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Featured Application: This work is intended to propose an accessible and flexible method for
citrus growers to assess in-field the pesticide residue coverage on the leaf surface. The developed
software enables the analysis of digital images captured under sunlight and/or UV light exposure
to visualize the residue deposition coverage. This technological tool could serve growers in the
determination of pesticide residue coverage to guide their decision-making process for pesticide
application timing and frequency.

Abstract: Globally, the agricultural industry has benefited from using pesticides to minimize crop
losses. Nevertheless, the indiscriminate overuse of pesticides has led to significant risks associated
with a detrimental impact on the environment and human health. Therefore, emerging concerns
of pesticide residue found in crops, food, and livestock are a pressing issue. To address the above
challenges, there have been many efforts made towards implementing machine learning to enable
precision agricultural practices to reduce pesticide overuse. As of today, there are no guiding digital
tools available for citrus growers to provide pesticide residue leaf coverage analysis after foliar
applications. Herein, we are the first to report software assisted by lightweight machine learning (ML)
to determine the Kocide 3000 and Oxytetracycline (OTC) residue coverage on citrus leaves based on
image data analysis. This tool integrates a foundational Segment Anything Model (SAM) for image
preprocessing to isolate the area of interest. In addition, Kocide 3000 and Oxytetracycline (OTC)
residue coverage analysis was carried out using a specialized Mask Region-Based Convolutional
Neural Network (CNN). This CNN was pre-trained on the MS COCO dataset and fine-tuned by train-
ing with acquired datasets in laboratory and field conditions. The developed software demonstrated
excellent performance on both pesticides’ accuracy, precision, and recall, and F1 score metrics. In
summary, this tool has the potential to assist growers with the decision-making process for controlling
pesticide use rate and frequency, minimizing pesticide overuse.

Keywords: pesticide coverage; precise agriculture; imaging analysis

1. Introduction

Over the past decades, the agricultural industry has benefited from the use of pesti-
cides to minimize crop losses [1]. Globally, 20 to 40% of crop production is estimated to be
lost due to pests, leading to an economical cost of USD 220 billion according to the Food and
Agriculture Organization (FAO) from the United Nations [2], and hence the current use of
approximately 4 million tons of pesticides to protect the nearly 3 billion metric tons of crops
produced each year [3,4]. A predominant amount of pesticide is usually conventionally
applied, resulting in uncontrolled and non-targeted release with only a small fraction
reaching the desired target organism [5]. This challenge has led to agricultural practices
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with indiscriminate overuse of pesticides, exacerbating the risks to the environment and
human health [6,7]. In particular, prolonged pesticide application increases the risks of
environmental toxicity due to field runoff, leaching, volatilization, and spray drift, among
other factors [8,9], in addition to the emerging concerns of the persistence of pesticide
residue found in food and livestock [10,11].

Due to increased pesticide residue concerns, there have been collective efforts by
international and national entities (e.g., EPA, USDA, FAO, Codex Alimentarius Commis-
sion, World Health Organization, etc.) to establish policies and regulations regarding
the maximum residue limits [12–15]. In order to comply with the pesticide’s regulations,
several analytical methods have been developed and validated to accurately quantify the
concentration of pesticide residue. Some of the widely used analytical methods involve
techniques such as gas chromatography, high performance liquid chromatography, liquid
chromatography with mass spectrometry, supercritical fluid chromatography, and capillary
electrophoresis, among others [16–18]. Although these analytical techniques possess high
accuracy and specificity, they also require expensive instrumentation and supplies, con-
trolled laboratory environments, and time-consuming sample preparation. This therefore
imposes a major economical constraint to growers, hindering the USDA (United States
Department of Agriculture)’s efforts towards socio-economical equity in the agricultural
sector [19].

