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Featured Application: Machine learning model applications provide enough evidence to predict
fish stock using aquaculture data, allowing for significant practical implications. By applying
advanced statistical models, including Random Forest, Decision Tree, and Linear Regression,
aquaculture stakeholders can improve their decision-making processes by predicting fish popula-
tions, mortality rates, and other critical metrics. Among the predictive models, the Random Forest
model outperformed other models, reaching the highest accuracy. This allows more efficient and
productive management strategies, supports sustainable development, and helps policymakers
in enhancing decision-making to protect marine ecosystems. The dynamic for integrating such
tools, such as predictive statistical models into real-time monitoring systems, provides a proactive
strategy for aquaculture growth, risk mitigation, and long-term sustainability.

Abstract: The current study evaluates the performance of three machine learning models—Decision
Trees, Random Forest, and Linear Regression—applied to aquaculture data to mitigate risks in aqua-
culture management. The performances of these models are analyzed and properly demonstrated
using metrics including the Mean Squared Error (MSE), R-squared (R2), Root Mean Squared Error
(RMSE), and Concordance Index (C-index). The Random Forest model achieved the highest predic-
tion accuracy among all machine learning models, followed by Linear Regression and the Decision
Trees. The scatter plot for Linear Regression demonstrates good predictive accuracy for mid-range
values. However, it shows significant deviations at the extremes, indicating that the model struggles
to capture the full range of variability in the data. The bar chart of coefficients pinpoints the variables
with the greatest impact on the predictions, providing suggestions for potential areas that can be
improved and providing model interpretability. Future work could incorporate more predictive
statistics models focusing on improving the models for extreme values by assessing non-linear mod-
els, feature engineering methods, and expanding research into less influential variables. The results
greatly impact several sections, including aquaculture management, policy-making, and operational
strategies, providing valuable insights for stakeholders and decision-makers. Apache Spark was
used for data processing and machine learning model implementation; Apache Cassandra was also
used for data storage, ensuring efficient large dataset management and SQL tools for structured
data handling; Oracle VM VirtualBox for cross-platform virtualization; and Spark Connector was
also used.
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1. Introduction

The aquaculture industry faces a major challenge of increasing mortality rates in
farmed fish. Certain factors seem to affect the death ratio in fish populations. Factors
like pathogens, the denormalization of ecosystems, and climate shifts contribute to the
increased rates. Marine heatwaves seriously threaten marine aquaculture’s sustainability,
demonstrating that addressing this challenge is more than ever essential [1,2].

Moreover, pollution and pathogens from human, industrial, and agricultural activities
have initiated water quality degradation, which has affected fish populations [3].

Unsustainable practices in the aquaculture industry, such as overstocking, degraded
water quality, and excessive antibiotic use, can initiate diseases and cause an incremental
increase in mortality rates. The rapid evolution of the aquaculture industry, supported by
ecosystem degradation and disease outbreaks, is the main cause of a serious increase in
fish mortality rates [4,5].

Existing studies in aquaculture have explored several approaches for addressing fish
mortality risks, including digital twin technologies and real-time monitoring systems in-
tegrating IoT devices with cloud technology. While these systems aid in early detection
and provide insights into the environmental conditions affecting fish health, limitations
remain. Prior research often focuses on single factor analyses or small datasets, which limit
predictive accuracy and scalability in complex, real-world scenarios. Additionally, tradi-
tional modeling approaches, such as Gaussian models or multivariate anomaly detection,
may lack the flexibility needed for high-dimensional and non-linear data in aquaculture
settings [4,5].

This study combines artificial intelligence (AI) models and agricultural sciences into
a project aiming to optimize caged fish farming by introducing innovative technologies
and best practices towards sustainability. This project aims to build the foundations
of an advanced system for fish disease diagnosis and treatment, aiming to increase the
competitiveness of Greek aquaculture. This research proposal introduces a data-driven
approach that evaluates machine learning (ML) techniques—specifically Decision Trees
(DTs), Random Forest, and Linear Regression—for classifying instances of fish mortality
and providing actionable insights. This study overcomes previous limitations by address-
ing scalability and complexity by integrating these models with a scalable data storage
solution (Apache Cassandra) and a distributed processing framework (Apache Spark).
Key performance metrics, such as Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), R-squared (R2), and the Concordance Index (C-index), are used to assess model
accuracy regarding mortality prediction and factor impact. The research question centers
on whether a data-driven ML approach can accurately predict Mediterranean-farmed fish
species’ mortality rates and identify key factors, enabling more effective management
and sustainable practices in aquaculture. The model computes various factors, including
locations, husbandry methods, water quality, weather conditions, and biological features.
The identified thresholds operate as class value ranges, enabling the segmentation of the
results into specific classes. The project aims to help through insights into sustainable aqua-
culture management, offering a proactive mechanism to address emerging fish mortality
issues. The findings can lead to the development of targeted survival practices, enabling
stakeholders to support caged-farmed fish populations.

The current study complies with the United Nations Sustainable Development Goals to
reduce seafood waste and unit losses due to climate change, serving the purpose of commu-
nicating sustainable marine aquaculture best practices in Greece under the project entitled
“Improving Greek Fish Farming Competitiveness”, focusing on the implementation of an
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intelligent system for diagnosing fish diseases and aiming to optimize the competitiveness
of Greek caged fish farming by introducing AI and sustainable practices [5–7].

This article consists of eight sections, each one providing evidence of the proposed
data-driven practice for caged fish stock management prediction and classification. These
sections include an introduction, related work, research methodology, results, discussion,
and conclusions. Each section is a step toward the completion of this task. Therefore,
the introductory part clearly explains the research scope regarding caged fish losses due
to various factors. In related work, we review the existing scientific literature, studies,
and projects addressing similar challenges, applying ML models to predict caged fish
mortality, including key research objectives. The research methodology part refers to
the data analysis, software setup, and data mining techniques used to complete such
a task. This section outlines the design, development, and execution of the project to
address the research objectives effectively. The Results section presents the findings of
this research, including initial data preprocessing and analysis, software installation, and
configuration. It includes tables and figures that illustrate classifier performance and the
impact of various factors on mortality rates. The final part provides a Discussion that
highlights and summarizes the study’s key findings, offers an overview of rule extraction,
addresses limitations, and concludes with insights to help the reader grasp the core elements
of this classification approach.

Research Objectives

The proposed research objectives (ROs) will try to effectively respond to the critical
issue of fish mortality factors in Greek caged fish farming (Table 1). The primary objective
is to manage the use of a series of software tools to conduct classifier assessment analysis.
However, it is not included in scientific research as a research objective but more as a tool.
This process involves a series of tool installations and configurations (Tables A1–A7). The
following parts clearly demonstrate the steps and actions required for this multidisciplinary
project to provide evidence not only for the aquaculture field but also to inform engineers
about the potential of its implementation.

Table 1. Research objectives.

RO No Research Objectives

1 To evaluate the classification performance of different machine learning models
(DTs, Random Forest, and Linear Regression) using caged fish data.

