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Abstract: The aim of this study was to narrow the research gap of ambiguity in which machine learn-
ing algorithms should be selected for evaluation in digital soil organic carbon (SOC) mapping. This
was performed by providing a comprehensive assessment of prediction accuracy for 15 frequently
used machine learning algorithms in digital SOC mapping based on studies indexed in the Web of
Science Core Collection (WoSCC), providing a basis for algorithm selection in future studies. Two
study areas, including mainland France and the Czech Republic, were used in the study based on
2514 and 400 soil samples from the LUCAS 2018 dataset. Random Forest was first ranked for France
(mainland) and then ranked for the Czech Republic regarding prediction accuracy; the coefficients of
determination were 0.411 and 0.249, respectively, which was in accordance with its dominant appear-
ance in previous studies indexed in the WoSCC. Additionally, the K-Nearest Neighbors and Gradient
Boosting Machine regression algorithms indicated, relative to their frequency in studies indexed in
the WoSCC, that they are underrated and should be more frequently considered in future digital SOC
studies. Future studies should consider study areas not strictly related to human-made administrative
borders, as well as more interpretable machine learning and ensemble machine learning approaches.

Keywords: random forest; web of science core collection topic search; LUCAS dataset; environmental
covariates; digital soil mapping; remote sensing

1. Introduction

Accurate digital soil organic carbon (SOC) mapping on a national scale is vital for a
multitude of ecological and environmental reasons, including soil health, nutrient availabil-
ity, water retention, and overall soil fertility, which directly impact agricultural productivity
and sustainability [1]. Moreover, SOC is a significant component of the global carbon
cycle, affecting greenhouse gas emissions and climate change mitigation efforts [2]. Na-
tional SOC maps particularly enable informed land management and policy decisions,
enabling the identification of carbon hotspots and guiding reforestation, conservation, and
carbon sequestration projects [3]. Additionally, such mapping supports compliance with
international climate agreements by providing essential data for carbon accounting and
reporting [4]. Therefore, the development of high-resolution, accurate SOC maps is impera-
tive for advancing research and practices aimed at enhancing soil conservation, improving
food security, and fostering climate resilience. The primary difference between digital SOC
mapping at a national scale and mapping performed at other scales is the spatial resolution
and the level of detail [5]. The most common spatial resolution for national-scale SOC maps
is of the order of 250 m–1 km [6]. For achieving higher spatial resolutions, soil sampling is
time-consuming, labor-intensive, and costly, which can limit the availability of soil samples
for mapping purposes [7]. In addition, the distribution of soil samples may not be uniform
or representative of the entire area of interest, which can further limit the accuracy and
resolution of the resulting SOC maps [8]. The presence of datasets such as LUCAS (Land
Use/Cover Area frame statistical Survey) is highly beneficial for digital soil organic carbon
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(SOC) mapping at a national scale due to its comprehensive and systematic approach to soil
sampling across diverse landscapes. LUCAS provides standardized soil data, including
SOC content, collected at predefined locations that can enhance the representativeness of
soil information [9]. Furthermore, the extensive coverage and methodological rigor of LU-
CAS facilitate the development of predictive models that can extrapolate SOC distribution
across wider areas, ultimately contributing to better-informed agricultural practices, carbon
stock assessments, and environmental policies at the national level.