To address these challenges, there has been extensive work regarding the Agri-Tech
revolution, with the development of precise farming [3]. This type of farming incorporates
recent technological advancements in the Internet of Things (IoTs), Machine Learning (ML),
and Artificial Intelligence (AI), among others, in the current agricultural practices [20–22].
These technological tools have enabled the digital automatization of processes related to
data collection, decision-making, data processing, and data mining [21]. Recently, devel-
oped technological tools have been extended to disease detection, pest identification, crop
management planning, and yield predictions [23–26]. Furthermore, there has been some
attraction towards the development of imaging pesticide residue analysis powered by AI
to render more accessible, cost-effective, and non-destructive methods [27–29]. Neverthe-
less, the use of AI-powered tools and conventional imaging systems for pesticide residue
analysis holds some considerable limitations [30,31]. These are mainly related to pesticide
residue transparency to digital cameras and high background signals from ununiform leaf
surfaces, leading to low accuracy in the analysis [32,33]. These are in addition to the short-
age of labeled and annotated data from both controlled and non-controlled environments,
which play a major factor in the design of the system and the developed algorithms [34,35].

Recent studies have overcome some of these limitations by focusing their imaging
analysis on the inherent IR or fluorescent properties of some pesticides [36–38]. Both
fluorescent and image analysis have opened the door to fast and non-destructive methods
to determine pesticide residue coverage, attaining the spectral and spatial data from the
sample [28,39]. Some of the previously reported work harnessed hyperspectral imagery
to analyze pesticide residues using Vis-NIR and NIR apparatus on grape berries. The
data were randomly divided into training, test, and validation sets, with a combination of
three machine learning algorithms and two deep learning neural networks [28]. Similarly,
fluorescent hyperspectral imagery was recently reported for pesticide residue identification
on black tea samples assisted by machine learning [40]. However, these recent reports fail to
provide simplicity to the data collection process, still requiring NIR and UV hyperspectral
apparatus. While these apparatuses are less expensive, they are not transferable to field
conditions for in situ assessment, in particular in citrus groves. More importantly, these
methods will require scientific knowledge, limiting the accessibility of the technique for
use by growers.

For these reasons, the present work aims to provide to citrus growers an accessible,
inexpensive, and portable imaging chamber to assess the pesticide residue on leaves.
Herein, an imaging analysis software is developed and assisted with a lightweight machine
learning system for pesticide residue detection and coverage approximation on the leaf
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surface from the captured image. This platform will reduce analysis costs and guide the
decision-making process regarding pesticide applications, preventing the excessive overuse
of pesticides. In this study, Kocide 3000 and Oxytetracycline (OTC) were selected as model
pesticides due to their high relevance to the citrus industry and their widespread use as pest
management strategies for different plant diseases. The effective implementation of this
developed technological tool has the potential to serve as a grower friendly alternative for
qualitative pesticide residue analysis to provide more sustainable and equitable agricultural
practices in the citrus industry.

2. Materials and Methods
2.1. Sample Preparation and Data Acquisition

The leaf sample preparation was conducted in the laboratory with the use of spray
bottles to simulate the foliar application based on a previously reported protocol [28]. These
experiments were carried out using 1-year-old grafted citrus (Southern Citrus nurseries,
LLC, Dundee, FL, USA) with scion variety ray ruby and root stock US942. Briefly, the citrus
leaves were sprayed with OTC (Alfa Aesar, Haverhill, MA, USA) and Kocide 3000 (Dupont,
Wilmington, DE, USA) at different concentrations and left to dry at room temperature. Then,
the leaves were placed on a sample compartment with a black velvet mat and illuminated
with a handheld UV light source (395 nm, Everbrite, LLC, Greenfield, WI, USA). This
was followed by the acquisition of digital images with a camera (Galaxy A71, Samsung,
Suwon-si, South Korea) at constant lighting and height above the leaves.