2
To analyze the classification accuracy using performance metrics like Mean Squared
Error (MSE), R-squared (R2), Root Mean Squared Error (RMSE), and Concordance

Index (C-index).

3 To identify the key factors affecting the model’s predictions and provide insights
into the model’s interpretability.

4 To explore potential areas of improvement for model performance.

5 To assess the broader implications of these insights for fish stock management,
aquaculture policy-making, and operational strategies.

2. Related Work

The current study investigates machine learning (ML) classifiers for predicting fish
mortality by analyzing relevant factors in caged fish management systems. This project
involves developing, configuring, and applying ML techniques and installing Apache
Spark and other tools for managing fish stock. The following literature reviews maps
related works, focusing on ML classifier performance, fish mortality factors, or both, to
provide a context for this study.

A key concept related to this research is the “Digital Twin”, which is a model designed
to support a sophisticated AI Internet of Things (AIoT) system for monitoring caged fish
populations in aquaculture. This system incorporates IoT devices and cloud technology
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to enable the AI-driven monitoring of fish stocks. Along with ML models, the system
employs sensors and hardware extensions for “smart” fish feeding, metric estimation,
environmental monitoring, and fish health assessment. These sensors are real-time data
collectors and transmit data to cloud services via communication networks. The system
facilitates advanced decision-making processes such as data analysis, prediction, and
optimization to promote more sustainable and efficient fish farming practices [8].

Advanced monitoring technologies are crucial for sustainable aquaculture, particu-
larly in early warning systems, disease outbreak detection, and managing mass mortality
risks. A study addressing these challenges proposes a modified Gaussian distribution
model tailored explicitly for caged fish stock monitoring. This model offers graphical
representations of the production states using a scale of alert levels, ranging from normal
to dangerous. The system uses 2D image recognition techniques to monitor the health and
status of fish populations, providing critical data patterns that support decision-making in
aquaculture [9].

In other research, fish poisoning from unidentified causes significantly threatens
public health in regions like Fiji, where fish constitutes a primary food source. A study on
this issue combines fishermen’s insights with ML-based association rule mining (ARM)
techniques to identify hidden patterns in fish poisoning risk factors. The research highlights
the contribution of environmental factors, such as contaminated migration pathways
and polluted waters, to increased fish mortality rates. These findings emphasize the
importance of early warning diagnostic systems for fish poisoning and the development of
risk management strategies to prevent human health risks [10].

Aquaculture, a key sector in the food industry, relies on analyzing environmental
factors such as salinity, temperature, bromine, ammonia, nitrogen dioxide, and hydrogen
to predict and manage fish mortality. A multivariate Gaussian probability model has
been applied to these factors to detect anomalies in raw data from caged fish farms. By
processing daily training data, the model generates highly accurate real-time predictions of
fish mortality rates, helping to mitigate risks and improve decision-making in fish farming.
Such predictive models provide valuable tools for enhancing sustainability and profitability
in the industry [11].

Emerging technologies, particularly AI and blockchain, are transforming the aqua-
culture sector. These technologies enable real-time data collection, storage, and analysis,
significantly impacting supply chain transparency, market competition, and consumer
trust. Blockchain ensures transparency across the farmed fish industry by providing secure
access to critical data, while AI-driven solutions improve decision-making and operational
efficiency. Together, these technologies address challenges in the fish farming industry
by enhancing transparency and building trust among stakeholders, from producers to
consumers [12].

The performance of ML classifiers is influenced by various factors, including the
characteristics of the data and their specific application. Research comparing k-Nearest
Neighbors (k-NNs) and Naïve Bayes (NB) classifiers reveals that these models perform
differently depending on the dataset. For instance, k-NN shows high accuracy with small
datasets but incurs a high computational cost. At the same time, NB is effective with large
datasets but may suffer from reduced accuracy when feature independence assumptions
are violated. This research highlights the need for the careful selection of classifiers based
on the characteristics of the data to ensure high performance and accuracy in predictive
analytics [13].

Further studies compare DTs and NB classifiers enhanced by Genetic Algorithms
(GA) for feature selection. One such study, using UCI Machine Learning Repository data,
demonstrates how incorporating GA improves classification accuracy for both models, with
DTs generally outperforming NB in accuracy. This highlights the role of GA in optimizing
model performance through more efficient feature selection processes [14].

Additional research explores the comparative performance of classifiers such as Artifi-
cial Neural Networks (ANNs), Support Vector Machines (SVMs), k-NN, and NB, identifying
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strengths and limitations. ANN offers high classification accuracy and powerful learning
capabilities but requires long training times and is prone to overfitting. SVM excels in
handling non-linear relationships and binary classification tasks with small and medium
datasets but struggles with multi-class problems. k-NN is effective for small datasets but
incurs high computational costs for predictions and becomes inefficient with large datasets.
NB is well-suited for large datasets, demonstrating efficiency in classifying examples, but
its assumption of feature independence can lead to performance limitations in complex
real-world scenarios. On the other hand, DTs perform well with high interpretability and
ease of decision rule generation, but they are vulnerable to overfitting and struggle with
complex datasets [15–17].

Evaluating ML classifier performance often relies on traditional metrics like Recall,
Precision, and F-measure. However, recent studies have shown that these metrics may
introduce bias, particularly in multi-class classification tasks, leading to misleading assess-
ments of model performance. One study suggests the adoption of alternative performance
metrics to enhance the reliability and trustworthiness of ML model evaluations. By in-
corporating these new metrics, the research aims to improve model interpretability and
the effectiveness of decision-making processes, ensuring more accurate evaluations of
predictive systems [18].

3. Research Methodology
3.1. Research Scope

This study applies ML models to predict farmed fish mortality rates in aquaculture
environments, providing information about its true contribution to science, industry, and
humanity [19,20].

Regarding collected and processed data, this study analyzes two datasets, one gathered
from March 2016 to June 2022 and the second from January 2018 to November 2022. These
datasets have environmental, operational, and biological data from growing marine cage
fish farming facilities in the Ionian Sea, Greece. The scope of the data introduces variables
including water temperature, salinity, oxygen, fish populations, feeding rates, number of
deaths, etc. Among a series of ML models, only three ML models known for their predictive
accuracy performance were assessed to finally process and predict insights into forecasting
fish mortality rates [21].

This study examines how environmental conditions and operational decisions impact
fish death rates to determine the most influential environmental and operational factors. It
also assesses the significance of these factors through feature importance analysis.

The data were analyzed using various software tools and configurations, including
Apache Spark 3.40, Apache Cassandra 4.1.0, Spark Connector, Java Development Kit 17
(JDK), Ubuntu Linux 22.04, and Oracle VM VirtualBox 7.0. These tools were selected
for their capability to operate in a distributed computational environment, enabling the
efficient management of large datasets [22–27].

Data explanation and model interpretability are used to interpret the results in a
beneficial way, allowing the aquaculture industry to understand the methodology. This
leads to optimized fish stock management practices that consider environmental factors
and operational strategies.

