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Abstract: To provide consistent air purification benefits from urban forests, it is crucial to identify
common characteristics that allow for similar experimental setups. This study aimed to analyze PM10

concentrations in urban forests near pollution sources and understand their mitigation effects. Data
from the Asian Initiative for Clean Air Networks, Korea, were used, focusing on three urban forests
adjacent to road and industrial pollution sources in Korea, with PM10 concentrations collected during
2021. Considering high PM10 concentrations during winter and spring, these seasons were divided
into two sub-periods, resulting in six seasonal periods for analysis. To address the right-skewed
PM10 distribution and reduce outlier influence, the Kruskal–Wallis test was used. The results showed
that “good” PM10 levels were lowest in early spring, increasing to a peak in summer before declining.
High PM10 events were concentrated in spring, early spring, and early winter. The Kruskal–Wallis
test indicated lower median PM10 concentrations in urban forests compared to pollution sources
in the latter half of the year, while no significant median differences were found in the first half.
Distribution visualizations further confirmed that even during high PM10 periods, all urban forests
showed lower PM10 values compared to pollution sources. In conclusion, PM10 concentrations in
urban forests were consistently lower than in pollution sources across all seasons, demonstrating their
effectiveness in air purification at both road and industrial pollution sources. Future research should
consider additional variables, such as PM2.5, to further explore differences between pollution sources.

Keywords: particulate matter; particulate matter concentration reduction; urban forest; nature-based
solutions

1. Introduction

Fossil fuels and various industrial processes release pollutants into the atmosphere,
contributing significantly to air pollution. Air pollutants, especially particulate matter (PM),
affect diverse regions and generations without distinction. PM exposure is ubiquitous,
affecting the health of humans, animals, and plants, thereby posing a significant threat
to public health and air quality. Given these challenges, PM has garnered attention as a
crucial environmental issue that requires immediate action for reduction.

Accordingly, both public and private institutions are actively developing strategies to
manage and mitigate PM, with South Korea adopting similar approaches [1,2]. Effective
strategies, such as reducing vehicle exhaust emissions, have led to decreased pollutant
concentrations in South Korea over time (National Academy of Environmental Sciences,
2022). However, challenges persist, especially in regions with low wind speeds or stagnant
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air, where PM concentrations tend to rise [3]. Additionally, rising temperatures in high-
latitude regions and a decline in the northwest monsoon could foster conditions favorable
for atmospheric stagnation, potentially reversing the trends in reducing PM concentrations,
even with ongoing reduction policies [4,5]. As urbanization progresses globally over
the next three decades, all regions are expected to experience heightened urban growth
(UN-Habitat Core Team, 2022). Urban residential areas tend to exhibit higher PM levels
than rural areas, with urban roadsides experiencing elevated PM exposure from non-
exhaust vehicular sources, such as tire and road abrasion, as well as vehicular emissions [6].
Furthermore, industrial emissions from oil combustion, coal burning, and metal processing
in urban settings result in higher oxidative output than that in rural areas, exacerbating
adverse effects on human health [7,8].

This confluence of climate change, urbanization, and persistent pollution has resulted
in an increasing number of factors contributing to higher particulate matter (PM) concentra-
tions, with their relationships becoming more complex. As such, research into complemen-
tary measures to mitigate these trends is essential. The limitations of traditional approaches
necessitate complementary strategies, thereby driving the demand for innovative solu-
tions to promote sustainability (National Institute of Forest Science, 2021). Nature-based
solutions (NbSs) involve leveraging natural processes to tackle socio-environmental chal-
lenges, enhancing sustainability and providing diverse benefits to both society and the
environment (National Institute of Forest Science, 2021). NbSs offer adaptive management
approaches for complex socio-ecological challenges and may be an effective solution for
PM reduction [9].

Particulate matter (PM) can be divided into two types depending on how it is formed:
primary PM, which is emitted directly from the source in solid form, and secondary PM,
which is formed when gaseous substances from the source undergo chemical reactions
with other substances in the air (Ministry of the Environment, Understanding Particulate
Matter, 2017). PM refers to particles smaller than 10 µm, most of which are produced by
primary emissions. In 2021, the primary sources of PM emissions in South Korea include
manufacturing combustion and production processes (8.22%), road traffic-related pollution
(2.39%), and fugitive dust (65.86%) (Korean Statistical Information Service, 2024).

In general, the formation of PM varies depending on the source. On roads, PM is
released by processes such as fuel combustion in internal combustion engines (exhaust
emissions), tire wear, and road surface abrasion (non-exhaust vehicle emissions) [10]. In
industrial complexes, PM is generated by the combustion of fossil fuels such as petroleum
and coal, metal processing, handling of powdered raw and auxiliary materials in factories,
and emissions from incinerators (Ministry of the Environment, Understanding Particulate
Matter, 2017).