Knowing which machine learning algorithms to use for digital soil mapping is critical
as different algorithms possess unique strengths and limitations that can significantly influ-
ence the accuracy and reliability of soil property predictions, including SOC content [10].
Machine learning techniques, such as Random Forests, support vector machines, and neural
networks, differ in their ability to handle various data types, manage high dimensionality,
and model the complex non-linear relationships that are inherent in soil data. Selecting
the appropriate algorithm can enhance the model’s performance by optimizing predictive
accuracy and minimizing overfitting, which is particularly important in heterogeneous
landscapes [11]. Thus, the informed selection of machine learning algorithms not only
improves the robustness of SOC predictions, but also fosters informed decision-making
for sustainable land use and effective climate action strategies. The integration of ma-
chine learning algorithms in digital soil mapping represents a state-of-the-art approach,
surpassing conventional geostatistical methods in several aspects [12]. Unlike traditional
geostatistical techniques, which rely on spatial autocorrelation and Gaussian processes,
machine learning algorithms can effectively handle high-dimensional and heterogeneous
datasets, capturing complex non-linear relationships between soil properties and environ-
mental factors [13]. This enables more accurate predictions of SOC content, particularly in
areas with diverse landscapes and soil types. Furthermore, machine learning algorithms
can automatically select relevant predictors, reducing the need for manual feature selection
and minimizing the risk of overfitting. In contrast, geostatistical approaches often require
the explicit modeling of spatial relationships and may struggle with high-dimensional data,
leading to a reduced accuracy and interpretability [14]. Environmental covariates are crucial
in digital soil mapping as they provide relevant information about the soil–landscape rela-
tionships, enabling the creation of more accurate predictive models [15]. These covariates
can be topographic, climatic, biophysical, or anthropogenic factors that indirectly influence
soil properties through their effects on soil-forming processes [16]. Remote sensing has
a significant role in digital soil mapping by providing consistent, large-scale, and high-
resolution data on various environmental covariates, facilitating the accurate prediction
of soil properties in data-scarce regions and enabling the identification of spatial patterns
and trends that may be difficult to detect using conventional ground-based measurements
alone [17]. The integration of remote sensing data with machine learning algorithms has
the potential to further enhance the predictive accuracy and interpretability of digital
soil mapping models, ultimately contributing to better-informed land use and climate
action strategies.

While the evaluation of machine learning algorithms for digital SOC mapping has
been a focus of several previous studies, there is a predominant conclusion that the optimal
machine learning algorithm and its hyperparameters are heavily dependent on the input
soil sample properties [10]. To ensure the optimal selection of predictive approaches, it is
essential to evaluate several machine learning algorithms in each study [18]. However, a
significant research gap exists regarding which specific algorithms should be prioritized for
evaluation. Selecting from the vast array of available algorithms can be computationally
inefficient, especially when conducting national-scale digital SOC mapping, a process that
is often utilized in land management.

The aim of this study is to address this research gap by providing a comprehensive
assessment of the prediction accuracy of 15 commonly used machine learning algorithms
in digital SOC mapping. This assessment is based on studies indexed in the Web of Science
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Core Collection (WoSCC), thereby establishing a foundation for algorithm selection in
future research.

2. Materials and Methods

The workflow of the comprehensive evaluation of machine learning algorithms for
digital soil organic carbon mapping on a national scale consisted of the following four fun-
damental steps: (1) the collection and preprocessing of soil samples; (2) the modeling and
preprocessing of environmental covariates; (3) the evaluation of 15 machine learning regres-
sion algorithms for digital SOC mapping; and (4) an accuracy assessment (Figure 1). These
results were compared with the frequency of evaluated machine learning algorithms in
previous studies indexed in the WOSCC, leading to relationships between their prediction
results from this study and their popularity in previous studies.

Figure 1. Workflow of the comprehensive evaluation of machine learning algorithms for digital soil
organic carbon mapping on a national scale.
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2.1. Study Areas and Soil Samples

France (mainland) and the Czech Republic were selected as the two study areas, being
representative countries within the European Union for digital SOC mapping at a national
scale due to their diverse geography, climate, and topography (Figure 2). France’s varied
landscapes, ranging from the fertile plains of the Loire Valley to the mountainous regions
of the Alps and Pyrenees, provide a wide range of soil types and land uses, allowing for
comprehensive organic carbon assessments across different ecological contexts. Conversely,
the Czech Republic, characterized by its hilly terrain and continental climate, showcases a
distinct range of soil types affected by specific agricultural and forestry practices.

 

Figure 2. Two study areas, including mainland France and the Czech Republic.