Regarding the contributions to science, industry, and society, there are potential
future practical implications in the field of aquaculture ecosystems. The insights from this
study can enhance decision-making in areas like policy-making, sustainable practices, and
operational optimizations to preserve ecosystem resources.

3.2. Method Overview

The current study leverages machine learning (ML) models to analyze data from
aquaculture facilities in the Ionian Sea, Greece, aiming to predict and manage farmed
fish mortalities. The research methodology follows a structured, eight-stage process, as
illustrated in Figure 1.
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Figure 1. Process overview.

Each stage of the methodology builds upon the previous one, ensuring a systematic
flow of data and processes. Below is a detailed breakdown of each step, specifying the
inputs and outputs at each stage:

Stage 1: Data Collection

The first step involves collecting two datasets from aquaculture facilities. The
first dataset includes water chemical and microbiological data collected from March 2016
to June 2022. The second dataset contains operational data, including fish counts, mortality
rates, feeding practices, and environmental conditions, collected from January 2018 to
November 2022 [21]. These datasets serve as the input for subsequent preprocessing.

Stage 2: Data Preprocessing

Both datasets undergo preprocessing to ensure data quality and consistency in this step.
This includes handling missing values, normalizing variables, and removing outliers [21].
Preprocessed data are the input for data storage and management in the next stage.

Stage 3: Data Storage and Management

After preprocessing, the data are stored and managed using an Apache Cassandra
4.1.0 setup for distributed data storage. Data processing and ML tasks are executed with
Apache Spark 3.4.0 and integrated via the Spark–Cassandra Connector. This step uses
a virtual machine setup (Oracle VM VirtualBox 7.0 running Ubuntu Linux 22.04 on a
Windows 10 host OS) [22–27]. The input to this stage is the clean, preprocessed data, which
is stored and managed for subsequent model selection and analysis.

Stage 4: Model Selection and Data Splitting

In this stage, three ML models are chosen: DTs, Random Forest, and Linear Regression.
These models are selected for their performance in predictive tasks using the collected data.
At this stage, the preprocessed dataset is split into training and testing subsets [28–33]. The
input is the managed dataset, which is split for training and testing the ML models.
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Stage 5: Model Performance Evaluation

Model performance is assessed using the following metrics: MSE, RMSE, R2, and C-
index. These metrics help measure how well each model predicts fish mortality rates [28–33].
The trained models and the testing dataset are input to this stage. The output is the perfor-
mance metrics that guide model refinement and future ML implementations.

Stage 6: ML Implementation

This stage focuses on applying the selected ML models to the dataset to identify the
key factors affecting fish mortality. The input to this stage includes the trained ML models
and the testing data [28–33]. The ML implementation helps predict fish mortality and
provides insights into factors influencing survival rates.

Stage 7: Insights and Analysis

In this stage, the results from ML model predictions are analyzed. This analysis
helps identify trends, anomalies, and relationships between variables. The input is the
predictions generated by the ML models. The outcome of this stage offers new insights into
aquaculture management, helping to fine-tune practices and strategies [28–33].

Stage 8: Recommendations

The final stage compiles the study’s findings and provides recommendations for
improving aquaculture management. The recommendations focus on optimizing water
quality, feeding practices, and environmental management to enhance fish survival and
sustainability [28–33]. The input includes the insights from Stage 7, which are translated
into practical, actionable strategies for aquaculture facilities.

3.3. Software

Several tools were employed throughout this study to ensure efficient data processing.
The research was conducted in a Linux environment using Ubuntu Linux and Oracle VM
VirtualBox. Apache Cassandra, a database system capable of handling large volumes of
data, was used for data storage and management [22–26].

The ML and data processing tasks were carried out using Apache Spark. This platform
provided the necessary tools for implementing various models, such as Linear Regression,
Random Forest, and DTs.

In addition, various tools were utilized for managing structured data. The various
tools used to analyze and predict the study’s results provided the necessary accuracy
and comprehensiveness. Therefore, a series of software installation steps took place in a
Microsoft Windows 10 Environment.

• Installing and using Oracle VM VirtualBox as a virtualization tool.
• Installing Ubuntu Linux in an Oracle VM VirtualBox.
• Installing Apache Cassandra on Ubuntu Linux.
• Installing Apache Spark on Ubuntu Linux.
• Installing Apache Cassandra and Spark Connector on Ubuntu Linux [20,22–25].

3.4. Dataset
3.4.1. Dataset Introduction

The dataset provides insights into the data collected, including the environmental and
operational features crucial for predicting caged fish populations and mortality rates. This
part includes data acquisition and preprocessing sections [21].

3.4.2. Data Acquisition

The dataset collected from aquaculture farm cages in Greece’s Ionian Sea was used to
analyze fish mortality, offering detailed information on various practices and serving as a
valuable source of insight.

The data consisted of 37,203 unique instances of one nominal and four numerical
factors, including variables like the fish’s median atomic (individual) weight (MAB), the
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volume of the cage occupied by the fish (Vol), the stocking density of fish within the cage
(i_f), the water temperature (Temp), and the number of “Deaths” (Table 2) [21].

Table 2. Caged fish farming parameters.

Variable Type Description

Location Text Geographical Location Where the Sample Was Collected
Sample Code Text Unique Identifier for Each Sample Collected

Day Text Specific Day on Which the Data Were Recorded
Description Text Additional Details or Context About the Sample

State Text Condition Or State of The Sample at The Time of Collection
Analysis Text Type Of Analysis Performed on The Sample

Parameter Text Specific Measured Parameters (e.g., Water Temperature, Ph)
Value Double Numerical Value of The Measured Parameter
Unit Text Unit Of Measurement for The Parameter Value
Limit Double Threshold Critical Level Values for Certain Parameters
Aa_X Text Additional Coordinate or Identifier Associated with The Sample

Month Text Month Of Data Collection, Providing Temporal Context
Cell Text Section or Cell (Cage) within a Location Where the Sample Was Taken

Portion Text Portion of the Sample or Area Being Analyzed
Fishno Integer Identifier for an Individual Fish Within a Sample
Mab Text Code or Identifier Possibly Related to a Management Area

Fish_No Integer Count of Fish Within a Sample or Study Area
Deaths Integer Number of Fish Deaths Recorded Within the Sample

Corrections Integer Adjustments Made to the Data (e.g., Due to Errors)
Nofishing Text Information About Areas or Periods Where No Fishing (No Harvesting) Occurred
Damage Text Notes on Any Damage Observed in the Sample

Kg_Fishing Double Weight of Harvested Fish (in Kilograms)
Sample Text Further Identification or Notes About the Sample

Medication Text Details on Any Medication Administered to Fish
Food Text Information on the Type of Food Provided to the Fish

Food_Model Text Description of the Feeding Model or Regime Used
Sfrpercent Double Percentage (%) of a Specific Food Ratio or Supplement in the Fish Diet

Temp Double Water Temperature at the Time of Sampling
Vol Double Volume of Water or Sample Analyzed
i_f Text Specific Index or Factor Relevant to the Sample

Medicine Text Details on Any Additional Medicine Used
Aa_Y Text Coordinate or Identifier Potentially Linked to Location Data

The collected data are organized into ten columns and have various attributes, such as
the sample description, date, analysis parameter, area, sample code, and value [21].