Meanwhile, the reduction in PM by plants can be classified into two processes: external
(adsorption and accumulation on leaves) and internal (absorption and storage in plant
tissues). The external process is influenced by various factors, including leaf microstruc-
ture (trichomes, leaf structure, stomatal density, etc.), macrostructure (total leaf area, leaf
arrangement, leaf shape, etc.), canopy size, tree age, and physiological factors (such as
transpiration and boundary layer conductance). In addition, physicochemical properties
(such as wax layer composition) and interactions between leaves and the surrounding
environment play a critical role in PM reduction. PM accumulated on leaf surfaces can
be washed off by rain or resuspended by wind. It can also settle and disperse under the
influence of environmental factors, such as humidity and temperature. These processes
are further categorized into dry deposition, which includes the settling, diffusion, and
resuspension of PM on leaves, trees, and forest surfaces, and wet deposition, where PM
accumulated on leaves is washed off by precipitation [11–19]. The internal process refers
to the uptake of PM through stomata or cuticles. PM can be absorbed through stomatal
openings, cell membranes, and roots, where it accumulates on the surface or inside the
roots [20,21].
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Researchers are actively developing methods to utilize forests in reducing PM con-
centrations. These studies can be categorized into micro-, mezzo-, and macro-research
approaches based on the scope, duration, and complexity of this study. Micro-research
focuses on the mechanisms of PM absorption and removal through the biological prop-
erties of trees [22–24], such as the differences in accumulation among various vegetative
organs and identifying species that efficiently absorb PM. Mezzo-research expands the
focus to include the trees, their surrounding environments, and human interactions [25–30],
examining the interplay of ecological factors such as forest structure, meteorological and
spatial factors, and anthropogenic activities. Macro-research takes a broader perspective,
encompassing longer study periods and wider areas, including the previously mentioned
subjects [31–34]. These studies explore PM concentration differences among observation
stations, estimating PM removal and accumulation by urban forests and converting these
estimates into annual values. Furthermore, they analyze the positive impacts of these
forests on air quality.

This study analyzed the concentration of particulate matter in urban forests where
both non-point source pollution (e.g., roads) and point source pollution (e.g., industrial
complexes) are present using long-term monitoring data from the AICAN (Asian Initiative
for Clean Air Networks, Korea) system operated by the National Institute of Forest Science
in Korea. This research aims to identify the common characteristics of particulate matter
(PM) concentrations in urban forests located near different pollution sources, examine
the differences in PM concentrations between pollution sources and forest plots, and
explore the significance of these differences to better understand the role of urban forests in
reducing PM.

2. Materials and Methods
2.1. Study Sites

The National Institute of Forest Science strategically established from 2019 to 2023 a
total of 132 plots across 44 sites for AICAN in the Korean peninsula to investigate the role
of forests in mitigating or obstructing PM pollution. To identify suitable sites, urban forests
were categorized into four main construction backgrounds. The selection process also
involved analyzing three years of meteorological data, conducting atmospheric modeling,
and performing on-site surveys and evaluations.

To address pollutant reduction at the source, this study is on urban forests and prox-
imal pollution sources. The pollution sources were divided into industrial complexes
(point-source pollutants) and road areas (non-point-source pollutants). Several AICAN
plots were installed near these pollution sources. When selecting the research sites, two
primary criteria were considered. First, the installation timeline of each region, and the
time to finalize confirmation of the collected data, had to be accounted for based on site
selection. Second, each site needed to provide a full year of data for seasonal comparisons,
with missing values comprising no more than 5% of the total data. Within the AICAN
pollutant groups, the road areas included Gomae, Yangjae, and Gwanak, while the in-
dustrial complexes covered Goyang, Sihwa, and Gijang (Table 1). Data were collected
throughout 2021.

At the Gomae site, plots were installed 50 m and 150 m away from the highway
(source), with broadleaved forests occupying the area. The Yangjae site, located along the
same highway, included plots at distances of 200 m and 300 m and featured mixed forests.
Both sites are situated near the Gyeongbu Expressway, which had an average traffic volume
of 192,000 vehicles per day in 2021 (Seoul Metropolitan Facilities Management Corporation,
2022). At the Gwanak site, measurement points were installed on the rooftop of the Seoul
National University Graduate School of Public Health, SNUGPI observation station, with
the traffic island near the university’s main gate serving as the pollution source. This site
features both coniferous and mixed forests and is located near the Gangnam Circle City
Expressway, which had a daily traffic volume of 90,451 vehicles in 2021 (Seoul Metropolitan
Government and Seoul Metropolitan Facilities Management Corporation, 2022). The Gijang
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site is situated near the Jeonggwan General Industrial Complex (source), with measurement
plots in both forested and residential areas. The forest plots contain mixed forests, while the
residential area plot consists of broadleaved forests. The Goyang site, located near the Ilsan
Urban High-Tech Industrial Complex, includes source plots near LNG facilities. Forest
plots in this area feature mixed forests, while the residential area contains broadleaved
forests. Lastly, the Sihwa site, positioned near the Sihwa Industrial Complex, has plots in
barrier forests and residential areas. The forest plot contains a mixed forest, while both the
forest and residential plots include coniferous forests.

