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Abstract: Cymbidium goeringii (Rchb. f.) is a traditional Chinese flower with highly valued biological,
cultural, and artistic properties. However, the valuation of Rchb. f. mainly relies on subjective
judgment, lacking a standardized digital evaluation and grading methods. Traditional grading
methods solely rely on unimodal data and are based on fuzzy grading standards; the key features
for values are especially inexplicable. Accurately evaluating Rchb. f. quality through multi-modal
algorithms and clarifying the impact mechanism of key features on Rchb. f. value is essential for
providing scientific references for online orchid trading. A multi-modal Transformer for Rchb. f.
quality grading combined with the Shapley Additive Explanations (SHAP) algorithm was proposed,
which mainly includes one embedding layer, one UNet, one Vision Transformer (ViT) and one
Encoder layer. A multi-modal orchid dataset including images and text was obtained from Orchid
Trading Website, and seven key features were extracted. Based on petals’ RGB segmented from
UNet and global fine-grained features extracted from ViT, text features and image features were
organically fused into Transformer Encoders throughout concatenation operation, a 93.13% accuracy
was achieved. Furthermore, SHAP algorithm was utilized to quantify and rank the importance
of seven features, clarifying the impact mechanism of key features on Rchb. f. quality and value.
This multi-modal Transformer with SHAP algorithm for Rchb. f. grading provided a novel idea to
represent the explainable features accurately, exhibiting good potential for establishing a reliable
digital evaluation method for agricultural products with high value.

Keywords: multi-modal feature fusion; explainable features representation; quality grading; transformer
encoder; Cymbidium goeringii

1. Introduction

Cymbidium goeringii (Rchb. f.) is a traditional Chinese flower that embodied biological,
cultural, and artistic properties, and is also known as Chinese Orchid and flower gentle-
man [1]. Its features include petal type, flower color, leaf length, leaf width, etc. [2]. With
an elegant appearance, beautiful flowers, and slender leaves, Rchb. f. has been loved by
ancient and modern literati [3,4]. Some precious varieties have even been auctioned for
millions [5,6]. In recent years, as living standards have improved and people’s appreci-
ation for beauty has deepened, orchids have become increasingly prevalent in countless
homes [7]. However, in current orchid industry trading, the valuation of Rchb. f. relies on
the subjective preferences of consumers, and even the opinions of orchid experts with long
experience in planting and studying orchids are divided [8]. The evaluation standard and
key features of Rchb. f. with a high value is still unclear. Especially for rising online trading,
labeled data of Rchb. f. is lacking, and none of the valuing guidelines can be supplied to
consumers. Therefore, accurately correlating the key features with values and establishing
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digital quality evaluation indicators are crucial for promoting the development of the Rchb.
f. industry.

This study proposed a multi-modal explainable Rchb. f. grading model based on
Transformers. Inspired by the self-attention of Transformer Encoder, this model can pro-
vide more attention score to key features during training and handle variable length and
incomplete data. Vision Transformer (ViT) transformed UNet-segmented petals into global
fine-grained feature vectors, which were input into Transformer Encoders along with
RGB values and textual features. To enhance features’ explainability and model deci-
sion’s reliability, Shapley Additive Explanations (SHAP) algorithm was adopted to sort
features’ importance, further clarifying the impact mechanism of key features on Rchb.
f. quality and value. Finally, Transformer Encoder’s performance was evaluated against
the Vector Quantised-Variational AutoEncoder (VQ-VAE) and the Conditional Variational
AutoEncoder (C-VAE), demonstrating its effectiveness in Rchb. f. quality grading.