The second dataset analyzed the daily operations of aquaculture facilities. These
data, which are part of a larger study, consist of 237,969 instances and 21 columns. It
has information on various aspects of the industry, such as the month, day, day, cage,
batch, number of fish, average individual weight, number of transfers, deaths, corrections,
kilograms, sample, medication, food, type of food, SFR, water temperature, and i_f [21].

The data collected during this study provided valuable information on water quality
and benthos’ condition, which can help improve the industry’s sustainability. This study
aims to provide decision-makers with an understanding of the different aspects of the
aquaculture industry’s environmental factors, aiming to improve the quality of production
and management practices (Table 2).

3.4.3. Dataset Preprocessing

This study section outlines the various steps involved in data preparation, includ-
ing data preprocessing before the final analysis. The process begins with data cleaning
to ensure the correctness of values, followed by data transformation and the normaliza-
tion of attributes to make them compatible with machine learning algorithms. The data
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preprocessing phase is crucial for improving the ML models’ prediction accuracy and
overall performance.

A series of steps were included in the data preprocessing phase. Data preprocessing
steps refer to the following:

1. Data export and loading from the CSV files into Pandas DataFrames 1.5.0, which are
used for data analysis and processing in the Python 3.10 programming language.

2. Data completeness checks identify inconsistent or missing data such as null or NaN
values. A data frame is analyzed to reveal whether there are any anomalies or values
that need replacement.

3. Data cleansing is used to identify and eliminate data inconsistencies. This may include
low or high values, exclusions, or correcting certain typos.

4. Data transformation is conducted in the data preprocessing phase, such as discretiza-
tion or normalization.

After data processing, the two datasets are merged using the Pandas 1.5.0 ‘merge’
function. The resulting combined dataset includes a column with microbiological and
physicochemical data. It is stored in the Apache Cassandra database, which, with its
NoSQL structure, provides an ideal environment for analyzing large datasets. The ML
models’ algorithms are implemented using a powerful tool for big data analysis: the Apache
Spark framework [20]. Apache Spark SQL is used for data extraction and preprocessing
from Cassandra and Mllib. MLlib library of Apache Spark 3.4.0 is also used for the overall
data analysis [23–27].

3.4.4. Dataset Insertion into Apache Cassandra

This part of the study refers to loading preprocessed data into Apache Cassandra. It
provides information on how the data were managed and stored in the NoSQL database.
It also explains how Apache Spark and Cassandra can be used to perform ML model
performance analysis. The current setup is segmented into steps to make the entire process
easier to follow, analyze, and handle the massive load of data related to aquaculture. CQL
is a type of query language that Apache Cassandra uses to handle data. CQL was used to
import CSV data into the platform in this section. The command “cqlsh” is used to access
the Cassandra Query Language shell, enabling interactions with the Apache Cassandra
database system [23–27].

1. Step 1: Create a keyspace (Table A1).
2. Step 2: Select keyspace (Table A2).
3. Step 3: Create the table (Table A3).
4. Step 4: Import the data from the CSV file (Table A4).

3.4.5. Dataset Import from Apache Cassandra into Apache Spark

The process of importing preprocessed data from Apache Cassandra into Apache
Spark is described in the following steps:

1. Installation and configuration of the Cassandra Spark Connector. The Spark Connector
is installed and configured to allow the creation of DataFrames and Spark RDDs in
the Spark environment using data from Cassandra.

2. The entry point for every operation is the creation of an Apache Spark session. The
connection parameters for the Cassandra database are also configured (Table A5).

3. Since the creation of the Apache Spark session signifies the entry point for every
operation, data loading from Cassandra occurs. Following this, the DataFrame is
created using the “read.format” method. The “table_name” and the “keyspace_name”
are replaced with the names of the tables and keyspaces in the Cassandra database
(Table A6).

4. Data load verification is performed by executing queries on the DataFrame to ensure
accuracy and consistency. The “show()” method is then used to pinpoint the first few
elements of the frame (Table A7).
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3.5. Classification Algorithms

The dataset used in this study was collected from the aquaculture industry and
required extensive preprocessing to ensure suitability for ML model performance. Relevant
attributes were selected based on their alignment with the study’s research objectives,
including environmental factors, such as salinity and water temperature, and operational
variables, like gear types and fishing effort. The data underwent cleansing, adjustment,
and normalization steps to handle missing values and normalize features before being
processed by the selected ML models.

For this study, we focused on three specific ML algorithms: Random Forest, DTs, and
Linear Regression. These algorithms were chosen based on their compatibility with the
characteristics of aquaculture data and their respective strengths in managing environmen-
tal and operational datasets. Random Forest was selected for its robustness in handling
high-dimensional data and its ability to reduce overfitting, which is critical in datasets with
noise and numerous environmental factors. DTs were chosen for their interpretability and
versatility with both categorical and numerical data, making them ideal for classification
tasks where explicit, interpretable models are needed. Linear Regression was included to
address cases where the data suggested linear relationships, allowing us to analyze specific
attributes’ effects on outcomes straightforwardly and interpretably. These algorithms offer
a complementary balance of robustness, interpretability, and efficiency, particularly well-
suited for modeling in aquaculture, where both structured and environmental data types
are common.

Data were stored in the Apache Cassandra database, ensuring efficient management
within the system, and were then loaded into the Apache Spark framework, where the
Random Forest, DTs, and Linear Regression models were trained, validated, and evaluated.
The dataset was split into a training set (70%) and a testing set (30%) to assess model
effectiveness through the training and testing processes [28–33]. Table 3 below summarizes
each algorithm’s strengths, weaknesses, and best use cases, clarifying the unique value
each adds to this study’s predictive analysis.

Table 3. Algorithm performance comparison.

Algorithm Strengths Weaknesses Best Use Cases

Random Forest

Reduces overfitting.
Manages

high-dimensional
data well.

Provides feature
importance.

Computationally
strong. Less

interpretable.

Complex datasets
with noise.

Decision Trees
Simple to interpret.
Handles categorical
and numerical data.

Prone to overfitting.
Unstable.

Classification tasks,
especially where

model interpretability
is key.

Linear Regression
Easy to interpret.

Efficient for
small datasets.

Assumes linearity.
Affected by outliers.

Regression problems
with a clear linear

relationship.

3.5.1. Decision Trees

DTs are tools that can help analyze and interpret a user’s decisions and provide
recommendations on their possible consequences. Linear Regression is a widely used
and basic method for calculating the relationship between a variable and one or more
independent ones [28–33].

DTs are a widely used technique in machine learning for performing regression and
classification tasks. They recursively divide a dataset into constituent parts according to
the most salient attributes [28–33].
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DTs’ structure is composed of various internal nodes and branches that represent the
various attributes of the data. These nodes are used to determine the best classification
or regression model for the given dataset. The most common algorithms used in DT
inductions are C4.5, ID3, and CART. These algorithms use different approaches to choose
the best classification or regression model [28–33].