Table 1. Characteristics of study sites.

Pollution
Division

Site
Plot

Plot Type Forest Type
Original Latest

Road
(non-point source

pollution)

Gomae

Road Road Road

Deciduous
50 m from road Forest interior 1 Forest
150 m from road Forest interior 2 Forest

AirKorea AirKorea School -

Yangjae

Road Road Road Mixed
200 m from road Forest interior 1 Park Mixed
300 m from road Forest interior 2 Park Mixed

AirKorea AirKorea Road -

Gwanak

Road Road Road Coniferous
Univ. campus Forest interior 1 Etc. -

Forest Forest interior 2 Forest Mixed
AirKorea AirKorea Office -

Industrial
area

(point-source pollution)

Gijang

Industrial area Industrial area Industrial area Mixed
Forest Forest Park Mixed

Residential area Residential area Park Deciduous
AirKorea AirKorea Office -

Goyang

Industrial area Industrial area Industrial area -
Forest Forest Forest Mixed

Residential area Residential area Downtown Coniferous
AirKorea AirKorea Park -

Sihwa

Industrial area Industrial area Industrial area Mixed
Forest Forest Park Coniferous

Residential area Residential area Park Coniferous
AirKorea AirKorea Office -

This table was created by referencing the Forest PM AICAN Utilization I and the Forest PM AICAN Green
Infrastructure Research Report, both published by the National Institute of Forest Science in 2021).

2.2. PM Concentration Measurements

Three plots were established at each site of AICAN to represent varying environmental
contexts. Here, we studied urban forests by source. In this case, plots near a road source
encompassed a source area, an interior forest site, and a location at another interior part
of the forest. Plots near an industrial complex encompassed a source area, a forest, and a
residential area (Figures 1 and S1).
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For the measuring instrument, the EDM-365 SVC (Grimm Aerosol Technik GmbH
& Co. KG, Ainring, Germany; Figure 2) was employed. It utilizes light-scattering mea-
surements to continuously monitor PM concentrations (PM10, PM2.5, and PM1.0; PM in the
atmosphere in and out through a sampling head), wind direction, wind speed, temperature,
humidity (these are observed by a weather senor), and both anthropogenic and biogenic
volatile organic compounds, among other parameters (National Institute of Forest Science,
2020). Raw data were observed every 10 min continuously.
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Figure 2. Measuring instrument at each plot.

Further, PM data from AirKorea, a city center observation station near AICAN, were
utilized to facilitate a comparative assessment. This study specifically drew on data from a
roadside atmospheric network to evaluate air quality in areas with significant automobile
and pedestrian traffic (Ministry of Environment and National Academy of Environmental
Sciences, 2023).

2.3. Monitored Data

To investigate the PM reduction effects of urban forests, AICAN data were obtained
from the Korea Public Data Portal (Korea Public Data Portal, 2023), while downtown
plot data were obtained from AirKorea [35]. Because AICAN data were observed every
10 min and AirKorea data were observed hourly, the AICAN data were averaged hourly
to synchronize the data timelines for AICAN and AirKorea. Then, the location data for
road areas and industrial complexes were merged by PM10 concentration (source, forest,
residential area (AICAN) and downtown area (AirKorea)) together with the corresponding
city data from AirKorea by date and were ordered in the format of year/month/day/hour.
In this study, the Kruskal–Wallis test (KW test; it is a non-parametric counterpart to the
parametric one-way analysis of variance (ANOVA)) was used to compare medians by
ordering the data for each group. Because this method is rank based, it is less affected
by outliers, and given the multiple causes of high PM concentrations at pollution sources,
outlier removal was not performed. Due to the varying distances of measurements from
the road source, the plots were categorized as road, forest interior 1, forest interior 2, and
downtown areas (Table 1). In addition, since PM concentrations are high in spring and
winter in South Korea, these seasons were further divided in half, resulting in a total of six
periods for comparing PM concentrations.

Seasonal criteria were established using the method provided by Choi, Kwon, and
Robinson [36], defined by Equation (1). This equation calculates the Summed Daily Temper-
ature (SDTi) as the seven-day moving average of the daily maximum (MaxTi), minimum
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(MinTi), and mean (MeanTi) temperatures, where i refers to the number of days, and
i = 1, . . ., 365.