The LUCAS (Land Use/Cover Area Frame Statistical survey) 2018 SOC database
is a comprehensive resource developed by the European Commission’s Joint Research
Centre, aimed at assessing soil quality across Europe [9]. This database provides critical
information on the spatial distribution and quantity of SOC, which is fundamental for
understanding soil health, as well as carbon sequestration potential and its implications
for climate change. The soil samples from the entire LUCAS 2018 dataset at 0–20 cm soil
depth measured in g kg−1 were filtered according to the geographical coverage of two
study areas. Outlier removal from the raw soil sampling datasets was performed using an
interquartile range approach, having an interquartile range of 1.5 as the threshold below
the first and above the third quartile for outlier removal.

2.2. Environmental Covariates Used for Digital SOC Mapping

The remote sensing data from the Sentinel-1, Sentinel-2, MOD09A1, MOD09GA,
MOD11A1, MCD12Q1, MOD15A2H, MOD16A2, MOD17A2H, MCD12Q2, and CHELSA
bioclimatic variables were utilized for the modeling of the environmental covariates for
prediction in 1000 m spatial resolution. CHELSA v2.1 data were manually downloaded
from their official website, while Google Earth Engine was used for downloading the
remaining remote sensing data. All multitemporal imagery represented a 2018 annual
median, which coincided with the soil sampling time frame. Sentinel-1 radar data were used
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to estimate soil moisture and texture [19], while multispectral Sentinel-2 data were used to
estimate vegetation health and its phenological properties [20]. MOD09A1 and MOD09GA
surface reflectance data were additionally used to estimate a broad scope of vegetation
and soil properties based on multispectral imaging. MOD11A1 land surface temperature
data were used to estimate soil moisture and thermal properties [21]. MCD12Q1 and
MCD12Q2 land cover and land cover change data estimated the influence of land use
and possible land use change on SOC concentrations [22], while MOD15A2H leaf area
index data were used to estimate vegetation productivity and biomass [23]. Additionally,
MOD16A2 gross primary productivity data were used to estimate carbon sequestration
potential, and MOD17A2H net primary productivity data were used to estimate carbon
cycling dynamics. CHELSA bioclimatic variables provided climate data, which were used
to estimate the influence of climate on SOC concentrations and were proven to have high
importance in digital soil carbon mapping [24]. Any covariates with cross-correlations
quantified by a correlation coefficient higher than 0.9 were removed during preprocessing
to avoid multicollinearity issues that could negatively impact model performance.

2.3. Machine Learning Regression Algorithms Evaluated for Digital SOC Mapping

The selection of machine learning regression algorithms to be evaluated in this study
was performed according to total indexing in the WoSCC based on the following topic
search: “TS = (digital soil mapping AND soil organic carbon AND machine learning algo-
rithm)” (Table 1). The machine learning prediction was performed in R v4.3.2 [25] and the
caret library [26]. Prior to modeling, the data were pre-processed using centering and scal-
ing to standardize the variables and reduce the effects of differing scales. All models were
tuned using a grid search approach, where 10 different combinations of tuning parameters
were evaluated to optimize model performance according to the hyperparameters listed in
Table A1. The final model was selected based on its performance on the training data, and
its predictive accuracy was evaluated using the specified resampling method.

In traditional linear models such as MLR, GLM and GAM, predictions are made by
fitting a linear equation to the data, relying on assumptions about the linear relationship
between input variables and the response [39]. As the simplest prediction algorithm of
those evaluated in this study, MLR estimated the linear relationship between the sampled
SOC and environmental covariates by estimating coefficients to compute the predicted
SOC value for a new observation. GLM is a generalization of linear regression that allowed
for non-normal response variables and non-linear relationships between the SOC values
and environmental covariates [40]. GAM estimated the additive relationship between SOC
and environmental covariates using smooth functions [41]. Regularization techniques such
as LASSO and LAR enhanced these models by introducing penalties, enabling feature
selection, and managing overfitting. LASSO is a linear regression model with an L1
penalty term that encouraged sparsity in the estimated coefficients to compute SOC based
on environmental covariate data [42]. Similarly, LAR is a linear regression model that
estimates the coefficients using a forward stagewise procedure that adds one variable at a
time to the model [43]. The last of the traditional prediction methods, PLS concatenated
centroids of predictors and responses to effectively explain variance in settings with high-
dimensional data, making it suitable in regression contexts where the predictors exceed the
number of observations [44].

