl. 2022, 11, 310. [Google Scholar] [CrossRef] [PubMed]
- McElwain, M.W.; Feinberg, L.D.; Perrin, M.D.; Clampin, M.; Mountain, C.M.; Lallo, M.D.; Lajoie, C.-P.; Kimble, R.A.; Bowers, C.W.; Stark, C.C.; et al. The James Webb Space Telescope Mission: Optical Telescope Element Design, Development, and Performance. PASP Publ. Astron. Soc. Pac. 2023, 135, 058001. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, J.; Kuriyagawa, T. Manufacturing Technologies toward Extreme Precision. Int. J. Extrem. Manuf. 2019, 1, 022001. [Google Scholar] [CrossRef]
- Baisden, P.A.; Atherton, L.J.; Hawley, R.A.; Land, T.A.; Menapace, J.A.; Miller, P.E.; Runkel, M.J.; Spaeth, M.L.; Stolz, C.J.; Suratwala, T.I.; et al. Large optics for the national ignition facility. Fusion Sci. Technol. 2016, 69, 295–351. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Zhang, Y.; Tian, D.; Ye, M.; Wang, C. Predicting the Material Removal Rate (MRR) in Surface Magnetorheological Finishing (MRF) Based on the Synergistic Effect of Pressure and Shear Stress. Appl. Surf. Sci. 2020, 504, 144492. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Zhang, Q.; Hou, J.; Zhong, B.; Chen, X. Regionalized Modeling Approach of Tool Influence Function in Magnetorheological Finishing Process for Aspherical Optics. Optik 2020, 206, 164368. [Google Scholar] [CrossRef]
- Hu, J.; Hu, H.; Peng, X.; Wang, Y.; Xue, S.; Liu, Y.; Du, C. Multi-Dimensional Error Figuring Model for Ion Beams in X-Ray Mirrors. Opt. Express 2024, 32, 29458. [Google Scholar] [CrossRef]
- Karabyn, V.; Polák, J.; Procháska, F.; Melich, R. Ion Beam Figuring with Using Einzel Lens. In Proceedings of the Optics and Measurement International Conference 2019, Liberec, Czech Republic, 8–10 October 2019; Kovačičinová, J., Ed.; SPIE: San Jose, CA, USA, 2019; Volume 11385, pp. 48–55. [Google Scholar]
- Majhi, A.; Shurvinton, R.; Pradhan, P.C.; Hand, M.; Gu, W.; Da Silva, M.B.; Moriconi, S.; Nistea, I.; Alcock, S.G.; Wang, H.; et al. Sub-Nanometre Quality X-Ray Mirrors Created Using Ion Beam Figuring. J. Synchrotron Radiat. 2024, 31, 706–715. [Google Scholar] [CrossRef]
- Lowisch, M.; Kuerz, P.; Conradi, O.; Wittich, G.; Seitz, W.; Kaiser, W. Optics for ASML’s NXE:3300B Platform. In Proceedings of the Extreme Ultraviolet (EUV) Lithography IV, San Jose, CA, USA, 24–28 February 2013; Naulleau, P.P., Ed.; SPIE: San Jose, CA, USA, 2013; p. 86791H. [Google Scholar]
- Supranowitz, C.; Lormeau, J.-P.; Maloney, C.; Murphy, P.; Dumas, P. Freeform Metrology Using Subaperture Stitching Interferometry. In Proceedings of the Optics and Measurement 2016 International Conference, Liberec, Czech Republic, 11–14 October 2016; Kovacicinova, J., Ed.; SPIE: San Jose, CA, USA, 2016; p. 101510D. [Google Scholar]
- Zhang, L.; Tian, C.; Liu, D.; Shi, T.; Yang, Y.; Wu, H.; Shen, Y. Non-Null Annular Subaperture Stitching Interferometry for Steep Aspheric Measurement. Appl. Opt. 2014, 53, 5755. [Google Scholar] [CrossRef]
- Li, S. A Practical Method for Determining the Accuracy of Computer-Generated Holograms for off-Axis Aspheric Surfaces. Opt. Lasers Eng. 2016, 77, 154–161. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Liu, W.; Liang, H.; Xie, Y.; Li, X. The methods and experiments of shape measurement for off-axis conic aspheric surface. Materials 2020, 13, 2101. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.-P.; Zhang, N.; Liu, J.; Wu, D.-L.; Xu, H.; Yan, D.-Y.; Ma, P. Testing the Mid-Spatial Frequency Error of a Large Aperture Long-Focal-Length Lens with CGH. Opt. Express 2020, 28, 9454–9463. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, Y.; Lang, W.; Zhang, X.; Wang, W.; Xu, M. In-Situ Sub-Aperture Stitching Measurement Based on Monoscopic Phase Measuring Deflectometry. Precis. Eng. 2024, 85, 197–204. [Google Scholar] [CrossRef]
- Li, Y.; De, Z.; Xue, Z.; Ming, L.; Xiao, W.; Dong, M. Experimental study on hybrid compensation testing of an off-axis convex ellipsoid surface. Opt. Express 2019, 27, 27546–27561. [Google Scholar]
- Zhang, L.; Qi, K.; Xiang, Y. Two-step algorithm for removing the rotationally asymmetric systemic errors on grating lateral shearing interferometer. Opt. Express 2018, 26, 14267–14277. [Google Scholar] [CrossRef]