SDTi =
∑i+3

n=i−3(MinTn + MeanTn + MaxTn)

7
. (1)

The seasonal transitions were identified as follows. Winter ends and spring begins
on the last day when the SDT falls below 15 ◦C, calculated as 24 February 2021. Spring
ends and summer begins on the first day when the SDT reaches or exceeds 60 ◦C, noted as
6 June. Summer ends and autumn begins on the last day with the SDT is at or above 60 ◦C,
calculated as 11 October. Autumn transitions to winter on the first day when the SDT drops
below 15 ◦C, which was November 28. Given the typically high PM concentrations during
winter and spring in Korea, the analysis was segmented into six periods: early winter
(1 January 2021–23 February 2021), early spring (24 February 2021–16 April 2021), late
spring (17 April 2021–5 June 2021), and late winter (28 November 2021–31 December 2021).
PM concentration levels were categorized according to environmental ministry standards
as good (0–30 µg/m3), not bad (31–80 µg/m3), bad (81–150 µg/m3), and very bad (above
150 µg/m3).

2.4. Statistical Analysis

When testing for differences in the means of three or more independent groups, an
F-test is typically used to compare between-group variance and within-group variance
to determine whether the differences in means are statistically significant. However, to
use well-known parametric statistical methods based on a normal distribution, certain

assumptions must be satisfied, such as normality, homogeneity of variances (F =
s2

1
s2

2
,

here, s2
1, s2

2 are the variances of each group), and independence of observations. However,
PM data often exhibit a right-skewed distribution, with many low values and fewer high
values. The pronounced skewness in the observation values violated the assumption of
a normal distribution, which undermined the F-test’s effectiveness in controlling Type I
errors (rejecting a true null hypothesis) [37]. In such situations, non-parametric statistical
methods, which do not assume a specific parametric model for the population and can
analyze data based solely on signs or ranks, are more appropriate. The Kruskal–Wallis test,
which uses permutation combination-based ranks, serves as a suitable alternative. This
method is advantageous for analyzing data that do not satisfy the normality assumption,
as it employs rankings based on the entire data set rather than raw data from each group.
After conducting a one-way analysis of variance (ANOVA), the Bonferroni post hoc test
is used to effectively control Type I errors when making multiple comparisons. It also
works relatively well when the distribution does not follow normality or when variances
are unequal.

The KW statistics are calculated by dividing the variance (V) derived from the ranked
data by the sample variance of the rankings

(
S2

R
)
. The total number of observations is

n = ∑k
i=1 ni, where i = factors that are categorical variables. Xij = the jth observation

from the ith population, where i = 1, . . . , k, j = 1, . . . , ni. Rij = ranking transformation
of Xij. The mean of all rankings {1, . . ., n} R = 1

n ∑n
i=1 i = n+1

2 , Ri = the mean of rankings

according to process i, V = ∑k
i=1 ni

(
Ri − n+2

2
)2

, S2
R = 1

n−1 ∑n
i=1 (i − R)2

= n(n+1)
12 . The KW

statistics, when considering ties, are calculated as follows:

KW =
∑k

i=1 ni
(

Ri − n+2
2

)2

S2
R

(2)

When Rij is the Xij’s ranking, consider R11, . . ., Rknk
as observed values. The calculated

formula is as follows:

FR =

∑k
i=1 ni(Ri−R)

2

k−1

∑k
i=1

∑
ni
i=1(Rij−Ri)

2

n−k

(3)
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When the observed KW statistics from the data are KWobs, their p-value is
p = P (k ≥ KWobs) [37]. To identify groups with significant differences, a post hoc test (Bon-
ferroni adjustment for multiple comparisons) was conducted. The analysis was performed
using R version 4.3.1.

3. Results
3.1. Analyzing Wind Direction and PM Concentrations

Due to the characteristics of South Korea’s climate, the prevailing wind direction is
northwest in winter and southwest in summer. For road pollution sources, Gomae and
Yangjae were mostly affected by northerly winds, while Gwanak showed northwesterly
winds in early winter and early spring, gradually shifting to northwesterly and south-
easterly winds in fall. For industrial pollution sources, northwesterly winds were the
most common overall, although there were seasonal variations (Figure 3). Notably, PM
concentrations significantly increased during the spring months. The concentrations were
the lowest in summer and then increased in autumn. Within the industrial complexes,
PM10 concentration trends were similar to those of road pollution sources, though the
frequency and levels of high PM10 events were greater (Figure 4). The boxplot analysis of
the maximum values (defined as 1.5 times the interquartile range, which is the midpoint
of the upper half minus the midpoint of the lower half of the data) shows that high PM10
concentrations predominantly occurred from early in the year through spring. Figure 4 also
highlights that the median PM10 concentrations did not align with the frequency and levels
of high PM10 events. When cross-referenced with the wind rose data, it is evident that high
PM10 concentrations, classified as “high” or “bad” (Figure 3, red and orange), primarily
occurred from early in the year to early spring. Conversely, “good” PM10 concentrations
were more frequent during spring. In summary, PM10 concentrations were relatively high
from early in the year through spring, but the frequency of high PM10 events peaked in
spring, suggesting that PM10 occurrence characteristics vary across seasons.