2. Related Works
2.1. Orchid Variety Classification

Some studies have focused on classifying varieties or extracting the number of flowers
and buds in orchid images. A hybrid model architecture, called the Homogeneous Ensem-
ble Convolutional Neural Network (HE-CNN), was presented to classify the orchid species
based on the global features of petal images, with an accuracy of 94.30% [9]. By training
collected Cymbidium images with ten varieties, the Convolutional Neural Network (CNN)
classified different varieties of orchids, achieving a 94.13% accuracy [8]. However, the above
CNN algorithms just focused on the relationship between orchid images and varieties,
without any key features. The PA-YOLO algorithm was applied to count the blooms and
buds of Phalaenopsis, achieving 95.4% mean average precision (mAP) for buds and 91.9%
for blooms by integrating a dual-scale detection branch and dynamic head framework [10].
However, the above studies did not extend to grading the quality of orchids.

2.2. Flower Quality Grading

Image processing and object detection algorithms have been employed for grading
the quality of flowers. Bubble sequencing and cluster segmentation were used to measure
the crown spathe width and spathe number of potted Anthuriums, respectively, and a
minimum closed rectangle was used to measure crown width and spathes. Based on these
features and the existing grading standard of potted Anthurium, a grading accuracy of
85.86% was achieved [11]. YOLO-V3 was utilized to detect objects’ position on phalaenopsis,
including red flowers, white flowers, stems, red buds, white buds, and inappropriate
deciduous buds on stems, so as to determine the three grades of phalaenopsis, with an
accuracy of 82% [12]. A CNN was employed to grade Gloxinia quality based on images,
with its grading capability enhanced by determining whether samples containing buds
belonged to medium grade, achieving an accuracy of 89.6% [13]. However, the above
models merely output grades based on images, and the importance of each feature to the
grading result was not clear.

2.3. Agricultural Product Quality Grading

Quality grading algorithms have been applied to edible agricultural products, based
on different features. The Back Propagation (BP) Neural Network and Support Vector
Machine (SVM) were utilized to grade pear appearance quality based on shape, surface
color, and defects according to industry standards, achieving an accuracy of 80.5% [14].
Machine learning ensemble models (XGBoost, LightGBM, and Linear models) were em-
ployed to estimate apple ripeness by training spectral sensor data, facilitating apple quality
grading based on a custom relationship between the ripeness and quality levels, achieving
an accuracy of 80.5% [15]. The relationship between the RGB and HSV color maps of
mushrooms’ freshness was analyzed, and the grading of two quality classes of mushrooms
(fresh and deteriorated) were carried out using an Artificial Neural Network (ANN) and
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SVM, with accuracies of 94.7% and 93.4%, respectively [16]. However, the above adopted
grading methods lacked textual data, and were based on existing grading standards, which
are insufficient for classifying orchids that lack defined indicators and grading standards.
Especially, the outputs and features of these models do not clearly represent the key features
affecting quality, nor their importance, providing limited guidance for the grading results
of agricultural production processes. In contrast, this study fully utilizes both image and
textual features of orchids, effectively uncovering the impact mechanism of key features on
the orchid’s quality and value. This provides a scientific basis for Rchb. f. cultivation and
online transactions.

3. Materials and Methods
3.1. Dataset Acquisition and Definition

Information on 4556 Rchb. f. sales was collected from Orchid Trading Website (https:
//www.hmlan.com, (accessed on 2 January 2024)). To ensure transparency and authenticity
in transactions, the website requires sellers to provide detailed information about their
orchids’ attributes, which are also essentially of interest to orchid lovers and buyers. Based
on these attributes, the recognized text features were classified into three categories (flower,
leaf, and bud) and seven specific indicators (petal type, longest leaf, widest leaf, leaf height,
leaf number, bud number, seedling number). Then, these key features were extracted from
the text using regular expression matching, forming 4556 groups of joint datasets with both
images and multiple key features (Table 1). Each sample in the dataset consists of a feature
vector and a label. Each feature vector has eight features, including one image and seven
key features. Rchb. f. samples with different price ranges are defined as different grades. In
order to facilitate the tuning of model hyperparameters, prevent overfitting, and monitor
training effectiveness, 10% of the samples (455 samples) from each level were selected as
validation set, and 10% of the samples (449 samples) as the test set. Finally, the remaining
3652 samples were used as the training set (Table 2).

