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Abstract: The article highlights the importance of analytical computational models of torsionally
oscillating systems and their simulation for estimating the lowest resonance frequencies. It also
identifies the pitfalls of the application of these models in terms of the accuracy of their outputs.
The aim of the paper is to control the dangerous vibration of a mechanical system actuator using a
pneumatic elastic coupling using different approaches such as analytical calculations, experimental
measurement results, and simulation models. Based on the known mechanical properties of the
laboratory system, its dynamic model in the form of a twelve-mass chain torsionally oscillating
mechanical system is developed. Subsequently, the model is reduced to a two-mass system using
the method of partial frequencies according to Rivin. The total load torque of the piston compressor
under fault-free and fault conditions is simulated to obtain the amplitudes and phases of the harmonic
components of the dynamic torque. After calculating the natural frequency and the natural shape
of the oscillation, the Campbell diagram is processed to determine the critical revolutions. There is
a pneumatic flexible coupling between the rotating masses, which changes the dynamic torsional
stiffness. The dynamic torque curves transmitted by the coupling are compared with different
dynamic torsional stiffnesses during steady-state operation and one cylinder failure. The monitored
values are the position of the critical revolutions, the natural frequency, the natural shape of the
oscillation, and the RMS of the dynamic load torque. The experimental model is verified by the
simulation model. The accuracy of the developed simulation model with the experimental data are
apparently very good (even more than 99% of the critical revolutions value obtained by calculation);
however, it depends on the dynamic stiffness of the coupling. In this study, a detailed, comprehensive
approach combining analytical procedures with simulation models is presented. Experimental
data are verified with simulation results, which show a good agreement in the case of 700 kPa
coupling pressure. The inaccuracy of some of the experiments (at 300 and 500 kPa pressures) is
due to the interaction of the coupling’s apparent stiffness and the level of the damped vibration
energy in the coupling, which is manifested by its different heating. Based on further experiments,
a solution to these problems will be proposed by introducing this phenomenon effectively into the
simulation model.

Keywords: natural frequency; mode shape; piston machines; torsional vibration; pneumatic
flexible coupling
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1. Introduction

Nowadays, ever growing emphasis is being placed on low levels of vibration and
noise generated during the operation of machinery and equipment and transmitted to
the surrounding area. They represent a detrimental factor in terms of environmental and
general operational safety [1]. Numerical simulation tools such as Fluent software and k–ϵ
turbulence models are currently used to assess and control dangerous factors (including
vibration) in the workplace [2].

Vibrations have a negative effect on the operation of mechanical systems and on
the safety of operation—their reliability and also their service life are reduced [3–5]. It is
generally known that various types of sources are involved in the generation of vibrations in
the structural parts of the machine, mainly unbalance, misalignment, mechanical clearance
of the bearings, resonance of the structure, bent shaft, excessive wear of bearings, damage
to the gearing [6,7], lubrication [8–10], etc. These negative phenomena and their causes
can be identified during the operation of the equipment by measuring the methods of
technical diagnostics and monitoring [11–13]. As a result of inertial forces and variable
load torque of individual machines and equipment, torsional oscillations occur [14–17].
Torsional vibration can be dangerous, depending on the level for a particular mechanical
system and the place of its occurrence. In torsionally oscillating mechanical systems (mainly
mechanical systems with internal combustion engines [18,19], piston compressors, piston
pumps, and fans), which include flexible members, it is possible to reduce the dangerous
torsional oscillation to an acceptable level by suitable adaptation of the dynamic properties
(i.e., stiffness [20–24], damping coefficient [25], and mass moment of inertia [26]) of these
members to the dynamics of the system [27,28]. However, this may not only apply to
elastic members but also to other members in the mechanical system. Recent developments
include so-called active vibration isolation, where an additional torque is generated in real
time directly at the driving electric motor or a special active damper [29–32]. Dynamic
properties largely affect the operation of the mechanical system, its lifetime, and reliability;
therefore, to perform the above-mentioned procedure, the torsionally oscillating mechanical
system needs to be appropriately tuned in advance [33]. The tuning of any mechanical
system is most often verified on the basis of the results of the so-called Campbell diagram.
It is used to determine whether resonance will occur [34]. The research of vibration
problems in mechanical systems is not a new phenomenon in the field of engineering
sciences. Vibrations represent phenomena occurring in every mechanical system since
its manufacture. They are negative phenomena that interfere with the smooth operation
of mechanical systems [35] and act as a threatening and risk factor. Therefore, it is both
necessary and required to look for ways of their minimization [36,37].

Based on this fact, the main objective of this paper is to control the dangerous vibra-
tions of the drive of a mechanical system by applying a pneumatic flexible coupling based
on dynamic simulation models verified by experimental measurements. The main objective
of the paper can be achieved by fulfilling the partial objectives, namely: selection of the
comparison model, preparation of the mechanical system in the laboratory for experiments,
obtaining input data for the model, calculation of natural frequencies and mode shapes, dy-
namic analysis, creation of the simulation model, realization of the experiments, verification
of the model, and design of recommendations for control of dangerous vibrations.