On the other hand, tree-based methods like RF, CART, and GBM are non-parametric
and model interactions between predictors through hierarchical tree structures, as well
as by averaging, boosting, or bagging model predictions to enhance accuracy [45]. CART
is a decision tree algorithm that recursively partitioned the feature space into subspaces
and fitted a simple model to each subspace, with the output as the value of the constant at
the leaf node [46]. GBM is an ensemble learning method that built multiple decision trees
and combined their predictions using a gradient descent algorithm, with the output as the
weighted sum of the predictions from all the trees [47]. Similarly, Cubist is a rule-based
regression model that built a series of if–then rules to predict the response variable [48].
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It partitioned the feature space into rectangular regions and fitted a linear model to each
region. During prediction, a new observation was passed through the rules, and the output
was the weighted sum of the linear models that matched the observation. As the most
frequently used machine learning method for digital SOC mapping based on WoSCC search
results, RF is an ensemble learning method that built multiple decision trees and averaged
their predictions to produce a final output, utilizing bootstrap aggregation (bagging) in
the process, having a new observation passed through each decision tree, as well as the
average of the predictions from all the trees as the output [49]. QRF is a variation of RF
that estimated the conditional quantiles of the response variable, operating similarly to RF;
however, instead of averaging the predictions, it outputs the specified quantile estimate
from each tree [50]. SVM for regression applied a margin-based approach, aiming to find
the best hyperplane that minimizes prediction error while allowing for some deviations,
effectively capturing non-linear relationships through kernel functions [51]. Similarly, KNN
relied on the local structure of the data, predicting outputs based on the average outcome
of the k-nearest data points. As another advanced ensemble method, XGB optimized tree
learning with regularization and control overfitting [52], while ANN leveraged neuron
layers to capture complex, non-linear patterns through numerous interconnected layers [53].

Table 1. The machine learning regression algorithms used for the evaluation of digital SOC mapping
in this study.

Machine Learning
Algorithm Abbreviation

Total Papers
Indexed in

WoSCC (–2023)
Library Reference

Random Forest RF 347 randomForest [27]
Cubist CUB 92 Cubist [28]

Multiple Linear
Regression MLR 85 / [25]

Support Vector Machines SVMs 82 kernlab [29]
Artificial Neural

Networks ANNs 72 brnn [30]

Partial Least Squares PLS 61 pls [31]
Classification and
Regression Trees CARTs 40 rpart [32]

Gradient Boosting
Machine GBM 35 gbm [33]

Quantile Random Forest QRF 31 quantregForest [34]
Extreme Gradient

Boosting XGB 23 xgboost [35]

K-Nearest Neighbors KNN 15 / [25]
Generalized Linear Model GLM 12 / [25]

Generalized Additive
Model GAM 11 gam [36]

Least Absolute Shrinkage
and Selection Operator LASSO 9 elasticnet [37]

Least Angle Regression LAR 2 lars [38]
Algorithms with a non-indicated library were available in base R.

2.4. Accuracy Assessment

A 10-fold cross-validation was employed to evaluate the performance of each eval-
uated predictive machine learning regression model, where the dataset was randomly
partitioned into 10 subsets, with 9 subsets being used for training and 1 subset for test-
ing [54]. This process was repeated 10 times, with each subset serving as the test set once.
The model’s performance was assessed using four metrics—coefficient of determination
(R2), root mean squared error (RMSE), normalized root mean squared error (NRMSE), and
mean absolute error (MAE). R2 measured the proportion of variance in the dependent
variable explained by the model, while RMSE and NRMSE provided an indication of the
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model’s accuracy, with lower values indicating a better fit. MAE, on the other hand, evalu-
ated the model’s ability to predict the actual values, with lower values indicating smaller
absolute errors [55]. By using 10-fold cross-validation, the reliability and generalizability
of the model’s performance were ensured, as the results were averaged across multiple
iterations, providing a robust estimate of the model’s predictive capabilities [56].