Table 1. The multi-modal Rchb. f. dataset and (taking 4 samples as examples; “-” denotes missing feature).

Flower Leaves Bud
Label

(Grade)Image
Petal
Type

Longest
Leaf

Widest
Leaf

Leaves
Height

Leaves
Number

Bud
Number

Seedlings
Number

Lotus 20 0.6 - - - - 1

Lotus 12 0.6 - 5 2 2 2

Lotus 23 1.1 - 27 - 5 3

Plum 39 1.2 - - - 3 4

Table 1 showed the varying degrees of missing multi-modal features due to the lack of
an evaluation standard for values. To solve this problem, the model received an array of
feature indices (for identifying feature names) and an array of corresponding feature values,
respectively. Therefore, feature indices and feature values were separated. Each feature
name was mapped to a unique numerical index, transforming it into a recognizable digital
format. Each feature value corresponds to its respective feature name. Given the presence
of missing values, padding ensures consistent input tensor dimensions for the Neural

https://www.hmlan.com
https://www.hmlan.com
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Network. Even if some features were missing, their feature indices were still included in
feature indices array, represented by the padding value of 9, and their feature values were
included in feature values array, indicated by the padding value of 0. This allows the model
to dynamically handle variable-length inputs and missing features without compromising
the integrity of the information processed. Then, the preprocessed data were fed into the
input embedding layer and Transformer Encoder of the developed model.

Table 2. Label, reference price, and sample numbers for training, validation, and test sets.

Label
(Grade)

Reference Price Level
(RMB)

Numbers of
Samples

Size of
Training Set

Size of
Validation Set

Size of
Test Set

1 0–100 722 587 73 62

2 100–300 696 556 70 70

3 300–600 673 538 66 69

4 600–1500 668 534 65 69

5 1500–3000 624 499 63 62

6 3000–5000 593 474 60 59

7 >5000 580 464 58 58

Total 4556 3652 455 449

3.2. Transformer Encoder

The Transformer Encoder structure is the key of the multi-modal Rchb. f. quality
grading model, and its construction was shown in Figure 1a. Self-attention is the core
of the Transformer Encoder layer, which enables the model to dynamically weigh the
importance of different input features. The Transformer Encoder consists of a bunch of
identical layers, each of which consists of a multi-head self-attention and a fully connected
feedforward network as its main components. Each major component incorporates normal-
ization and residual concatenation to mitigate the vanishing gradient problem. Multiple
Transformer Encoder layers are connected back and forth to form a deep Transformer
Encoder structure [17,18].

The self-attention allows the encoder to consider other parts of the input sequence
when encoding a particular piece. It computed the attention scores based on the query (Q),
key (K), and value (V) matrices derived from the input embedding layer. The attention
function can be described as

Atttention(Q, K, V) = Softmax
(

QKT
√

dk

)
V (1)

where dk is the dimensionality of the key vectors, which helps in stabilizing the gradients.
Multi-head attention extends this by parallelizing multiple attention heads, each focusing
on different parts of the input sequence, thereby capturing a richer representation of the
input data. Each Transformer Encoder layer includes a feed-forward network applied to
each position separately and identically. Since the order of seven features was irrelevant
to grading results, the positional encoding in Transformer Encoder was removed in this
study. This adjustment allows the model to focus on the key features itself, adapting to the
disorder of features.
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Figure 1. (a) Construction of Transformer Encoder and its self-attention. (b) UNet construction for
petal segmentation.