The splitting criterion for DTs is usually based on the information gained, which
considers the amount of information that a feature provides about a class.

The value of the information that is gained is expressed gradually. The Shannon
function’s mathematical expression is shown as follows:

I(P(u1), . . . , P(un)) =
n

∑
i=1

− P(ui) log2P(ui) (1)

where the information gain that is obtained by splitting a dataset is referred to as I(P(u1) ,
. . . , P(un)). The value of P(u) is dependent on the attributes of the data that are split.
While the P(ui) refers to the probability of the answer that is given by the split (ui) [28–33].

Remainder (A) =
n

∑
i=1

pi + ni
p + n

I
(

pi
pi + ni

,
ni

pi + ni

)
(2)

Gain (A) = I
(

pi
pi + ni

,
ni

pi + ni

)
− Remainder (A) (3)

Gini (A) = 1 −
n

∑
i=1

p2
i (4)

One of the main disadvantages of DTs is that they are prone to overfitting, which
can occur when a tree grows too big and collects noise in the collected data. To minimize
this issue, pruning techniques are usually used. These can be performed either during the
building phase or post-pruning. Although DTs are generally interpretable and simple, they
can also be affected by slight variations in data [28–33].

3.5.2. Random Forest

According to the scientific literature, one of the most powerful methods for developing
ML models is Random Forest, which involves constructing several DTs and estimating
the mean prediction and classification of individual trees. Random Forest is a machine
learning technique that enhances performance by combining multiple DTs during training.
It addresses one of the most common issues in DTs, overfitting, which occurs when multiple
models are used to analyze the data. Training each tree on a randomly selected subset of
the data allows for more robust models [28–33].

A Random Forest is a combination of DTs. Although it does not have a single formula,
it relies on the predictions of various DTs to arrive at its results.

For classification, the following is calculated:

ŷ = majority vote(T1(x), T2(x), . . . , Tn(x)) (5)

where Ti(x) is the prediction from the ith tree, and ŷ is the final prediction (the class with
the most votes).

For regression, the following is calculated:

ŷ =
1
n

n

∑
i=1

Ti(x) (6)

where Ti(x) is the predicted value from the ith tree, and ŷ is the average of all pre-
dicted values.
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Random Forest trees are constructed on a randomly selected subset of the training
data. The features are also randomly chosen at each split.

One of the main advantages of the Random Forest is its ability to handle large-scale
datasets. It can analyze various features of the data, and its feature importance scores are
useful in determining the impact of each one on a prediction’s outcome. However, it is
not as interpretable as a single DT. In addition, the number of trees in the cluster makes it
harder to perform well [28–33].

3.5.3. Linear Regression

One of the most common algorithms for performing regression tasks is Linear Regres-
sion. This type of algorithm assumes that the input and output variables have a linear
relationship. It can be performed by fitting a line or hypervariable plane to minimize errors
between the predicted and actual values [28–33].

Although Linear Regression is straightforward to implement and use, its performance
can be limited by the relationship between the variables’ underlying values. It can also be
sensitive to outliers. Despite these limitations and disadvantages, it is still widely used
due to its effectiveness and simplicity in performing tasks where a linear relationship
exists [28–33].

Linear Regression is a type of statistical model that shows the relationship between a
given variable and another variable. It uses a linear equation to arrive at its formula.

y = β0 + β1x + ε (7)

The same formula for multiple independent variables, or multiple Linear Regressions,
is performed as follows:

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε (8)

where β0 is the constant, β1, β2, βn are the coefficients for each independent variable, x1,
x2, xn are the independent variables, y is the dependent variable, and ε is the error term,
accounting for the difference between the actual and predicted values [28–33].

Linear Regression aims to minimize the sum of squared errors, which are calculated
using the following formula:

SSE =
n

∑
i=1

(y1 − ŷ1)
2 (9)

where y1 is the actual value, and ŷ1 is the predicted value [28–33].

4. Results

This study analyzes the DTs, Random Forest, and Linear Regression models in detail.
The results are presented in the following sections.

4.1. Decision Trees (DTs)

The following describes the steps to apply the DT model and create a report and
graphical representations. The training results include the features and their importance
alongside plots that show the model predictions against the actual values.

1. The training set was utilized to train the DTs model.
2. The evaluation of the model was carried out using the testing framework.
3. The importance of attributes will be discussed according to the model’s findings

(Table 4).
4. After the model has been implemented, reports and graphical representations were

created to show the model’s predictions against the test set’s values (Figures 2 and 3).
5. A Python code was also used to conduct DTs analysis using Cassandra data through

Apache Spark (Table A9) [34–38].
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Table 4. DT results analysis.

Variable Coefficient Value

RMSE 64.21
R2 −1.16

MSE 4123.37
C-index 0.65
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Figure 2 illustrates the performance of the DTs model by comparing predicted fish
mortality values against the actual mortality values. The red line represents the ideal
scenario where predictions perfectly match the true values (i.e., the line of perfect fit).
Each data point (marked by green ‘x’) corresponds to an actual value plotted against its
respective prediction. The scatter of points around the red line indicates the level of the
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prediction error. While some points align closely with the ideal line, reflecting accurate
predictions, a significant number deviates from it, particularly in the higher and lower
ranges, which suggests that the model struggles with extreme mortality values. This
visualization highlights both the strengths and limitations of the DT model in this context,
where it may underperform in predicting the more extreme outcomes.

• The RMSE value is 64.21, indicating a significant variance between the predicted
values and the actual data. A lower RMSE would indicate greater model accuracy,
suggesting there is room for improvement in prediction precision (Table 4).

• The R2 value is −1.16, which is significantly lower than the ideal value of 1.0. A
negative R2 indicates that the model performs worse than simply predicting the mean
of the data, suggesting that the current model does not explain the variance in the
dataset effectively (Table 4).

• The MSE value is 4123.37, representing the average squared difference between the
predicted and actual values. A high MSE suggests that the model makes substantial
prediction errors, further highlighting the need for optimization or an alternative
modeling approach (Table 4) [34–38].

• The C-index of 0.65 reflects its moderate ranking accuracy (Table 4).

4.2. Random Forest

1. The evaluation metrics for the Random Forest model were measured and presented
based on its predictions for the validation set (Table 5).

2. A prediction graph was created to compare the model’s results with the actual values
of the test set (Figure 4).

3. The significance of the Random Forest model’s features is depicted in Figure 5.
4. A Python code was also used to conduct a Random Forest analysis using the Apache

Cassandra data through Apache Spark (Table A8) [34–38].
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Figure 4. Random Forest predictions versus true values.

Figure 4 shows the predictions of the Random Forest model compared to the actual fish
mortality values. The red line represents the ideal fit, where predictions match the actual
values perfectly. Each green ‘x’ marks a predicted value plotted against its corresponding
true value. The proximity of these points to the red line suggests that the Random Forest
model performs effectively, with most predictions closely aligning with the actual values.
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Table 5. Random Forest results analysis.