The relationship between wind direction and PM concentrations at each measurement
point was examined for each site by analyzing the most frequently observed wind direction
and the distribution of PM concentrations by season (Figure 3). Although there were
seasonal differences in Table S1, generally, Gomae’s forest interior 1, Yangjae’s forest
interior 2, and Gwanak’s forest interior 1 showed the highest wind speeds among the
road pollution sources. For industrial pollution sources, wind speeds were higher in the
industrial and residential areas compared to the forest. The average wind speed of the
most frequent wind direction was higher in winter and lower in summer. However, when
broken down by season and plot, the wind speed in forests or forest interiors was lower
than in other plots. Due to the variation in wind speeds across different regions and plots,
it was challenging to identify a consistent pattern.
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3.2. Analysis of PM10 Concentrations in Each Plot
3.2.1. ANOVA of the Plot PM Concentration Results

The Kruskal–Wallis test was employed to assess the difference in the median PM
concentrations among groups. In the last row in Table 2, the chi-square value, which
serves as the test statistic following a chi-square distribution, indicates whether the null
hypothesis can be rejected. The results of the KW test in this study reveal significant
differences in median PM concentrations among the four plots across all seasons (Table 2).
The post hoc test was conducted to identify which groups exhibited significant differences
in their median values. The results revealed distinct patterns: from the beginning of
the year to early spring, no median difference was observed in forest areas. However,
during spring, the median concentrations in both the road and downtown plots were
higher than those in forest plots. In summer, significant differences were noted among
the downtown, road, forest interior 1, and forest interior 2 plots, with downtown plots
exhibiting the highest median concentration, followed by road, forest interior 1, and
forest interior 2 plots in decreasing order. Similarly, at the end of the year, while there
were no significant differences in median concentrations between the road, forest interior
1, and downtown areas, the results were significant, with each plot recording higher
medians than those of forest interior 2. From the beginning of the year to early spring,
there were no noticeable differences in the median PM concentrations between the plots.
However, from spring to the end of the year, the PM concentrations in interior forest plot
1 remained consistently lower than those in urban and pollution source areas. Table 2
revealed the results in the industry complexes, and the post hoc test results highlighted
distinct patterns. At the beginning of the year, industrial complexes and forests exhibited
higher concentrations, with subsequent decreases in downtown and residential areas. In
early spring, downtown areas displayed the highest concentrations, followed by industrial
complexes, and residential areas had the lowest. PM concentration changes decreased in
the order of industrial areas, forests, and residential areas throughout spring. Industrial
complexes and downtown areas maintained higher PM concentrations than forests and
residential areas. During summer, concentrations decreased in the order of downtown
areas, industrial complexes, forests, and residential areas. In autumn, both industrial
complexes and downtown areas showed higher concentrations than those of forests and
residential areas. At year end, industrial complexes recorded higher concentrations than
residential areas. Except for the winter season (the beginning of the year and at year end),
the PM concentration of the forest was lower than the industrial area.



Appl. Sci. 2024, 14, 9988 12 of 19

Table 2. The Kruskal–Wallis test results of road site PM10 concentrations (µg/m3) in each season.

Early Winter
(M ± SD)

Early Spring
(M ± SD)

Spring
(M ± SD)

Summer
(M ± SD)

Autumn
(M ± SD)

Late Winter
(M ± SD)

Non-point
pollution

Forest
interior1 51.27 ± 26.69 54.62 ± 37.98 40.76 ± 36.23 18.70 ± 12.15 37.43 ± 22.52 40.30 ± 20.87

Forest
interior2 51.43 ± 27.67 56.64 ± 40.45 39.50 ± 31.66 17.77 ± 11.74 33.48 ± 20.23 35.80 ± 19.09

Road 51.07 ± 26.90 54.96 ± 38.28 42.71 ± 39.93 20.13 ± 12.36 37.61 ± 21.99 40.54 ± 20.37

Downtown 43.47 ± 26.32 56.37 ± 57.44 57.09 ± 93.66 23.67 ± 14.92 37.97 ± 28.85 41.07 ± 24.01