3.3. UNet Architecture

The chaotic and diverse backgrounds in images from orchid trading website necessi-
tated UNet to segment the petals. UNet has a symmetrical U-shaped architecture, including
a contraction path (encoder) and an expansion path (decoder), as shown in Figure 1b.
The encoder is a typical Convolutional Network architecture, consisting of repeated ap-
plication of two 3 × 3 convolutions (each followed by a ReLu activation), and a 2 × 2 max
pooling operation with stride of 2 for down-sampling. At each down-sampling step, the
number of feature channels was doubled, enhancing the network’s capacity to capture
high-level semantic information at multiple scales. The decoder inversely mirrors the
encoder, employing up-sampling operations that increase the resolution of the output.
Each step in the expansive path involved up-sampling of the feature map, followed by
a 2 × 2 up-convolution that halves the number of feature channels, a concatenation with
the correspondingly cropped feature map from the contraction path, and two 3 × 3 convo-
lutions, each followed by a ReLu. This process recovered spatial information lost during
down-sampling, enabling precise localization for segmentation tasks. UNet used jump
connections to feed the feature map directly from the encoder to the decoder. These connec-
tions helped to recover spatial context lost during down-sampling, which is essential for
accurate pixel classification [19].

3.4. Model Architecture Design

The multi-modal Transformers for Rchb. f. quality grading was developed, which in-
cludes 1 input embedding layer, 1 UNet, 1 ViT, N Transformer Encoder layers, 1 subsequent
pooling layer, 1 linear layer, and 1 Softmax layer. The input embedding layer transformed
each feature indices into a dense vector representation. This enabled the model to capture
the semantics of features within a continuous numerical vector space, while also placing the
features in a learnable embedding space, providing more accurate inputs for subsequent
operations. Subsequently, the dense vectors containing feature indices information are
element-wise multiplied with the feature values through padding and dot product oper-
ations. Since missing feature values have been replaced with padding value 0 in feature
values array, the padding value canceled out the corresponding missing feature indices by
dot product operation. Through this novel design, the model can precisely learn both the
existence of input features and the feature values.

UNet was used to perform semantic segmentation on Rchb. f. images. Dot product
operation combined the average RGB value of UNet-segmented petal images with the
input embedded feature indices and the corresponding feature values, so that the model un-
derstood color information. ViT acted as the primary feature extractor for UNet-segmented
petal images, producing a rich feature vector that encapsulates the global visual infor-
mation of orchid petal. The vector concatenated with the output from the previous dot
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product operation of the embedded feature indices and corresponding values. Then, the
concatenated features were input into Transformer Encoder and processed through self-
attention. The Transformer Encoder’s layer needs to be deepened to improve the network’s
ability to learn from the training set, tentatively to N layers. A pooling operation averaged
the output from Transformer Encoder, reducing the data’s dimensionality while retaining
critical information. The pooled output was then fed into a linear layer and mapped to a
dimension consistent with the number of orchid levels. A Softmax layer converts these
linear outputs into probabilities, each reflecting the likelihood that an orchid belongs to a
particular quality grade. Finally, the architecture of multi-modal Transformers for Rchb. f.
quality grading was constructed, as shown in Figure 2.

Unet

ViT

Petal RGB

010

Petal type

Narcissus
（2）

Plum
（1）

Lotus
（0）

Seedlings
number

(8)

Bud 
number

(7)

Leaves
number
（6）

Leaves
height
（5）

Widest 
leaf
（4）

Longest 
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（3）

3NULL6NULL2.48.0

Orchid Feature Indices

Feature Indices Padding

Input Embedding

00362.48.0010

Orchid Feature Values

998643210 Feature Value Padding

.Transformer Encoder

Pooling

Output Probabilities of 7 grade

N×

Linear

Softmax
Concatenation Operation

Dot product Operation

Feature Value 

Missing Feature 

Feature Name /
Corresponding Indices

Figure 2. Architecture of multi-modal Transformers for Rchb. f. quality grading. Red numbers 9 and
0 are padding values of orchid feature indices and orchid feature values, respectively.