Variable Coefficient Value

RMSE 64.21
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When comparing this plot to the DT model, the Random Forest model’s predictions
are consistently closer to the red line, indicating better prediction accuracy. While there are
still some deviations, particularly for the extreme mortality values, the overall performance
of Random Forest is superior, showing fewer outliers and more accurate predictions across
a wider range of values.

Figure 5 illustrates the importance of different features in the Random Forest model’s
prediction of fish mortality. The size of each feature’s bar indicates its relative contribution to
the model’s accuracy, with larger bars signifying a greater influence on mortality predictions.
For example, MAB and SFR are the most important, suggesting that they play a significant
role in forecasting, while other factors like DO and vol have comparatively smaller impacts.

The Random Forest model has a lower MSE than the DTs, indicating more accurate
predictions. Its R2 score shows that it can explain approximately 63% of the variance in
target values, demonstrating a good predictive capacity. This makes the Random Forest
model more reliable for forecasting target values in fish culture data.

• The RMSE value is 64.21, indicating the average deviation of the predicted values
from the actual values. While this value is still significant, it shows a moderate level of
prediction error. A lower RMSE would indicate better accuracy (Table 5).

• The R2 value is 0.63, suggesting that the model explains 63% of the variance in the
data. While it is not perfect (with 1.0 being ideal), an R2 of 0.63 indicates a decent
fit, meaning that the model captures a good portion of the variability in the dataset
(Table 5).

• The MSE value is 698.54, representing the average squared difference between the
predicted and actual values. This lower MSE, compared to the previous scenario,
indicates an improvement in the prediction accuracy, as a lower MSE reflects fewer
errors in the predictions (Table 5).

• The C-index is 0.85, indicating a high level of ranking accuracy (Table 5).
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4.3. Linear Regression

Linear Regression is one of the most common methods for analyzing various variable
relationships. This method aims to predict the value that a dependent variable will exhibit
after considering the independent variables’ values. The results of this procedure are then
analyzed using the coefficients.

Linear Regression can be performed in Spark using the MLlib library. However,
before it can be performed, it is necessary to convert the data into numerical format using
OneHotEncoder and StringIndexer. Furthermore, the VectorAssembler tool created a single
feature vector for all the features. The Python code was also used to conduct a Linear
Regression analysis using Cassandra data through Apache Spark (Table A10).

The results are illustrated in the following three graphs. The first graph (Figure 6)
shows the parameters influencing fish mortality, displaying the coefficients of various
features in the Linear Regression model used for prediction, focusing on “conductivity” and
“DO”. Each bar represents a feature’s coefficient value, reflecting its impact on the model’s
predictions. Notably, “SFR” and “DO” exhibit significant coefficient values, indicating a
stronger influence on the model’s output than other features.
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In the second graph, the x-axis scale is adjusted to enhance the readability of smaller
coefficients, allowing their relative influence to stand out more clearly (Figure 7). This
focused view highlights the minor but noteworthy contributions of features such as “i_f”,
“food”, and “MAB” in the Linear Regression model, providing a more detailed perspective
on how these variables impact fish mortality predictions.

The third graph shows the outcomes of the Linear Regression procedure (Figure 8).
Figure 8 illustrates the relationship between predicted and actual values. A perfect

forecast is when the predicted values are like the actual ones.
Although these coefficients show that each of these elements impacts fish mortality,

the magnitude of their effects varies. A brief analysis of the coefficients for each variable of
the model’s Linear Regression framework is provided. These coefficients indicate that each
of these variables has some effect on fish mortality (Table 6) [34–38].
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Table 6. Variables coefficients.

Variable Coefficient Value

Dissolved Oxygen (DO) 24,853
i_f 0.290

Food 0.154
MAB 0.024
Vol 0.004

Value 0.001
Fishno 0.0001
Temp −2.139

Conductivity −24,853
SFR −939.007

• Dissolved Oxygen (DO) (24,853): the positive coefficient of DO (24,853) suggests that
there is a link between the increasing levels of this element and the mortality rate.

• i_f (0.290): The increase in fish concentration is also linked to an increased mortality
rate. However, the effect is not as strong as with DO (Table 6).

• Food (0.154): the food factor indicates that increased food quantity leads to higher
mortality rates (Table 6).

• MAB (0.024): the small but positive relationship between the MAB and mortality rates
suggests that higher atomic weights may contribute to increased deaths.

• Vol (0.004): the effect of the fish volume on mortality in each space is small.
• Value (0.001): the small positive effect of the value indicates that the relationship

between the parameter and mortality rates is not strong (Table 6).
• Fishno (0.0001): the minimal effect of the Fishno variable on mortality is shown.
• Food Model (−0.080): the Food Model has a negative effect, indicating that certain

kinds of food can help reduce fatalities.
• Temp (−2.139): the negative effect of temperature is shown, suggesting that increased

temperatures can reduce the mortality rate.
• Conductivity (−24,853): The relationship between conductivity and mortality is nega-

tive. This indicates that elevated conductivity can reduce the mortality rate.
• SFR (−939.007): the relationship between the SFR and mortality is negative, indicating

that higher values can substantially reduce mortality (Table 6).

The effect of food types on mortality is negative, as they are considered a single
variable. This suggests that changing the type of food can have a negative effect on the
number of deaths. Although individual food types have varying effects, the overall impact
of this single variable on mortality is negative. This finding provides a more complete
understanding of how feed type can affect the mortality rate in aquaculture. A Linear
Regression analysis was performed on sea bass (BS). The results indicated that the fish
behaved well in the study (Table 7) [34–38].

Table 7. Linear Regression results analysis.

Variable Coefficient Value

RMSE 51.73
R2 0.31

MSE 2675.84
C-index 0.70

Linear Regression analysis was performed on sea bass (BS), which is a type of fish.
The results of the Linear Regression for ‘BS’ fish are as follows:

• The RMSE represents the variance between the predicted value and the actual dataset
at approximately 51.73 percent. It indicates that the model’s performance is better if
the value is closer to zero (Table 7).
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• R2 is a statistical measure that predicts the likelihood that the model will be able to
predict future samples. The value of R2 is 0.31 when a grade of 1.0 is the ideal outcome
(Table 7).

• The value of MSE is 2675.84, indicating the average squared difference between the
predicted and actual values. A high MSE suggests that the model makes significant
errors in its predictions, emphasizing the necessity for optimization or considering an
alternative modeling approach (Table 7).

• The C-index of 0.70 highlights its relative performance in predicting mortality rates
(Table 7).

5. Discussion

The results of this study demonstrate how different ML techniques, such as Random
Forest, DTs, and Linear Regression, can enhance the prediction of fish mortality rates.
Among these, the Random Forest model outperformed both DTs and Linear Regression,
achieving the lowest MSE, and the highest R2 value, as shown in Table 8.

Table 8. Algorithms performance results.