χ2 316.37 * 27.59 * 50.76 * 998.79 * 105.33 * 62.18 *

Point
pollution

Forest 46.17 ± 29.16 49.90 ± 39.33 39.68 ± 43.25 17.51 ± 11.68 31.36 ± 24.05 34.04 ± 22.50

Residency 37.68 ± 25.84 38.76 ± 34.28 33.55 ± 34.37 16.12 ± 11.92 31.11 ± 26.24 34.21 ± 23.84

Industrial
area 48.25 ± 30.07 52.38 ± 39.88 39.90 ± 34.98 18.46 ± 12.26 33.07 ± 24.32 35.26 ± 22.34

Downtown 41.07 ± 26.98 55.47 ± 70.68 50.60 ± 78.88 24.00 ± 14.09 34.39 ± 26.49 34.27 ± 22.41

χ2 356.15 * 399.62 * 270.79 * 2378.16 * 70.46 * 8.83 *

Early winter (beginning of the year): 1.1–2.23; early spring: 2.24–4.15; spring: 4.16–6.5; summer: 6.6–10.10; autumn:
10.11–11.27; late winter (end of the year): 11.28–12.31. * p < 0.05.

3.2.2. Comparison of PM Concentration Distribution

Table 3 presents the probability of PM10 concentrations reaching levels classified as
“bad” or above (above 81 µg/m3). For Gomae, the lowest probability of “bad” PM10
levels were found at forest interior 1, while Yangjae and Gwanak exhibited the lowest
probabilities at forest interior 2. Among these sites, the forest interior at Gomae, which
is composed solely of trees, showed the most significant difference in the likelihood of
“bad” PM10 concentrations compared to surrounding areas. Similarly, the forest interiors
in Yangjae, which is a park, and in Gwanak, located within a university campus, also
demonstrated lower probabilities of high PM10 levels than the pollution sources. For the
industrial complexes, excluding Gijang, which had generally low PM10 concentrations,
Goyang and Sihwa industrial areas showed a higher probability of PM10 levels exceeding
the “bad” threshold compared to the road areas. However, urban forests and residential
areas showed a gradual decrease in PM10 concentrations compared to the pollution sources.

Table 3. Probability of PM10 concentrations reaching levels classified as “Bad” or above (above 81 µg/m3).

Non-Point Pollution Point Pollution

Road Interior1 Interior2 Industrial Area Forest Residential Area

GM 0.0686 0.0544 0.0830 GJ 0.0159 0.0154 0.0083
YJ 0.0822 0.0821 0.0784 GY 0.1050 0.0918 0.0399

GW 0.0894 0.0845 0.0790 SH 0.1056 0.0969 0.0932

In addition, Figure 5 illustrates the overall distribution of PM10 concentrations through-
out the year (0–200 µg/m3) as well as the distribution of concentrations in the 0–80 µg/m3

range, which represents typical conditions and constitutes a substantial portion of the data
set. The overall distribution of data across the entire study period (Figure 5) indicates a
right-skewed pattern, with many values clustering within the 0–100 µg/m3 range, with
no significant differences observed across regions or plots. However, when examining the
data by subdivided periods, distinct differences between plots emerged.
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For the road pollution source, the probability density distribution for concentrations
below 80 µg/m3 showed that forest interior 1 had a higher clustering of lower PM10 con-
centrations compared to surrounding areas. This trend was most prominent in early spring,
with similar patterns observed in early year and spring data. All three regions exhibited a
distinct pattern where forest interior 1 and surrounding areas were clearly differentiated,
showing similar distribution shapes across different time periods. During early winter, the
distribution of measurement points was similar, and the distances between them remained
relatively consistent. In early spring, forest interior 1 maintained its previous distribution
shape, while data from surrounding areas spread more widely, increasing the distance
between measurement points. By spring, PM10 concentrations in all measurement points
had clustered at lower values, causing significant overlap between the distributions at the
three locations, resulting in minimal differences between them.