2.2. Manual Pesticide Residue Coverage Area Determination

Prior to the development of the AI-powered software, a proof-of-concept study was
performed to determine the feasibility of the proposed work. Firstly, a manual pesticide
residue coverage area was determined to assess the correlation between pixel areas of
residue and the concentration of the applied pesticide. The coverage of the OTC and
Kocide 3000 residue on the citrus leaves was performed following previously reported
protocols and with some modifications [41–43]. The digital images were acquired following
the previously described data acquisition protocol, followed by image processing using
open-source software (Image J) version 1.53t to determine the area of coverage of both
pesticides on the leaf surface. Initially, the image was split into RGB colors, and then
the green image was used to determine the OTC signal through a set threshold analysis.
Conversely, for Kocide 3000, the blue image was used to determine the Kocide signal
through a set threshold analysis. This analysis generated a binary mask, and the OTC
coverage area was measured. Similarly, the red image was processed under threshold
analysis to determine the total leaf surface area. The percentage of pesticide coverage was
calculated with the following equation:

Pesticide Coverage area (%) =
Pixels in green or blue threshold area

Pixels in red threshold area
× 100

Lastly, the OTC coverage area (%) was calculated with the aforementioned equation
using the pixels from the green threshold area, and the Kocide was calculated with the
pixels from the blue threshold area.

2.3. Sample Compartment Design and Fabrication

In order to create a controlled environment for acquiring reproducible images, both in
laboratory and field conditions, the container was modeled in Onshape and 3D-printed
using an Ender 3 Pro (Crealty, Shenzhen, China) with white 1.75 mm PLA filament. The 3D
printer’s plate was set at a warming temperature of 120 degrees Fahrenheit, with a nozzle
temperature of 160 degrees Fahrenheit and a 15% infill with a grid pattern. Figure 1 shows
the compartment design with dimensions of 220 × 220 × 132 mm and a detachable lid,
equipped with a remote controllable LED light strip, which allows for different singular
wavelength light illumination of the leaf sample.
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Figure 1. Blueprint of the sample compartment design constructed using Onshape.

The lid of the sample compartment was designed with a central aperture of
44 × 44 mm to facilitate the use of conventional cameras or cell phone cameras for im-
age acquisition. The aperture dimensions were chosen such that the aperture would not
permit external light to enter the sample compartment. Subsequently, several images used
in this work were taken under white, red, green, and UV light, with the sprayed citrus leaf
placed squarely in the center of the box using the camera present on a Samsung Galaxy
A71 device.

2.4. Image Data Preprocessing

To remove noise from the datasets, a preprocessing method was applied to the images
to provide image segmentation, as shown in Figure 2. Image segmentation is a pivotal
task in most computer vision applications, with significant improvements when integrated
with deep learning. This process was performed to isolate the region of interest in the
image, providing separation of the citrus leaf from the background. Since the ultimate
goal of the proposed algorithm is to analyze images acquired in field conditions, it is
highly relevant to reduce the prevalence of miscellaneous objects in the background that
may cause false positives by increasing background noise. For this reason, a foundational
open-source segmentation model, the Segment Anything Model (SAM) [44], was applied
for image preprocessing. This SAM is a state-of-the-art instance segmentation model
developed by Meta Platforms Inc.’s Fundamental AI Research (FAIR) lab, aiming to become
a foundational model in the area of computer vision segmentation tasks upon which
future segmentation models are developed. The model itself displays unrivaled precision
in performing complex image segmentation tasks and has become the basis for newer
segmentation models that aim to provide higher quality segmentation masks [45], provide
nearly identical segmentation masks at a much lower computational cost [14,46], with
significantly smaller datasets [47]. In contrast, other models such as U-Net were considered
for segmentation during the image preprocessing step. This model is widely used in the
biomedical sector for image segmentation with effective pixel-level classification; however,
it also requires significantly larger amounts of annotated datasets for model training.
Furthermore, the U-Net model is known to have limitations under field conditions due
to the unstructured environment; this may lead to major setbacks in future stages of
the software development for end-user (growers) applicability. Therefore, based on this
project’s aims and the constraint of a limited number of datasets, a SAM proved to be
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a better alternative, achieving the desired segmentation and isolation of the region of
interest during the preprocessing stage. SAMs provided high-quality segmentation at
lower computational cost with smaller annotated datasets, which is particularly valuable
to later stages with real-world images.
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Figure 2. Digital images of a citrus leaf with OTC showing the preprocessing of images with the
bounding box region of interest within the red box and the output of one segmented image. Source
image (Left) with bounding box highlighting the region of interest, and segmented image (Right).
Simulated erosion and deposition results in a higher intensity of photoluminescence towards the
center of the leaf (Left) due to inherent curvature. Note the debris displayed outside the segmented
area (Right), which can result in false positives, hence justifying the need for segmentation and
isolation of the region of interest for training the model.