3. Results and Discussion

The median SOC values for the raw soil sampling datasets range from 19.9 to 23.0,
indicating a high level of variability (Table 2). However, the coefficient of variation (CV)
reveals a higher degree of dispersion in the entire LUCAS 2018 dataset (1.72) compared
to the two study areas (0.90 and 1.07). The skewness and kurtosis values suggest that the
distributions are positively skewed and leptokurtic, with the France (mainland) dataset
exhibiting the most extreme values (skewness = 4.88, kurtosis = 37.72). Overall, the descrip-
tive statistics indicate that the entire LUCAS 2018 dataset has a more dispersed and variable
distribution compared to the two study areas used in this study. However, it should be
considered that input samples for the two study areas were preprocessed, in contrast to the
raw observations in the LUCAS 2018 dataset, achieving a notably lower CV, as well as a
more normal SOC value distribution, as indicated by the skewness and kurtosis values.

Table 2. Descriptive statistics of SOC values from the two study areas and the entire LUCAS 2018
dataset.

Dataset Preprocessed n Median Min Max CV Skewness Kurtosis

France
(mainland)

No 2731 23.0 3.2 473.0 1.07 4.88 37.72
Yes 2514 25.6 3.2 74.1 0.59 1.08 0.56

Czech
Republic

No 445 19.9 3.2 208.6 0.90 3.46 15.60
Yes 400 21.2 3.2 51.2 0.44 1.19 1.03

Entire LUCAS 2018 No 18,984 21.8 2.1 723.9 1.72 3.97 16.62

The accuracy assessment results suggest that RF and QRF perform with superior
accuracy compared to the other evaluated methods on both datasets, with R2 values of
0.411 and 0.409, respectively, for France, and 0.249 and 0.223, respectively, for the Czech
Republic (Tables 3 and A1). There are several possible causes for their outperformance, one
of them being their ability to effectively reduce overfitting by averaging the predictions from
many trees. Since training on each tree was performed on different subsets of the data and
features, this decreased the correlation between individual trees and enhanced its ability
to generalize to unseen data [57]. Managing high-dimensional datasets with numerous
features, typical for digital soil mapping studies [58], was automatically performed through
feature selection by considering only a random subset of features for each split in the
decision trees. Additionally, the ensemble nature of RF makes it resilient to noise and
outliers in the data [59].

In contrast, GAM and CART exhibited a poor performance, with R2 values of 0.373
and 0.307, respectively, for France, and 0.135 and 0.152, respectively, for the Czech Republic.
Overall, the results suggest that ensemble methods (RF, QRF, and GBM) tend to outperform
individual models (ANN, SVM, and MLR) on these datasets. This observation agrees with
previous studies [10] but also suggests that methods like ANN and SVM tend to heavily
depend on the quantity and properties of input soil sampling datasets [60]. The accuracy
metrics were generally in agreement, with RF and QRF consistently ranking among the
top three algorithms in both countries. However, there are some discrepancies between
the metrics, with RMSE and NRMSE suggesting that KNN and GBM were also highly
accurate, while R2 and MAE indicate that SVM and PLS are among the top performers. The
results suggest that ensemble methods, such as RF and GBM, tend to outperform traditional
algorithms, such as MLR and GLM, in both study areas. Accuracy assessment metrics
were also in slight disagreement regarding which algorithms are the most accurate; while
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QRF has the highest R2 value in mainland France, it has a lower R2 value than RF in the
Czech Republic. This observation agrees with a previous digital soil mapping study of total
carbon in the majority of Europe, in which QRF was the second-most-accurate algorithm
behind deep learning [60]. Predicted SOC maps according to the most accurate machine
learning methods are displayed in Figure 3. The scatterplots of the final predictions are
displayed in Figure 4 for France (mainland) and Figure 5 for the Czech Republic.