3.5. SHAP Algorithm for Feature Importance Calculation

The SHAP algorithm can output the quantifiable importance of distinct features in or-
chid quality grading, facilitating the establishment of a standardized, data-driven paradigm
for orchid assessment. This enhanced the reliability, transparency, and explainability of
deep learning models. SHAP is grounded in the concept of game theory, particularly
Shapley values, a method for assigning payouts to players depending on their contribution
to the total payout. In the realm of machine learning, SHAP values interpret the prediction
of an instance by computing the contribution of each feature to the prediction. The SHAP
value is the average marginal contribution of a feature value across all possible combina-
tions of features [20]. The core calculation process that encapsulated the computation of
SHAP values for the prediction model f based on a feature set x, as shown in Figure 3. The
formula of SHAP algorithm was given by

v(S ∪ {j}) =
∫

f
(

x(i)S∪{j} ∪ XC\j

)
dPXC\j

−E[ f (X)], C = F\S (2)

v(S) =
∫

f
(

x(i)S ∪ XC

)
dPXC −E[ f (X)] (3)

ϕ
(i)
j = ∑

S⊆F\{j}

|S|!(|F| − |S| − 1)!
p!

[v(S ∪ {j})− v(S)], ϕj =
1
N

N

∑
i=1

ϕ
(i)
j (4)
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where ϕ
(i)
j is the SHAP value for feature j, F is the set of all features, S is a subset of features

excluding j, |S| is the number of features in subset S, |F| is the total number of features, and
f
(

x(i)S ∪ XC

)
is the prediction model’s output given the features in S. f

(
x(i)S∪{j} ∪ XC\j

)
is

the output of model when feature i is added to S [20]. In this study, by computing and
averaging SHAP values for each feature across all samples, 7 features were ranked based on
their importance in determining Rchb. f. grades, and the output of model was explainable.
This ranking mined the key features affecting model grading decisions, providing valuable
information for growers and consumers.
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Figure 3. Computing process of SHAP algorithm for explainable features representation.

4. Results and Discussion
4.1. Combination of Image and Text Basically Achieved Quality Grading

Multiple regular expression matching patterns were designed for each feature based
on all of the possible formats in which each feature could appear in the descriptive text,
obtaining a value for each feature present in each sample. Numerical features extracted from
the textual data were solely utilized to train the model (Experiment (Exp) 1, Figure 4a). The
influence of the layer number of the Transformer Encoder was studied (insert of Figure 4a).
As the layer number increased, the accuracy of test set generally increased first, and
reached the maximum (59.36%) at three layers, then sharply fell. Therefore, the structure
of Transformer Encoder was optimized with three layers. Due to the prevalent features
missing in most samples within the orchid dataset, the feature matrix exhibited significant
sparsity, with most elements being empty [21]. A few non-zero elements cannot sufficiently
represent the grading pattern of orchids. The sparsity led to the model overfitting to limited
available and frequently occurring features, resulting in poor generalization ability [22].
The subjectivity of sellers or different grading standards contributed to inconsistency in
the dataset. Rchb. f. with similar grades often had vastly different numerical features.
It is difficult for the model to stably learn quality grading patterns from a dataset [23].
After 224 epochs, peak accuracies of 63.02% and 59.36% on validation set and test set were
achieved, respectively (Figure 4b).



Appl. Sci. 2024, 14, 10157 8 of 13

010

Petal type

Narcissus
（2）

Plum
（1）

Lotus
（0）

Seedlings
number

(8)

Bud 
number

(7)

Leaves
number
（6）

Leaves
height
（5）

Widest 
leaf
（4）

Longest 
leaf

（3）

3NULL6NULL2.48.0

Orchid Feature Indices

Feature Indices Padding

Input Embedding

.Transformer Encoder3×

Feature Transformation 

Output Probabilities
of 7 Grade

00362.48.0010

Orchid Feature Values

998643210 Feature Value Padding

Feature Value 

Missing Feature 

Feature Name /
Corresponding Indices

(a)

Accuracy of test set = 59.36%

(b)

(c)

Figure 4. (a) Illustration of the model architecture with numerical features extracted from textual
data and accuracy of the model in the test set under different numbers of Transformer Encoder layers
(insert). (b) The value curves of Cross Entropy Cost and accuracy of the model. (c) Radar chart of
Feature importance based on SHAP values.