Briefly, the preprocessing stage consisted of the applied model generation of multiple
segmentation masks sorted by the prominence of the region of interest (Figure 2). Subse-
quently, the three most prominent masks were selected for further analysis. This model
provided higher quality segmentation masks and nearly identical segmentation masks
at a much lower computational cost. It is worth noting that the preliminary testing of
the SAM on our dataset resulting in high-accuracy segmentation masks, considering the
limited annotated data available. The model was deemed suitable for applications with no
required additional fine-tuning, and thus suitable for integration into the algorithm with
no further modification. Later image processing will be performed with a convolutional
neural network (CNN) to provide a functional and competitive algorithm with the use of
much lower computing resources.

2.5. Data Analysis Methodology

The present work developed an imaging analysis software assisted by a lightweight
machine learning system for pesticide residue detection for citrus growers. This will effec-
tively overcome the current limitations and complexities associated with data collection
in field conditions, with previously reported techniques such as NIR and UV hyperspec-
tral apparatus.

In this study, the proposed models were trained and fine-tuned on a computer with an
NVIDIA GeForce GTX 1650 (NVIDIA, Santa Clara, CA, USA) graphic card, and the algo-
rithms were implemented on open-source programming language Python3 version 3.10.11.
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Although SAM segmentation could be fine-tuned to achieve the required pesticide residue
area coverage, this is a large model. Therefore, to provide a competitive and accessible algo-
rithm for digital residue analysis, a well-established convolutional neural network (CNN)
was integrated. The use of a CNN enabled the fine-tuning of the segmentation model with
the limited annotated data available from the laboratory- and in-field-condition images.
Another added benefit of incorporating the CNN for image segmentation processing was
the use of fewer computing resources in contrast to the larger SAM.

2.5.1. Convolutional Neural Network (CNN)

A convolutional neural network (CNN) architecture was designed based on previously
reported studies, with some modification [28,48,49]. The proposed and developed network
is divided into three major blocks (Figure 3). This architecture, shown in Figure 3, shows
the CNN backbone, which consists of the ResNet50 and FPN, the feature maps leading
to the region proposal network, and the region of interest (RoI) alignment. Subsequently,
from the RoI, there are the connected layers with classifications and the bounding box,
finally producing the masks from the fully convoluted networks. Moreover, in order to
achieve the aim of determining the pesticide residue coverage on the citrus leaves, a more
specialized Mask-Region-Based CNN was integrated in this work [50].
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residue image analysis.

The mask R-CNN is widely known for its ability to effectively perform instance seg-
mentation, which is particularly helpful in this project for the object detection process
and the creation of a mask for each instance [51]. This capability aligns with the project
aims of distinguishing multiple objects (e.g., leaves) appearing in a single image. Con-
versely, a recent model, YOLOv11 [52], was considered for the object detection, instance
image segmentation, and image classification. This model builds on a previous version of
YOLO [53] to achieve higher accuracy rates with the addition of enhanced instance image
segmentation and advanced data augmentation. Nevertheless, mask R-CNN can provide
higher performance than YOLOv11 in scenarios in which accurate instance segmentation
is required. Since YOLOv11 is more applicable to driving, object tracking, and surveil-
lance [52,54], the mask R-CNN was selected as a more suitable alternative considering the
project’s objective, its higher accuracy, and the widely established applicability to image
analysis and robotic vision [55–57].