For the industrial complex pollution sources, the overall annual PM10 concentration
distribution (0–200 µg/m3) showed that the likelihood of low concentrations in residential
areas (represented by the y-value corresponding to the x-axis values) was significantly
higher compared to other plots, differing from road pollution sources. When examining the
seasonal distribution patterns for Gijang, no notable changes were observed in the forest
over the three seasons. However, in early year and early spring, the differences between
the three plots were minimal, while during spring, PM10 concentrations were predomi-
nantly clustered in the lower range for both residential and industrial areas, increasing
the likelihood of lower concentrations. In Gijang, low concentrations were prevalent in
the pollution sources and surrounding areas across all three seasons, resulting in minimal
differences between measurement points. For Goyang, in early year and early spring, PM10
concentrations were mostly concentrated in the lower range for both forest and residential
areas, while the pollution source exhibited a broader distribution extending to higher
concentrations. However, during the spring season, when high PM10 events were frequent,
the concentrations in the forest remained stable, while data density in residential areas
around the mode decreased, leading to a wider distribution. The pollution source also
saw an increase in observations in the lower concentration range, reducing the differences
between the three measurement points. In Sihwa, the differences between the forest and
other plots remained consistent throughout all three seasons, with the forest consistently
showing lower concentrations. Overall, in the case of road pollution sources, even though
surrounding areas were affected by the pollution source, the interior of the forest appeared
to be less impacted. This trend was particularly evident during periods with higher median
PM10 concentrations. For industrial pollution sources, the higher median concentrations
observed in early year and early spring seemed to influence PM10 concentration changes at
Gijang and Goyang. During spring, the increase in high PM10 events led to an increase in
extreme values, while low-concentration observations also increased, resulting in a lower
median concentration compared to previous periods. Ultimately, even during periods of
high PM10 concentrations, the forest consistently showed a lower concentration distribution
compared to other monitoring sites.

4. Discussion

Urban forests have been studied and evaluated for their effectiveness in mitigating
or purifying pollutants and reducing their negative impacts from increasingly diverse
pollution sources. Although it is challenging to quantify the various forms and structures
of urban forests using a consistent standard, efforts to identify common characteristics of
urban forests to consistently reproduce the benefits of green spaces are essential.

When examining the characteristics of PM10 concentrations at the study sites, the
concentration-based proportions of each wind direction varied by period. The proportion of
“good” air quality was relatively lower in the first half of the year, with early spring showing
the lowest proportion of “good” levels and the highest proportion of “bad” levels. Seasonal
differences in PM10 concentrations (Figure 4) indicated that the median concentrations
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were the highest at the beginning of the year and early spring, whereas short-term, extreme
events, such as high PM10 occurrences, were more frequent in the spring.

When comparing the average wind speeds of the most frequently observed wind di-
rections by season and region with the Beaufort wind scale, summer wind speeds generally
fell into category 1 (0.3–1.5 m/s, “light air”), whereas winter wind speeds were classified
as category 2 (1.6–3.3 m/s, “light breeze”), indicating relatively higher wind speeds dur-
ing winter compared to summer. However, calm wind speeds were more prominent in
summer and autumn, yet PM10 concentrations were higher in winter (Figure 3, Table S1).
These results contrast with previous studies, which suggest that low wind or calm wind
conditions promote the accumulation of particulate matter [35,36]. Further detailed studies
incorporating various forest environments, wind directions, and speed conditions are
needed to better understand the impact of wind conditions on PM10 concentrations.

To investigate the median differences between plots to understand the PM10 reduction
effect of urban forests, the Kruskal–Wallis (KW) test was performed. For road pollution
sources, during the early year to early spring period and for industrial pollution sources
during all periods except early year, the median PM10 concentration was lowest in forest
interior 1 plots (road source) and forest plots (industrial source). However, when examining
the differences in the probability of PM10 values exceeding “bad” levels (Table 3) and the
distribution at lower levels (Figure 5), it was found that, even during periods of high PM10
levels in the first half of the year, the PM10 concentrations observed in urban forests were
predominantly clustered in the lower range. Additionally, even during seasons with high
PM10 concentrations, the characteristics of PM10 occurrences varied by period.

For road pollution sources, unlike early year winter and early spring, during spring,
there were frequent high PM10 events, yet PM10 concentrations were relatively low during
normal conditions, even at the pollution sources, resulting in smaller differences between
plots. In contrast, for industrial pollution sources, no significant differences in trends were
found between plots within the area across all three seasons in the first half of the year.
The differences in the interaction between surrounding environments and forests could
be attributed to the differing PM emission sources, compositions, and particle sizes for
road and industrial pollution sources [37,38]. Moura BB et al. (2024) analyzed seasonal and
regional PM concentration differences across urban traffic, urban background, industrial,
and rural areas, classifying particulate matter as fine (0.2–2.5 µg), coarse (2.5–10 µg), and
large (>10 µg). The study found that during winter, coarse and large particle concentrations
were higher for urban traffic than in industrial areas, with lower potassium (K) and higher
calcium (Ca) levels for roads compared to industrial sources. Popek R et al. (2022) [39]
reported that the presence of inorganic PM on plant leaves within forest interiors suggests
that non-exhaust road emissions can penetrate deep into forest areas. Although this study
identified seasonal and plot-specific differences in PM10 concentrations, further research is
necessary to understand the PM10 reduction effects of urban forests near pollution sources.
Such research should involve more detailed classifications of PM concentration levels or
methods for distinguishing the PM composition between pollution sources.