SHAP analysis was integrated to quantify the importance of seven orchid numerical
features based on their contribution to the model’s grading decisions. The analysis revealed
that ‘Leaf number’ had the most significant impact on the model, whereas ‘Bud Number’
had the least. However, the SHAP values for all seven features were closely aligned,
indicating a challenge for the model in distinguishing the differential impact of each feature
on grading outcomes, as depicted in Figure 4c.

To address the limitations brought by numerical features extracted from textual data,
visual datasets were incorporated into dataset. UNet was utilized to segment the petals
from orchid images. After manually annotating all orchid sample images and conducting
42 epochs, the test set achieved a maximum mIOU of 89.16%. The average RGB values
were computed from the ith segmented petal images by averaging the pixel values across
the red, green, and blue channels, defined as

Average_RGBi =

(
1
Ni

Ni

∑
j=1

Rj,
1
N

Ni

∑
j=1

Gj,
1
N

Ni

∑
j=1

Bj

)
(5)

where Rj, Gj, Bj are the red, green, and blue pixel values of the segmented petals, respec-
tively, and Ni is the total number of pixels of the ith image in the segmented area.

Dot product operation between Average_RGBi and numerical features extracted from
textual data were integrated (Figure 5a). The model was then retrained, resulting in
a significant performance improvement. The peak accuracy of validation set reached
84.92%, and the test set’s accuracy improved to 81.69% (Figure 5b). Color carries the
health, maturity, and rarity of orchids [24,25]. The RGB values of color introduced a new
dimension of visual features for orchids, enhancing the model’s capability to detect subtle
quality variations. Moreover, the continuity and density of RGB information reduced data
sparsity and increased signal stability [26], providing a more accurate foundation for the
model’s decisions. By integrating RGB with textual features, the model initially gained
the advantage of multi-modal learning, establishing deeper correlations between visual
and textual levels, thereby comprehensively understanding the characteristics of orchids.
Subsequent SHAP analysis revealed a new impact of features on the model’s predictions.
‘Petal type’ emerged as the most influential feature. The disparity in SHAP values among
the seven features became pronounced, indicating that the integration of petal color and
textual data made the model preliminarily distinguish the importance of different features
(Exp 2, Figure 5c).
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Figure 5. (a) Illustration of model architecture with UNet and numerical features extracted from
textual data. (b) The value curves of Cross Entropy Cost and accuracy of the model. (c) Radar chart
of feature importance based on SHAP values.

4.2. ViT and Global Fine-Grained Features Achieved Explainable Features Representation

Petal color and textual information alone are not enough to distinguish the value of
different qualities of orchids. The incorporation of ViT was crucial for extracting global
fine-grained features from orchid petals, such as shape and texture of petals. The feature
vector was concatenation with the output from the previous dot product operation of the
embedded feature indices and corresponding values, as shown in Exp 3 in (Figure 6a).
The accuracy of validation set soared to 93.39% after 39 epochs, while the test set accuracy
reached 91.86% (Figure 6b). The improvement underscores the efficacy of ViT in discerning
subtle patterns in the petal images that were not captured by color information alone [27].
By focusing on all locations and taking their weighted average to compute the response
at a given location in image sequence, self-attention within ViT allowed the model to
selectively focus on different parts of the petal images and analyzed the spatial hierarchical
interrelations among petal features [28]. SHAP analysis post-ViT integration revealed that
‘Seeding number’ had the least impact on the model’s predictions, indicating a shift in
feature importance hierarchy (Exp 3 in Figure 6d). This shift emphasized the model’s
capacity to prioritize the most informative visual and textual cues for grading, highlighting
ViT’s nuanced understanding of Rchb. f. quality.