2.5.2. Mask-Region-Based Convolutional Neural Network (Mask R-CNN)

To determine the pesticide residue coverage, a Mask R-CNN was developed based
on previously reported architectures with the integration of Faster R-CNN and Fast R-
CNN [50,58,59]. The proposed standard Mask R-CNN model was based on the popular
ResNet50 backbone, a ubiquitous pre-trained convolutional neural network, in addition
to an FPN [60], which creates a multi-scale feature pyramid containing varying spatial
resolutions from rich semantic information to precise spatial details, by combining features
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from different levels of the backbone network. Generally, the Mask R-CNN consists of
four stages: (1) The Region Proposal Network (RPN), used for generating region proposals
(bounding boxes) that have a probability of containing objects within the image, operating
on the feature map generated by the aforementioned backbone network. The Region of
Interest (RoI) Align layer is introduced to align the features within a region of interest
with the output spatial grid of the output feature map. This layer is crucial in preventing
information loss that can occur during the quantization of the RoI’s spatial coordinates
to the nearest integer. (2) The RoI pooling layer is crucial for resizing images to a fixed
dimension regardless of the original aspect ratio. (3) The feature extraction component
feeds the resized RoIs to the CNN to extract the features of each region. (4) Classification
and bounding Box regression is used to detect each object and classify it into the most
suitable class, hence generating a binary mask for each object detected in the image by
delineating the precise pixel values of each object instance. Altogether, these processes are
based on the image features and the bounding box is specified based on the coordinates of
the confined object present in the image. The Mask R-CNN was selected due to its wide
acceptance and usage as segmentation model in the computer vision field.

On the other hand, to avoid poor performance during both training and testing, as
well as false positives and the generation of low-quality masks, in this work, the Mask
R-CNN was firstly trained on a well-annotated and comprehensive dataset such as the
MS COCO dataset [61]. The limited availability of specific high-quality annotated data
led to the decision to fine-tune a pre-trained network according to the specifications rather
than to train the network solely on the collected data. In this study, the model was finely
tuned to identify and classify specific features related to the study objectives, following
the previously reported method with some modification [62]. Lastly, the Mask R-CNN
generated a high-quality segmentation mask of the area of the leaf coated with the pesticide
residue. Subsequently, the number of pixels present in the segmented image was utilized
to calculate the approximate pesticide (OTC and Kocide) residue coverage percentage.

In order to acquire classifications and segmentation masks according to requirements,
the ResNet-based Mask R-CNN was fine-tuned to be adapted to perform the specific task
of pesticide residue detection and segmentation. The limited size of the custom dataset of
pesticide-sprayed plant images was a crucial factor in the selection of hyperparameters
such as the number of epochs to be trained, the learning rate chosen, and regularization
techniques for optimizing the model’s accuracy.

The annotation tool VGG Image Annotator (VIA) was used to perform pixel-wise
annotation on the custom dataset so as to provide fine-grained segmentation training
masks. The dataset was divided into distinct subsets with a split of 70% for training, 20%
for validation, and 10% for testing. To mitigate the risk of overfitting, especially given the
small size of the dataset, we selected 50 training epochs. Another critical hyperparameter
was the learning rate, which was selected at 0.001, which would allow the model to make
gradual adjustments to the pre-trained weights in order to adapt to the new classes used
in the annotated dataset. Further techniques such as Dropout and L2 Regularization
were used to prevent overfitting and improve generalization. Dropout is a technique
through which a random number of neurons present in the fully connected layers are
deactivated or “dropped-out” during training, ensuring that the model becomes less reliant
on particular neurons and develops a better learning of the features, hence preventing
overfitting. A dropout rate of 0.25 was selected, meaning that 25% of the neurons were
randomly deactivated at each training step. Similarly, L2 Regularization, also known as
Weight Decay, adds a penalty for larger weights, promoting a more even distribution of
weights and preventing overfitting. Through experimentation, a Regularization Parameter
of 0.001 was found to be the most effective for this dataset.