In summary, during the first half of the year, when PM10 concentrations were high,
it was confirmed through the distribution of data that PM10 levels in forest interiors and
forests were clustered in the lower concentration range. In the second half of the year, lower
concentrations in forest interiors and forests were confirmed through median differences.
Notably, during early year and early spring—periods when PM10 median concentrations
remained high—the distributions of PM10 concentrations in pollution sources and forests
were distinctly separated. Given the lack of consistent, prominent patterns in meteorological
conditions, such as wind speed, wind direction, temperature, and humidity, it is likely that
both road and industrial areas are more influenced by physical and environmental factors,
such as the distance from pollution sources and the barrier effect of forests. Previous
studies conducted at specific sites suggest that the amount of PM accumulated on trees
increases as the distance from the pollution source to the forest increases [40,41]. Vegetative
barriers act as physical barriers that spatially separate pollution sources, thereby reducing



Appl. Sci. 2024, 14, 9988 16 of 19

exposure to air pollutants [12,39]. The lower PM10 concentrations in forests, in particular,
can be attributed to the physical structure of the vegetation, which restricts airflow through
the forest and causes particle deposition on plant surfaces [42]. Additionally, the more
extensive the vegetative barrier, the greater the amount of PM removal [43–46].

In the non-parametric analysis of variance (ANOVA) used to analyze PM10
concentrations—characterized by a skewed distribution—no significant median differ-
ences were observed between groups, whereas differences were evident in the overall
distribution. This suggests that it is challenging to identify group differences using means
or medians due to the highly asymmetric nature of PM10 data. In such cases, applying loga-
rithmic or square root transformations can narrow the range between variables, making the
distribution more similar to a normal distribution. Alternatively, utilizing homoscedasticity
tests rather than relying solely on summary statistics, such as means or medians, could
better explain the difference between groups through variance comparison.

In this study, we aimed to identify the consistent characteristics of PM10 concentrations
in urban forests near similar pollution sources by focusing on regions with common
environmental conditions rather than limiting the analysis to individual locations or specific
environmental conditions. However, there are limitations, such as not fully accounting
for geographic and environmental differences, including coastal versus inland areas and
latitudinal variations. Additionally, PM10 data are not simple continuous numerical data
but are categorized into distinct levels, such as “good”, “not bad”, and “bad”. Moreover,
since the distribution is not normally distributed around the mean but instead is right
skewed with data clustering in lower value ranges, relying solely on summary statistics,
such as means and medians, it was insufficient to fully capture PM characteristics. There
is a need to consider statistical methods that can adequately account for the complex
distributional characteristics of the data and incorporate various visualization methods
to better address these limitations. Future studies should fully consider factors such as
geographical and environmental differences, as well as the nature of the data, to provide
more comprehensive insights.

Given the significant health impacts of PM, it is crucial to minimize seasonal variability
in abatement effects. The results of this study will inform policies for the establishment
and management of urban forests to reduce PM concentrations effectively.

5. Conclusions

This study aimed to identify consistent patterns in PM10 concentrations near pollution
sources and interpret the PM10 reduction effects of urban forests. Seasonal, regional, and
pollution source-specific data were analyzed using wind speed, wind direction, and PM10
distribution characteristics to understand these patterns. Our findings showed that the
proportion of “good” PM10 levels was lowest in early spring and highest in summer, with
frequent high PM10 events occurring in spring, early spring, and early year winter. Most
wind speeds were below 3.3 m/s, and while winter generally had higher wind speeds,
PM10 concentrations were also highest in winter.

To assess differences in PM10 concentrations between urban forests and pollution
sources, we compared the median PM10 values of plots using the Kruskal–Wallis test.
Given the right skewness of the PM10 data, non-parametric methods were employed;
yet, the complex nature of PM10 data as both numeric and categorical, along with the
presence of extreme events, presented challenges in fully assessing PM10 reduction by
urban forests. To address these challenges, we analyzed the distribution of PM10 data
during the first half of the year, when median differences were minimal, and confirmed
that PM10 concentrations were clustered at lower levels within forest interiors. During
early year and early spring—when median PM10 levels were highest—the distributions
for pollution sources and forests were distinctly different, while spring saw lower PM10
concentrations across all plots, reducing the differences. In the second half of the year,
median PM10 concentrations were consistently lower in forest interiors and forests, as
confirmed by the Kruskal–Wallis test.
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Overall, across all seasons, urban forests exhibited lower PM10 concentrations com-
pared to pollution sources, reaffirming their role as an effective nature-based solution for
air purification. These findings highlight the importance of urban forests in mitigating
air pollution, and their potential as a strategy for enhancing urban air quality should be
further explored in urban planning initiatives.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/app14219988/s1, Figure S1: The location of study and AICAN and
AirKorea plots; Table S1: The most frequent wind direction and average wind speed for each plot
by season.
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