ML Model MSE R2 RMSE C-Index

Random Forest 698.54 0.63 26.43 0.85
Decision Tree 4123.37 −1.16 64.21 0.65

Linear Regression 2675.84 0.312 51.73 0.70

The C-index values indicate the models’ ranking accuracy, providing a measure of
the model’s ability to rank-order outcomes accurately, where Random Forest achieved the
highest C-index of 0.85, demonstrating superior predictive performance. DTs and Linear
Regression recorded C-index values of 0.65 and 0.70, respectively, highlighting Random
Forest’s advantage in maintaining prediction consistency across data instances.

Although Linear Regression performed adequately when predicting mid-range values,
it exhibited significant deviations in extreme data points, while the DTs model performed
poorly overall.

In addition to prediction accuracy, computational efficiency was a key factor in the as-
sessment. As shown in Table 9, the Random Forest model required the most computational
resources, with a CPU time ranging from 100 to 200 s and memory usage between 1200 and
1800 MB. Conversely, DTs and Linear Regression were much more efficient, with Linear
Regression being the fastest and most lightweight in terms of CPU and memory usage.

Table 9. CPU and memory comparison.

ML Model CPU Time (Seconds) Usage (MB)

Random Forest 100–200 1200–1800
Decision Tree 30–60 600–800

Linear Regression 15–30 200–300

These computational insights highlight a trade-off between model accuracy and re-
source efficiency. While Random Forest provided the most accurate predictions, its resource
demands were substantially higher. DTs and Linear Regression, although more compu-
tationally efficient, struggled with prediction accuracy, particularly with more complex
relationships in the data.

Specific environmental factors, such as temperature and water conductivity, signifi-
cantly impacted fish mortality rates. Higher temperatures were correlated with lower death
rates, while optimal water conditions and feeding techniques helped mitigate mortality.
Notably, the type of food used also showed a negative correlation with mortality rates,
indicating that tailored feeding programs could reduce mortality in aquaculture settings.
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The findings of this study provide valuable insights into enhancing aquaculture man-
agement practices, particularly in refining feeding strategies and improving environmental
standards [39].

A performance assessment evaluation of several ML models for predicting fish mor-
tality rates in the aquaculture industry revealed that Random Forest, despite its higher
computational cost, outperformed the other models. It achieved the lowest MSE and
the highest coefficient of determination (R2) at 0.63. These performance metrics indicate
that the Random Forest model can explain the variance in the data and produce reliable
predictions. The analysis also revealed that DTs performed poorly, with an MSE of 4123.37
and an R2 of −1.16, indicating their inability to provide reliable predictions.

Linear Regression was more interpretable, but it faced difficulties with extreme values. This
issue pinpoints the limitations when dealing with non-linearity.

Random Forest insights showed that certain factors, including water quality parame-
ters and feeding rates, affected fish mortality rates. This finding strengthens the existing
research on the operational and environmental variables or factors that impact fish mor-
tality rates. Certain features in the model’s performance were analyzed to determine the
potential of developing targeted interruptions to minimize fish mortality rates in cages.

The model’s graphical representations of predictions showed that specific interven-
tions, such as applying targeted practices, could mitigate fish mortality rates in the aqua-
culture industry [39,40].

Both Linear Regression and DT models performed poorly when calculating the actual
values. The difference between these two ML models was insignificant since neither could
efficiently provide valuable predictions for a given dataset (Table 8).

Despite its strong performance, there is still room for optimizing the Random Forest
model, especially in predicting extreme mortality events. DTs faced issues with instability
and overfitting, while linear regression struggled with capturing non-linear relationships.
Future research will focus on developing more advanced ML models to address these
challenges and improve the prediction of complex, non-linear relationships in fish mortal-
ity rates.

The overall insights provided in this study align with the goals of increasing op-
erational effectiveness in aquaculture and contributing to achieving the United Nations
Sustainable Development Goals (SDGs) and Disability [40–42] by promoting more sustain-
able and efficient practices in the industry.

6. Conclusions

This study successfully achieved its research objectives by evaluating the performance
of various ML models for predicting fish mortality rates in aquaculture. The Random Forest
model outperformed other ML techniques, achieving the highest accuracy and explaining a
significant portion of the data variance. In contrast, Linear Regression and DTs encountered
limitations, particularly with complex and extreme data points.

The key findings identified essential factors influencing fish mortality, including water
quality, feeding rates, and temperature. This knowledge offers actionable insights for
improving fish health and reducing stock losses in aquaculture settings [39,43].

Predictive visualizations confirmed that Random Forest most accurately aligned with
the observed outcomes, whereas Linear Regression and DTs faced substantial errors. These
insights suggest the potential for refining predictive models through advanced techniques,
such as Deep Learning and Gradient Boosting, to enhance the prediction accuracy for
complex relationships. Incorporating real-time data could further support these models’
practical applications in aquaculture management [41].
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These findings reveal the need for robust decision-making tools within the aquaculture
industry. By implementing advanced models like Random Forest, sector managers can
make data-informed decisions that optimize key operational factors, ultimately enhancing
fish populations and ecological sustainability [43,44].

Overall, this study demonstrates the utility of ML in advancing aquaculture manage-
ment and provides both practical recommendations and theoretical insights for the field.
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Appendix A. Data Preparation Using Cassandra

This section outlines the steps involved in setting up a database for managing fishery
data using Cassandra, from creating a keyspace to importing data from a CSV file.

Table A1 describes the creation of the fishery keyspace, which serves as a dedicated
namespace for the tables storing data related to the case study.

Table A2 shows the command to select a keyspace, ensuring all subsequent operations
are applied within the correct context.

Table A3 details the structure of the fish_data table, which stores multiple attributes
related to fishery operations, including metadata such as location, sample_code, state, and
other essential parameters like deaths and medication.

Table A4 provides the command for importing data from a CSV file into the fish_data
table. This imported data will then be analyzed in the subsequent sections using Apache Spark.

Table A1. Create a keyspace.

CREATE KEYSPACE IF NOT EXISTS fishery WITH replication = {‘class’: ‘SimpleStrategy’,
‘replication_factor’: ‘1’};

Table A2. Select keyspace.

USE fishery;
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Table A3. Create the table.

CREATE TABLE IF NOT EXISTS fish_data (
location text,
sample_code text,
day text,
description text,
state text,
analysis text,
parameter text,
value double,
unit text,
limit double,
aa_x text,
month text,
cell text,
portion text,
fishno int,
MAB text,
fish_no int,
deaths int,
corrections int,
nofishing text,
damage text,
kg_fishing double,
sample text,
medication text,
food text,
food_model text,
SFRpercent double,
temp double,
vol double,
i_f text,
medicine text,
aa_y text,
PRIMARY KEY (sample_code)
);

Table A4. Import the data from the CSV file.