The dataset used consists of a total of 1164 images. The dataset was split into the
following groups: 174 images showcasing on-field conditions for citrus groves, 30 images
showcasing the effect of chromatic illumination on rust/lesions present on isolated citrus
leaves, and 960 images of OTC- and Kocide-treated leaves taken in laboratory conditions.
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In order to test the efficacy of SAM for segmenting the image data taken, 100 images from
on-field and laboratory conditions were each chosen and their segmentation masks were
generated accurately and manually. The accuracy of the SAM’s generated masks was tested
by comparing the pixel locations of the generated and human-annotated binary masks. For
the main pesticide detection, the 960 images taken in laboratory conditions were split into
768 training images for fine-tuning and 192 validation images.

3. Results and Discussion
3.1. Manual Residue Coverage Area Determination

The feasibility of the proposed software was evaluated with a manual residue coverage
area determination analysis. This proof-of-concept experiment resulted in the independent
evaluation of citrus leaves treated with OTC and Kocide 3000. The schematic in Figure 4A
represents the process of pesticide residue deposition on citrus leaves in a grove after foliar
spray. Due to elevated temperatures in field conditions, the pesticide droplets tend to
evaporate, leading to a visible build-up of residue on the surface over time. The area of
pesticide residue coverage was assessed manually using RGB color separation with the
open source software ImageJ to quantify the pixels within blue (Kocide 3000) and green
(OTC) images. Figure 4B,C shows the linear response of pesticide coverage on the leaf
surface in relation to the concentration of the applied pesticide. The pesticide residue at a
higher concentration exhibits a visible pattern of deposition with a higher coverage area.
Both pesticides, OTC and Kocide, showcased good Pearson correlation values (R2) of 0.974
and 0.870, respectively. Similar to previously reported work, the OTC residue can only be
observed under UV light, and therefore the images for OTC were acquired under this type
of light (Figure 4D) [41]. Meanwhile, the Kocide 3000 residue was visible under white light
as a light blue solid (Figure 4E). This difference in the light used for residue analysis allows
higher sensitivity and visualization of the greater extent of the OTC residue, with a 65.7%
coverage at the highest concentrations, in contrast to Kocide 3000, which showed a lower
percentage of coverage of up to 4.3% at the highest concentration of copper (Cu).
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Figure 4. (A) Schematic representation of the pesticide deposition on the tree leaves after foliar spray.
(B) Calibration curve of OTC at different concentrations based on green-colored coverage area in
the digital images from (D) in relation to the leaf surface. (C) Calibration curve of Kocide 3000 at
different copper concentrations based on blue-colored coverage area in the digital images from (E) in
relation to the leaf surface. (D) Digital images of citrus leaves under UV light exposure showing the
OTC residue coverage area. (E) Digital images of citrus leaves under white light exposure showing
the Kocide 3000 residue coverage area.
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The concentration range used in this proof-of-concept experiment was based on the
relevant application rates used in citrus groves, based on the suggested pesticide label.
Altogether, these results served as a baseline study to indicate the feasibility of this work
towards developing an ML-powered imaging analysis software to determine the pesticide
residue coverage on the leaf surface. The highlighted good visual response between the
applied pesticide (OTC and Kocide 3000) concentration and the leaf surface coverage area
corroborates the suitability of both agrochemicals to be used as model pesticides for image
residue analysis. This image analysis tool will foster the development of an affordable and
reliable software for growers to assess residue in-field to guide their crop management
strategies, reconsidering pesticide use rate and frequency.

3.2. Analysis of Image Data Preprocessing

As previously stated, the region of interest in this study was the leaf surface, and thus
required proper isolation from background and/or other miscellaneous objects from the
foreground. The foundational Segment Anything Model (SAM) was implemented during
the image data preprocessing step to enable a bounding box for image isolation and the
generation of segmentation masks (Figure 5A,B). Figure 5 shows a visual representation of
the preprocessing segmentation process that the proposed software undergoes. The SAM
generated up to 17 segmentation masks per image; however, 3 were utilized in further
analysis. This model was evaluated with two separate datasets: digital images of leaves
sprayed with pesticide under controlled laboratory conditions and another group with
digital images of one-year-old citrus trees under field conditions.
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Figure 5. Overview of the image preprocessing method developed using a leaf spray with OTC
under laboratory conditions. (A) Digital image used as a source after bounding box region of interests
is determined.(B) collection of segmentation masks generated with the implemented SAM. SAM
generates every possible segmentation mask based on the number of objects it can detect in the image.
Only the most prominent masks featuring the desired object in focus are selected, in this case the first
three masks generated as ranked by SAM.