Table 3. Accuracy assessment results of digital SOC mapping based on the 15 evaluated machine
learning regression methods.

Algorithm
France (Mainland) Czech Republic

R2 RMSE NRMSE MAE R2 RMSE NRMSE MAE

RF 0.411 11.58 0.453 8.61 0.249 8.19 0.386 6.22
CUB 0.378 11.97 0.468 8.76 0.191 8.55 0.403 6.48
MLR 0.375 11.95 0.468 8.93 0.216 8.45 0.398 6.43
SVM 0.388 11.99 0.469 8.44 0.227 8.39 0.395 6.14
ANN 0.378 11.91 0.466 8.86 0.230 8.27 0.390 6.22
PLS 0.375 11.93 0.467 8.92 0.256 8.12 0.383 6.19

CART 0.307 12.63 0.494 9.50 0.152 8.89 0.419 6.69
GBM 0.390 11.79 0.462 8.78 0.239 8.26 0.389 6.30
QRF 0.409 11.80 0.462 8.29 0.223 8.41 0.396 6.09
XGB 0.341 12.46 0.488 9.20 0.212 8.66 0.408 6.51
KNN 0.393 11.79 0.461 8.60 0.217 8.40 0.396 6.29
GLM 0.375 11.95 0.468 8.93 0.206 8.50 0.401 6.48
GAM 0.373 11.97 0.468 8.89 0.135 9.32 0.439 7.05

LASSO 0.376 11.92 0.466 8.92 0.229 8.22 0.387 6.23
LARS 0.375 11.91 0.466 8.91 0.241 8.23 0.388 6.20

 

Figure 3. The prediction results of SOC in two study areas based on the most accurate machine
learning methods; RF for France (mainland) and PLS for the Czech Republic.
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Figure 4. The scatterplots of predicted and observed SOC values based on the 15 evaluated machine
learning regression algorithms in France.

 

Figure 5. The scatterplots of predicted and observed SOC values based on the 15 evaluated machine
learning regression algorithms in the Czech Republic.
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NRMSE, as an absolute accuracy metric, offered significant interpretability advantages
in evaluating model performance, particularly in comparative studies across different
datasets or scales [61]. By normalizing the RMSE against the range or mean of the observed
data, NRMSE provided a dimensionless measure that enhances the contextual understand-
ing of prediction accuracy [62]. This is particularly useful when dealing with heterogeneous
data that can vary widely in magnitude, as it allows for a more meaningful comparison of
model efficacy. Despite these benefits, NRMSE remains underrepresented in the literature
compared to more commonly used metrics like R2 or traditional RMSE. This oversight
hinders the development of a more nuanced understanding of model performance across
disciplines, as NRMSE’s ability to convey relative error in a standardized format can facili-
tate better decision-making in model selection and refinement. Moreover, it does not have
specific computational requirements, as the vast majority of previous studies calculated
RMSE during the accuracy assessment, also leading to the simple calculation of NRMSE.
Overall, the relative difference between the most and least accurate evaluated machine
learning methods was 9.1% for France (mainland) and 14.8% for the Czech Republic.

The covariates which produced the highest feature importance for the most accurate
machine learning model for France (mainland), ranked by importance, were the digital
elevation model, land cover classes, the MODIS surface reflectance at 483–493 nm (blue)
band, and two CHELSA bioclimatic variables, including the mean daily air temperatures of
the coldest quarter and the mean monthly precipitation amount of the wettest quarter. For
the Czech Republic, the five most important covariates according to most accurate model
were the bare soil index and green coverage index from Sentinel-2 data, the Sentinel-2
(near-infrared) band at 842 nm central wavelength, the Sentinel-1 annual median raster
with VH polarization, and the MODIS surface reflectance at 545–565 nm (green) band.