Unet

Orchid Feature Indices

Orchid Feature Names
& Values

Padding

Input Embedding

Orchid Feature Values

.Transformer Encoder3×

Feature Transformation 

Output Probabilities of 7 Grade

ViT
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(b)(a)

Exp 4

Exp 3
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(c)

Accuracy of test set
= 91.86%

Accuracy of test set
= 93.13%

Epoch Epoch
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Figure 6. (a) Illustration of model architecture with UNet, ViT, and numerical features extracted from
textual data (Exp 3) and concatenation operation for connecting ViT’s output to Transformer Encoder
(Exp 4). The value curves of Cross Entropy Cost and accuracy of (b) Exp 3 and (c) Exp 4. (d) Radar
chart of feature importance based on SHAP values.
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4.3. Concatenation Replaced Dot Production Reflecting the Relationship Between Key Features and
Value Adequately

The dot product in feature integration reduces the dimensionality of the output of
ViT. Since the dot product is highly sensitive to the scale of the feature values, it can also
merge multiple vectors into a scalar or a shorter vector, and the values with opposite
signs will be canceled out, resulting in information loss [29,30]. The transformation of the
integration strategy of feature vectors refined the model architecture. The dot product
operation between ViT’s output and previous dot product operation result was deprecated,
and optimized to concatenation operation, as shown in Exp 4 in (Figure 6a). The accuracy
of validation set and test set has been further improved to 95.19% and 93.13%, respectively
(Figure 6c). The concatenation operation preserved original information contained in the
global fine-grained petal features of ViT, compensating for the loss caused by the dot
product operation [31]. The output of the concatenation operation provided an optimal
combined input to Transformer Encoder adaptively, thus addressing the shortcomings
of fixed integration of the dot product operation [32], realizing the organic fusion of the
multi-modal features. Therefore, the performance of the grade model reached its optimal
level. Exp 4 in (Figure 6d) displayed the final SHAP value sorting, determined by the orchid
quality grading model. Compared with the dot product operation, the feature importance
sorting of the concatenation operation was unchanged, but the difference of seven SHAP
values were more significant. This transformation showed that concatenation operation
not only improved model’s accuracy, but also further optimized its ability to assess the
importance of features.

To verify the performance of ViT in image encoding, both HE-CNN [9] and CNN [8]
from related works replaced ViT as image encoders for global fine-grained orchid features,
and the results are shown in Table 3. It can be observed that the performance of HE-CNN
and CNN is inferior to ViT for both the validation and test sets.

Table 3. Accuracy’s comparison of development set and test set with HE-CNN, CNN and ViT.

Encoder Input
Accuracy of Validation Set Accuracy of Test Set

HE-CNN CNN ViT HE-CNN CNN ViT

Numerical features
⊗ RGB ⊕ global feature from

HE-CNN, CNN or ViT
81.22% 74.46% 94.19% 76.58% 70.63% 93.13%

CNN gradually extracts local features through convolutional layers. Although multi-
ple layers can be stacked to capture a larger receptive field, the inherent local convolution
operations may limit its ability to effectively capture global dependencies. HE-CNN com-
bines a global prediction network (GPN) for global feature extraction and a local prediction
network (LPN) for local feature extraction, aiming to capture both global and local infor-
mation. However, as it is still based on the CNN architecture, it remains constrained by
the locality of convolution operations. In contrast, ViT can directly capture complex global
information of the entire image by self-attention without relying on local convolutions.
Therefore, ViT is more suitable for extracting images such as Rchb. f. that rely on global
fine-grained features. Combined with text features, the model can better understand the
relationship between Rchb. f. features and value, thereby accurately establishing a digital
indicator system for Rchb. f. quality evaluation.