To assess the accuracy of the segmentation model with the datasets from both groups,
average segmentation accuracy (IoU) is summarized in Table 1. The reported IoU values
from the dataset in the leaves in the laboratory conditions group ranged from 97.1% to
99.5%. Conversely, the IoU values from the leaves in the field conditions group ranged from
80.8% to 98.2%. However, the segmentation accuracy for the field conditions datasets was
significantly lower than the desired. An average segmentation accuracy of 0.92 was deemed
to be effective at isolating the leaf surface as the RoI, isolating it from the unnecessary
objects present in the image. Furthermore, this accuracy level is to be expected under
field conditions considering the multitude of interfering objects in a grove and untrained
growers collecting the image data.
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Table 1. Average segmentation accuracy from datasets collected under laboratory and field conditions.

Condition SAM SAM-Box SAM-Point

Laboratory 0.9894 0.9932 0.9901
Field 0.9232 0.9369 0.9295

3.3. Data Analysis Using a Fine-Tuned Mask R-CNN

The data analysis was performed using the developed Mask R-CNN with the integra-
tion of Faster R-CNN. This network model allowed the identification of pesticide residue
on the leaf surface after training with well-annotated datasets (e.g., the MS COCO dataset).
Moreover, fine-tuning was performed to identify and classify specific features of OTC and
Kocide 3000 residue on the leaf surface. Figure 6 showcases an example of the mask R-CNN
with one acquired image of citrus leaf sprayed with OTC residue (200 ppm). The developed
model resulted in a high-quality segmentation mask of the area of the leaf coated with
the pesticide residue. In addition, the model uses the number of pixels present in the
segmented image to determine the residue coverage percentage. This model calculation of
the pesticide residue coverage area is performed using the same equation as the manual
pesticide coverage experiments.
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Figure 6. Overview of the data processing by the developed Mask R-CNN using a leaf spray with
OTC under laboratory conditions. The left image in the red box represents the mask generated by
Mask R-CNN, the middle image in the blue box represents the originally segmented image, and
the right image in the yellow box represents the superimposed image by combining the previous
images. The mask generated by the Mask R-CNN provides a close estimate to the percentage of
pesticide coverage through pixel-wise estimation. The superimposed image (right) conveys an overall
showcase of both the area and the deposition patterns displayed by the subject.

In this study, to evaluate the performance of the proposed model, four common metrics
were assessed: Accuracy, Recall, Precision, and F1 score. The results of the metrics for both
pesticides OTC and Kocide 3000 are summarized in Table 2.

Table 2. Accuracy, precision, recall, and F1 score results from testing datasets from Kocide 3000- and
OTC-sprayed citrus leaves.

Pesticide Accuracy Precision Recall F1 Score

OTC 0.843 0.877 0.842 0.823
Kocide 3000 0.828 0.857 0.821 0.804

The metric related to segmentation accuracy represents the number of correctly classi-
fied data instances, which in this case is the number of correctly labeled pixels compared
to the total number of data instances. The developed model showed an accuracy for OTC
slightly higher than Kocide 3000, with values of 0.843 and 0.828, respectively. This is
likely due to the higher sensitivity achieved while visualizing OTC images captured under
UV light, compared to Kocide visualization images captured under white light. These
high-accuracy results support the efficacy of the developed software to assess the pesticide
residue coverage on the citrus leaves. It is worth noting that in some cases with unbalanced
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datasets, the sole use of an accuracy metric has the potential to provide misleading results.
The unbalanced datasets originate from cases with significant differences between the
number of pixels in one class and another. For this reason, it is important to evaluate the
other metrics of Precision, Recall, and F1 score, as shown in this work.