Table 4 provides a ranking of machine learning algorithms based on their performance
in terms of accuracy and their ranking in the WoSCC. The algorithms are ranked using
RMSE as the metric for accuracy assessment results. The RF algorithm ranks the highest in
terms of accuracy assessment, with a rank of 1 for both France and the Czech Republic, and
a rank difference of 0, indicating a consistent performance and a justified place as the most
frequently used machine learning algorithm for digital SOC mapping in the literature. CUB
ranked second in accuracy assessment but had a significantly lower WoSCC ranking in
both countries, resulting in a rank difference of −9 and −10, indicating the most overrated
algorithm in terms of prediction accuracy based on the results from this study. The MLR
and SVM algorithms had similar accuracy assessment ranks but lower WoSCC rankings,
resulting in negative rank differences. However, the accuracy assessment results from
this study indicated that GBM and KNN were underrated in terms of prediction accuracy,
suggesting that these should be considered more often in future studies. Also, PLS had
a high accuracy assessment rank and a moderate WoSCC ranking, resulting in a positive
rank difference of 5 in the Czech Republic.

The findings of this study on digital SOC mapping must be interpreted within the
context of the specific limitations associated with the research design. The analysis was
conducted in two geographical regions—France (mainland) and the Czech Republic—
employing soil samples from the LUCAS 2018 dataset as input data. Notably, the sample
size in the two administrative units used as study areas, France (mainland) and the Czech
Republic, may not sufficiently capture the broader variability of soil types across these
regions, potentially impacting the generalizability of the results. Furthermore, the selected
study areas may not adequately represent the full spectrum of soil characteristics and
environmental conditions present in either country, thereby limiting the applicability of
the findings to other regions. The restricted sample sets utilized in this study are a critical
factor that may skew the results, as these were related to national borders and not natural
phenomena [63]. A limited dataset can lead to an inadequate generalization of the findings,
possibly underrepresenting the variability found in larger populations [64]. Given the
heterogeneous nature of soil properties, geographic diversity, and climate influences, the
results may differ substantially with a larger and more diverse sample. This raises the
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concern that the performance of the employed algorithms may not be fully reflective of their
efficacy in varied contexts. Moreover, data collection from two distinct countries introduces
an additional layer of complexity. Different geographical areas can exhibit distinct soil
formation processes, types, and land use practices, which can inherently influence the
SOC levels. Consequently, the algorithms developed and validated in this study may
exhibit biases when applied to other settings, particularly if trained solely within a single
national context.

Table 4. Relative accuracy assessment of the 15 evaluated machine learning regression methods for
digital SOC mapping according to their frequency in previous studies indexed in the WoSCC.

Algorithm
Rank per
WoSCC

Indexing

Accuracy Assessment Rank Rank Difference

France
(Mainland)

Czech
Republic

France
(Mainland)

Czech
Republic

RF 1 1 2 0 −1
CUB 2 11 12 −9 −10
MLR 3 10 10 −7 −7
SVM 4 13 7 −9 −3
ANN 5 5 6 0 −1
PLS 6 8 1 −2 5

CART 7 15 14 −8 −7
GBM 8 3 5 5 3
QRF 9 4 9 5 0
XGB 10 14 13 −4 −3
KNN 11 2 8 9 3
GLM 12 9 11 3 1
GAM 13 12 15 1 −2

LASSO 14 7 3 7 11
LARS 15 6 4 9 11

RMSE was used as a metric for ranking machine learning algorithms per accuracy assessment results.

Despite these limitations, the study’s insights into the various machine learning
algorithms are valuable. The findings suggest that no universally superior algorithm exists
for SOC mapping; instead, the effectiveness of each algorithm is contingent upon specific
data characteristics and contextual factors. This multiplicity of performance emphasizes
the importance of employing an ensemble approach or a suite of algorithms tailored to
distinct scenarios in future research. Further studies should prioritize expanding the dataset
both in size and geographical representation. Incorporating data from a broader array of
countries would enhance the robustness of the results and allow for the identification of
global trends in SOC mapping accuracy. Additionally, employing rigorous methodologies
that encompass diverse soil types, climates, and land use practices will yield more reliable
outcomes. Future research should also focus on the intrinsic factors influencing machine
learning algorithm performance, as well as their interpretability [65]. Future studies will
also explore the effects of the selection of individual machine learning models in ensemble
machine learning, which, in previous studies, had the potential of producing a superior
prediction accuracy to individual methods [66,67].