COPY fish_data (location, sample_code, day, description, state, analysis, parameter, value, unit,
limit, aa_x, month, cell, portion, fishno, MAB, fish_no, deaths, corrections, nofishing, damage,
kg_fishing, sample, medication, food, food_model, SFRpercent, temp, vol, i_f, medicine, aa_y)
FROM ‘/path/to/your/file.csv’ WITH DELIMITER=‘;’ AND HEADER=TRUE;

Appendix B. Data Processing with Apache Spark

After setting up the Cassandra database, we used Apache Spark to load and process
the data.

Table A5 describes how to create a Spark session that connects to Cassandra. This step
is crucial for ensuring that Spark can access the fish_data table.

Table A6 demonstrates the process of loading the data from Cassandra into a Spark
DataFrame, which allows for the efficient processing and analysis of large datasets.

Table A7 verifies the successful loading of data by displaying a sample of the data. This
step is important for checking data integrity before applying machine learning algorithms.
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Table A5. Create an Apache Spark session.

from pyspark.sql import SparkSession
spark = SparkSession.builder I am running a few minutes late; my previous meeting is running over.

.appName(‘Fisheries’)\

.config(‘spark.cassandra.connection.host’, ‘localhost’)\

.config(‘spark.cassandra.connection.port’, ‘9042’)\

.config(‘spark.jars.packages’, ‘com.datastax.spark:spark-cassandra-connector_2.12:3.0.1’)
\
.getOrCreate()

Table A6. Loading data from Cassandra.

df = spark.read.format(“org.apache.spark.sql.cassandra”)\
.options(table=“fish_data”, keyspace=“fishery”)\
.load()

Table A7. Data load verification.

df.show()

Appendix C. Machine Learning Models

In this section, we applied various machine learning models to predict fish mortalities.
Table A8 presents the Python code for implementing a Random Forest model. This

model predicts fish mortality rates based on various features. The feature importance and
predictions vs. true values are visualized to provide insight into the model’s performance.

Table A9 outlines the implementation of a Decision Tree Regressor. Like the Random
Forest model, the predictions are compared to actual values, and key evaluation metrics
are printed to assess model accuracy.

Table A10 describes the use of Linear Regression, focusing on categorical and numeri-
cal features. The pipeline approach combines data preprocessing and model training into a
single workflow. The model’s coefficients are also visualized to interpret the influence of
different features on the predicted outcomes.

Table A8. Random Forest Python code.

# Calculate and print the metrics for the Random Forest model
rf_mse = mean_squared_error(y_test, rf_predictions)
rf_r2 = r2_score(y_test, rf_predictions)
rf_cindex = concordance_index(y_test, rf_predictions)
# Plot feature importances for the Random Forest model
plot_feature_importances(rf_regressor, ‘Random Forest’, X_train.columns)
# Create a scatter plot for the Random Forest predictions vs. true values
plt.figure(figsize=(10, 6))
plt.scatter(y_test, rf_predictions, alpha=0.5, color=‘green’, label=‘Predictions’)
plt.plot(y_test, y_test, color=‘red’, label=‘Actual Values’)
plt.title(‘Random Forest Predictions vs. True Values’)
plt.xlabel(‘True Values’)
plt.ylabel(‘Predictions’)
plt.legend()
plt.tight_layout()
plt.show()
# Print the evaluation metrics
rf_mse, rf_r2
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Table A9. Decision Tree Python code.

from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
import matplotlib.pyplot as plt
# Initialize the Decision Tree Regressor model
decision_tree_model = DecisionTreeRegressor(random_state=42)
# Fit the model to the training data
decision_tree_model.fit(X_train, y_train)
# Predict on the testing data
dt_predictions = decision_tree_model.predict(X_test)
# Calculate metrics
dt_mse = mean_squared_error(y_test, dt_predictions)
dt_rmse = mean_squared_error(y_test, dt_predictions, squared=False)
dt_mae = mean_absolute_error(y_test, dt_predictions)
dt_r2 = r2_score(y_test, dt_predictions)
dt_cindex = concordance_index(y_test, dt_predictions)
# Detailed report
dt_report = f“““
Decision Tree Regression Model Report:
Mean Squared Error (MSE): {dt_mse:.2f}
Root Mean Squared Error (RMSE): {dt_rmse:.2f}
Mean Absolute Error (MAE): {dt_mae:.2f}
R-squared (R2): {dt_r2:.2f}
”””
# Print the report
print(dt_report)
# Plot the prediction vs. actual values
plt.figure(figsize=(10, 6))
plt.scatter(y_test, dt_predictions, color=‘blue’, label=‘Predictions’, alpha=0.6)
plt.plot(y_test, y_test, color=‘red’, label=‘Actual’, linewidth=2)
plt.title(‘Decision Tree Predictions vs. True Values’)
plt.xlabel(‘True Values’)
plt.ylabel(‘Predictions’)
plt.legend()
plt.show()

Table A10. Linear Regression Python code.

from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.ml import Pipeline
# Define StringIndexer and OneHotEncoder for categorical columns
categorical_columns = [‘location’, ‘day’, ‘parameter’, ‘cell’, ‘MAB’, ‘food’, ‘i_f’]
indexers = [StringIndexer(inputCol=column, outputCol=column+”_index”) for column in categorical_columns]
encoders = [OneHotEncoder(inputCol=column+”_index”, outputCol=column+”_encoded”) for column in categorical_columns]
# Define VectorAssembler
features = [column+”_encoded” for column in categorical_columns] + [‘value’, ‘fishno’, ‘SFRpercent’, ‘temp’, ‘vol’]
assembler = VectorAssembler(inputCols=features, outputCol=“features”)
# Define Linear Regression model
lr = LinearRegression(featuresCol=‘features’, labelCol=‘deaths’)
# Define Pipeline
pipeline = Pipeline(stages=indexers + encoders + [assembler, lr])
# Load data from Cassandra
df = spark.read.format(“org.apache.spark.sql.cassandra”).options(table=“fish_data”, keyspace=“fishery”).load()
# Fit the model
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Table A10. Cont.

model = pipeline.fit(df)
# Make predictions
predictions = model.transform(df)
lr_predictions = predictions.select(‘prediction’).toPandas().values.flatten()
y_test = predictions.select(‘deaths’).toPandas().values.flatten()
# Calculate and print the performance metrics
lr_mse = mean_squared_error(y_test, lr_predictions)
lr_r2 = r2_score(y_test, lr_predictions)
lr_cindex = concordance_index(y_test, lr_predictions)
# Show the coefficients of the model
print(“Coefficients: “ + str(model.stages[−1].coefficients))
print(“Intercept: “ + str(model.stages[−1].intercept))
# Plot the results
predictions.select(‘deaths’, ‘prediction’).toPandas().plot(kind=‘scatter’, x=‘deaths’, y=‘prediction’)
# Plot the coefficients
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
coefficients = pd.DataFrame({
‘Feature’: np.append(np.array(features), ‘Intercept’),
‘Coefficient’: np.append(model.stages[−1].coefficients.toArray(), model.stages[−1].intercept)
})
coefficients.sort_values(‘Coefficient’).set_index(‘Feature’).plot(kind=‘barh’, legend=False)
plt.title(‘Linear Regression Coefficients’)
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