The performance of Transformer Encoder was further verified against existing com-
monly used feature encoders, detailed in Table 4. Initially, the Transformer Encoder
employed for processing the combined features of orchids was replaced with the VQ-VAE
Encoder. For the #1 training, the performance indicated minor decline from Transformer-
based model. However, the #2 and #3 training showed a noticeable performance decline
compared to the Transformer Encoder. VQ-VAE Encoder created a static, discrete codebook
representation of the input, which limited its flexibility in capturing the nuanced variations
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in orchid features [33]. The VQ-VAE Encoder is used to generate compact, discrete represen-
tations, only for datasets with well-defined and consistent patterns [34,35]. However, the
Rchb. f. dataset exhibited significant feature sparsity and inconsistency caused by missing
values, and is not an ideal input for the VQ-VAE Encoder. The Transformer Encoder was
then replaced with C-VAE Encoder. Three identical trainings were performed, resulting in
a further performance decrease compared to both Transformer Encoder and VQ-VAE En-
coder. The conditional generation of C-VAE is designed to generate outputs based on fixed
conditions, which cannot capture the full range of variability and nuances of orchids [36,37].
Additionally, the variational method introduced variability while processing missing data
based on the probability framework [38], leading to poor performance in the classification
task. Conversely, the Transformer Encoder can dynamically focus on important features
through self-attention spontaneously [39], rather than static codebook and fixed conditions
generation, providing adaptability and good performance that is not achieved by rigid
structures of VQ-VAE Encoder and C-VAE Encoder, and becoming an excellent choice for
orchid quality grading model.

Table 4. Accuracy comparison of validation set and test set with VQ-VAE Encoder, C-VAE Encoder,
and Transformer Encoder

Training
ID Encoder Input

Accuracy of Validation Set Accuracy of Test Set

VQ-VAE
Encoder

C-VAE
Encoder

Transformer
Encoder

VQ-VAE
Encoder

C-VAE
Encoder

Transformer
Encoder

#1 Numerical features 57.21% 51.36% 63.02% 52.56% 48.71% 59.36%

#2
Numerical features

⊗ RGB 75.67% 71.32% 84.92% 72.81% 69.10% 81.69%

#3
Numerical features
⊗ RGB ⊕ global
feature from ViT

85.36% 81.29% 94.19% 82.48% 77.88% 93.13%

In summary, through the integration of Transformer Encoder’s self-attention and the
combination of global fine-grained features, RGB and text features, this model achieved
accurate grading of Rchb. f., clarified the impact mechanism of key features on its quality
and value, which provided a scientific reference for the online trading between orchid
growers and hobbyists.

5. Conclusions

A multi-modal Transformer for Rchb. f. quality grading combined with explainable
features representation was firstly developed. A dataset of 4556 Rchb. f. samples was
obtained from the Orchid Trading Website. Seven key features were extracted through
regular expression matching. Four strategies were proposed for excellent accuracy. Firstly,
the Transformer Encoder adapted missing features, and its self-attention dynamically pri-
oritized important features. The dot product input feature’s existence and feature value
into the Transformer Encoder simultaneously. Secondly, UNet was employed for petal
segmentation, integrating the average RGB of petals into the Transformer Encoder, ad-
dressing data sparsity and overfitting in textual data, and enabling the model to grade the
orchid quality by color. Thirdly, ViT was utilized to transform petal images into global
fine-grained features, which were combined with color extracted from UNet and numerical
features. Finally, the concatenation operation helped the model to understand the relation-
ship between key features and values adequately, and an excellent accuracy of 93.13% was
achieved. Furthermore, SHAP analysis algorithm ranked feature importance and gave the
model explainability for grading results. Therefore, this multi-modal Transformer exhibited
its advantage of explainable features representation affecting the Rchb. f. value. This study
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suggested an effective way to establish a reliable digital index system for agricultural
product quality evaluation without referred standards.
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