On the other hand, Precision and Recall are two metrics that work in opposition to
each other. Precision provides the number of True Positive classifications against the total
number of positive classifications, whereas Recall provides the number of True Positive
classifications against the sum of True Positives and False Negatives. Ideally, both Precision
and Recall should be equal to 1, as the ideal number of misclassifications should be 0.
Table 2 shows that the Precision and Recall of the proposed model for OTC were 0.877 and
0.842, respectively. These values are higher than the model metrics of Precision and Recall
for Kocide 3000, with values of 0.857 and 0.821, respectively. These results corroborate the
reliability and selectivity of the developed models to properly detect the pesticide residue
coverage in contrast to other leaf features or defects.

Independently, these two metrics (Precision and Recall) provide a better understanding
of the number of misclassifications declared by the predictive model. Hence, the use of F1, a
metric that combines both Precision and Recall, should be the most relevant metric to assess
the performance of any developed model. The F1 score or Dice Sorensen Coefficient uses
the harmonic mean from Precision and Recall to provide the quality classifier of a model
in a range from 0 to 1. The developed model exhibited a high quality classifier for both
OTC and Kocide 3000, with values of 0.823 and 0.804, respectively. Although these metrics
showcased good performance of the developed software, there is an opportunity for further
improvements, for instance addressing factors that contribute to noise (e.g., leaf orientation,
camera lens, and lesions, among others) hindering higher levels of performance.

Altogether, these findings demonstrate the effective development of an image analysis
software assisted by a machine learning system for pesticide residue coverage determina-
tion. The developed software model showcased great reliability and versatility for field
conditions image analysis. This technological tool was designed to assist citrus growers in
their decision-making process during the pesticide application cycle and in their current
efforts towards more sustainable agricultural practices.

4. Conclusions

In the present work, a reliable and non-destructive method for detecting and assessing
the pesticide residue coverage of the surface of citrus leaves was developed. This software
provides an affordable alternative for citrus growers to use in field conditions to guide
their current pesticidal application cycles. The 3D-printed sample compartment prototype
fabricated for this work is robust, inexpensive, and portable, enabling a more controlled
environment for image data acquisition under field conditions. Both studied pesticides,
Kocide 3000 and OTC, exhibited a visible pattern of residue deposition on the leaves, al-
lowing the surface image analysis to determine their coverage. The residue image analysis
showed a linearly proportional relationship between the concentration of applied pesticide
and the area of coverage. This property is desirable in the development of an imaging
analysis software assisted by a lightweight machine learning system. Furthermore, the
SAM segmentation model with the developed model for fine-tuning a pre-trained Mask
R-CNN showed excellent performance metrics to generate segmentation masks of pesti-
cide residue coverage. These findings support the undeniable advantages of integrating
recent technological advancements to foster more efficient, affordable, and sustainable
agricultural practices.

The developed platform has the potential to directly benefit citrus growers, providing
a suitable and equitable alternative for pesticide residue coverage analysis. This technology
can mitigate the socio-economic challenges faced by small-scale citrus growers, addressing
pesticide residue coverage in real-time with an affordable tool. The on-site pesticide residue
coverage information may guide the decision-making-process-related crop management
and mitigate the excessive overuse of pesticide. Moreover, in regions with limited techno-
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logical infrastructure this tool may bridge the gap between growers with large and small
operations, with cost savings and reduced financial constraints.

In the future, the current limitations of this methodology and its general applicability
to other crops will be addressed. Some of these challenges are improving accuracy, F1
scores, sample size, and data augmentation strategies. For this reason, further studies will
incorporate larger numbers of samples and samples subjected to rainfall events to better
assess the residue persistence under harsher environmental conditions. In addition, this
work will serve as a foundational study to explore the development of a larger software
that could encompass other pesticides and crops relevant to the agricultural industry.
Ultimately, more efforts are underway to improve the model’s accuracy and F1 score
with the application of standard data augmentation technique to improve performance,
especially during the future end-user testing. In addition, increasing to a larger annotated
dataset could overcome some of the challenges associated with leaf defects causing false
positives. These improvements will foster the software development process to proceed
into later stages with user interface design and end-users testing feedback.
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