4. Conclusions

While the evaluation of machine learning algorithms for digital SOC mapping has
been a focus of several previous studies, it is essential to recognize that these studies often
arrived at a predominant conclusion that the optimal machine learning algorithm and
its hyperparameters are heavily dependent on the specific properties of the input soil
samples. This dependency highlights the necessity for the improved evaluation of various
algorithms in each study to ensure the most effective predictive approaches are employed.
The multitude of available machine learning algorithms can lead to computational ineffi-
ciencies, particularly when conducting national-scale digital SOC mapping, a process that
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is crucial for informed land management decisions. This study aimed to address this gap
by systematically assessing the prediction accuracy of 15 frequently used machine learning
algorithms. To provide an extensive evaluation based on a robust dataset derived from
diverse geographical regions, two independent study areas were used, including mainland
France and the Czech Republic. The key conclusions from the study are as follows:

• RF ranked first in France (mainland) and second in the Czech Republic for prediction
accuracy, confirming its prominence in previous studies. RF should be prioritized for
future evaluations in national-scale digital SOC mapping.

• KNN and PLS achieved high prediction accuracy in France and the Czech Republic,
respectively, but performed near average in other study areas. Their effectiveness
depends on the quantity and distribution of input soil sampling data, warranting
situational evaluation.

• The ranking of GBM and KNN suggests they are underrated and should be more
frequently considered in future digital SOC studies.

• In contrast, CUB, MLR, and SVM were highly ranked in previous studies but did not
justify their popularity based on this study’s findings.

• While France and the Czech Republic serve as representative European countries,
the study’s observations are limited. Future research should explore areas beyond
human-made borders and consider more interpretable machine learning approaches.
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Appendix A

Table A1. Optimal hyperparameters of the 15 evaluated machine learning regression methods for
digital SOC mapping.

Algorithm Hyperparameter
Optimal Hyperparameter Value

France (Mainland) Czech Republic

RF mtry 18 9

CUB
committees 20 20
neighbors 9 9

MLR intercept TRUE TRUE

SVM
sigma 0.021 0.019

C 0.5 2

ANN neurons 2 1

PLS ncomp 10 4
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Table A1. Cont.

Algorithm Hyperparameter Optimal Hyperparameter Value

France (Mainland) Czech Republic

CART cp 0.007 0.036

GBM

n.trees 50 50
interaction.depth 6 5

shrinkage 0.1 0.1
n.minobsinnode 10 10

QRF mtry 34 5

XGB

nrounds 50 50
lambda 0.0002 0.0075
alpha 0.1 0.042

eta 0.3 0.3

KNN k 19 11

GLM / / /

GAM
select TRUE TRUE

method 1 1

LASSO fraction 0.722 0.278

LARS fraction 0.789 0.367
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56. Kovačić, Ð.; Radočaj, D.; Jurišić, M. Ensemble Machine Learning Prediction of Anaerobic Co-Digestion of Manure and Thermally
Pretreated Harvest Residues. Bioresour. Technol. 2024, 402, 130793. [CrossRef]

57. Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine
Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2020, 13, 6308–6325. [CrossRef]

58. Poggio, L.; De Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing Soil
Information for the Globe with Quantified Spatial Uncertainty. SOIL 2021, 7, 217–240. [CrossRef]

59. Kalantar, B.; Ueda, N.; Saeidi, V.; Ahmadi, K.; Halin, A.A.; Shabani, F. Landslide Susceptibility Mapping: Machine and Ensemble
Learning Based on Remote Sensing Big Data. Remote Sens. 2020, 12, 1737. [CrossRef]
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