- Liu, Y.; Miao, L.; Zhang, W.; Jin, C.; Zhang, H. Extended Shift-Rotation Method for Absolute Interferometric Testing of a Spherical Surface with Pixel-Level Spatial Resolution. Appl. Opt. 2017, 56, 4886. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, L.; Ma, J.; Zheng, D.; Zhang, Z.; Liu, Y. Absolute Tests of Three Flats for Interferometer with 800 Mm Aperture. Opt. Express 2024, 32, 3779. [Google Scholar] [CrossRef]
- You, Z.; Shi, L.; Qi, L.; Yun, B.; Fu, W.; Jian, S. In situ absolute surface metrology for a 600 mm aperture interferometer. Opt. Lasers Eng. 2020, 129, 106054. [Google Scholar]
- Wei, L.; Shenq, C.; Chen, H.; Ching, K.; Chien, C.; Wei, H.; Shih, T.; Cheng, S. Absolute measurement method for correction of low-spatial frequency surface figures of aspherics. Opt. Eng. 2017, 56, 055101. [Google Scholar]
- Chen, S.; Xue, S.; Zhai, D.; Tie, G. Measurement of Freeform Optical Surfaces: Trade-Off between Accuracy and Dynamic Range. Laser Photonics Rev. 2020, 14, 1900365. [Google Scholar] [CrossRef]
- Peng, J.; Ren, J.; Zhang, X.; Chen, Z. Analytical Investigation of the Parasitic Diffraction Orders of Tilt Carrier Frequency Computer-Generated Holograms. Appl. Opt. 2015, 54, 4033. [Google Scholar] [CrossRef]
- He, Y.; Hou, X.; Wu, F.; Ma, X.; Liang, R. Analysis of Spurious Diffraction Orders of Computer-Generated Hologram in Symmetric Aspheric Metrology. Opt. Express 2017, 25, 20556. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Lu, W.; Chen, S. Positioning of the Test Surface in a CGH Null Test by Cat’s Eye Interference. Opt. Lasers Eng. 2025, 184, 108627. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Su, H.; Cheng, Q.; Li, L.; Li, F. Mixed Compensation for the Testing of Large Convex Aspheres. Results Phys. 2023, 55, 107189. [Google Scholar] [CrossRef]
- Zhou, P.; Burge, J.H. Fabrication Error Analysis and Experimental Demonstration for Computer-Generated Holograms. Appl. Opt. 2007, 46, 657. [Google Scholar] [CrossRef]
- Hayden, J.E.; Lewis, T.S. Distortion Correction Method for Aspheric Optical Testing. In Proceedings of the Laser Interferometry X: Techniques and Analysis, San Diego, CA, USA, 30 July–4 August 2000; Kujawinska, M., Pryputniewicz, R.J., Takeda, M., Eds.; SPIE: San Diego, CA, USA, 2000; pp. 56–62. [Google Scholar]
- Novak, M.; Zhao, C.; Burge, J.H. Distortion Mapping Correction in Aspheric Null Testing. In Proceedings of the Interferometry XIV: Techniques and Analysis, San Diego, CA, USA, 10–14 August 2008; Schmit, J., Creath, K., Towers, C.E., Eds.; SPIE: San Diego, CA, USA, 2008; p. 706313. [Google Scholar]
- Xu, H.; Lu, W.; Luo, G.; Wang, Y.; Liu, Y.; Chen, S.; Liu, J. Absolute Testing of Rotationally Symmetric Surfaces with Computer-Generated Holograms. Opt. Express 2024, 32, 31055. [Google Scholar] [CrossRef]
Design Parameter | Setup | Design Parameter | Setup |
---|---|---|---|
Type | Phase-type | Average period | 0.0073 mm |
Size | 89.2 mm | Carrier frequency | Tilt with 1.45° |
Minimum period | 0.0018 mm | Etching depth | 0.5 μm |
Maximum period | 2.7045 mm | Duty cycle | 0.5 |
Unit: Pixels | X1 | Y1 | X2 | Y2 | X3 | Y3 | Average |
---|---|---|---|---|---|---|---|
Origin Position | 347.48 | 463.04 | 628.34 | 375.25 | 533.10 | 657.63 | |
X-Position | 328.50 | 463.12 | 609.75 | 375.17 | 514.30 | 657.65 | |
Δx | −18.98 | −18.59 | −18.80 | −18.78 | |||
X–Y-Position | 380.99 | 385.94 | 666.65 | 539.39 | 437.19 | 722.84 | |
Y-Position | 381.09 | 368.29 | 666.55 | 521.90 | 437.13 | 704.89 | |
Δy | −17.65 | −17.49 | −17.95 | −17.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Liu, J.; Chen, S. Research on Nanometer Precision Measurement Method of High Order Even Aspheres. Appl. Sci. 2024, 14, 9969. https://doi.org/10.3390/app14219969
Xu H, Liu J, Chen S. Research on Nanometer Precision Measurement Method of High Order Even Aspheres. Applied Sciences. 2024; 14(21):9969. https://doi.org/10.3390/app14219969
Chicago/Turabian StyleXu, Hao, Junfeng Liu, and Shanyong Chen. 2024. "Research on Nanometer Precision Measurement Method of High Order Even Aspheres" Applied Sciences 14, no. 21: 9969. https://doi.org/10.3390/app14219969
APA StyleXu, H., Liu, J., & Chen, S. (2024). Research on Nanometer Precision Measurement Method of High Order Even Aspheres. Applied Sciences, 14(21), 9969. https://doi.org/10.3390/app14219969