2. Materials and Methods

With the development of new information and simulation technologies, sensors, and
more and more methods are being used for the elimination of dangerous vibrations. Current
approaches based on theoretical models using parameter-driven mathematical expressions
to describe the mechanical system or monitoring-based data acquisition are no longer
sufficient to ensure their reliability. Increasingly, these methods are being replaced by new
techniques and software such as simulation models (e.g., digital twins) [38], or machine
learning approaches [39]. Machine learning algorithms are difficult to interpret, and a large
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volume and quality of data are required [40]. By integrating analytical models and online
data with each other, digital twins will enable real-time control of mechanical systems.

2.1. Research Methodology

The design of the research methodology presented in this paper is based on the inte-
gration of analytical models and simulation models. To calculate the dynamic properties of
aggregates, it is necessary to replace the aggregate with a suitable model of the mechani-
cal system describing to some extent the real system before constructing the differential
equations of motion. When calculating the dynamic phenomena of torsionally oscillating
mechanical systems, the subject of the calculation is mainly the stress on the flexible cou-
plings, as the weakest member of the mechanical system [41]. Here, it is appropriate to
simplify the complex mechanical system as much as possible, but only enough to determine
the stresses on the couplings with sufficient accuracy.

In order to achieve the research objective of controlling the dangerous vibration of the
drive of the mechanical system by means of a flexible coupling based on simulation and
experimental measurements, the following methodology was proposed (Figure 1).
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In the reduction in masses in mechanical systems, the method of partial frequencies
according to Rivin [42] was used. The mechanical system was reduced to a two-mass
system. After calculating the natural frequency and the natural shape of the oscillation,
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the Campbell diagram was processed to determine the critical revolutions. The dynamic
calculation methodology of the mechanical system was applied in our research.

The dynamic analysis was carried out using a MATLAB program, which outputs the
values of harmonic components of the torque transmitted by the flexible coupling. The
output of the paper is the results of experimental verification of the simulation model of
the mechanical system with variable torque operating at constant load and its comparison
with the mathematical model.

2.2. Description of the Mechanical System

The subject of the research is a laboratory mechanical system driving a compressor by
an electric motor (Figure 2). It is a mechanical system operating with variable torque at
constant load. Between the rotating masses there is a pneumatic flexible coupling whose
dynamic torsional stiffness can be varied during operation by changing the air pressure [27].
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Figure 2. Experimental model of a mechanical system: 1—electric motor, 2—gearbox, 3—torque
sensor, 4—bearing housing, 5—pneumatic flexible coupling, 6—three-cylinder piston compressor,
7—rotation supply.

The revolutions of the electric motor (1) are continuously vector controlled by a
frequency converter. The electric motor drives a three-cylinder ORLIK 3JSK-75 piston
compressor (6) through a 1:1 gearbox (2) and a 4-1/70-T-C type pneumatic flexible coupling
(5). The compressor is mounted on a rubber layer and has no flywheel; therefore, its impact
on dynamics is higher. The compressed air from the compressor flows into an air pressure
vessel with a capacity of 300 L. The compressed air is fed to the pneumatic coupling via
a rotation supply (7). The magnitude of the torsional vibrations is measured by a torque
sensor type 7934 MOM KALIBERGYAR (3). Table 1 describes the technical parameters of
some members of the mechanical system.

The air pressure in the compression chamber of the pneumatic flexible coupling is
measured by a pressure sensor. The signals from both sensors are amplified and processed
by a universal eight-channel measuring device MX840 from the manufacturer HBM, and
the data are subsequently sent to a PC (Figure 3) [43]. The operating revolutions of the
mechanical system are nP = 600 min−1.

Sensors used:

1. Torque sensor type 7934, manufacturer MOM KALIBERGYÁR, measuring range
0–500 N·m, accuracy of the torque sensor is 0.1% of its measuring range, i.e., 0.5%
(combined failure—nonlinearity, hysteresis, and reproducibility).

2. pressure sensor type MBS 3000, manufacturer Danfoss, overpressure measurement
range 0–1 MPa, accuracy of the MBS 3000 sensor with metal diaphragm is 0.5%
of its measurement range, i.e., 5 kPa (combined failure—non-linearity, hysteresis,
and reproducibility).
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Table 1. Basic parameters of some members of the mechanical system.

Elements of the Mechanical System Parameters

Three-phase asynchronous motor
1LE1001-1DB234AF4-Z

SIEMENS
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3. Results and Discussion
3.1. Determination of the Operating State of the System in Terms of Resonance

The dynamic model (Figure 4) was created based on the known mechanical parameters
of the compressor drive system. By means of the model, the values of natural frequencies
and mode shapes were calculated as well as the Campbell diagram devised.
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The individual elements for the dynamic model are listed in Table 2.

Table 2. Description of parameters of the system shown on Figure 4.

Parameter Meaning

IAM Mass moment of inertia of the electric motor
IP1 Mass moment of inertia of the flange behind the motor

IO1, IO2, IO3 Mass moment of inertia of the gear
IP2 Mass moment of inertia of the flange behind the gearbox

ISKM Mass moment of inertia of the torque sensor
IP3 Mass moment of inertia of the flange behind the torque sensor
ILT Mass moment of inertia of the bearing housing
IP4 Mass moment of inertia of the flange in front of the pneumatic coupling
ISA Mass moment of inertia of the flange of the pneumatic coupling
ISB Mass moment of inertia of the pneumatic coupling flange
IP5 Mass moment of inertia of the flange behind the flexible coupling
IPK Mass moment of inertia of the piston compressor

kH1, kH2, Torsional stiffness of shafts between electric motor and gearbox
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Table 2. Cont.

Parameter Meaning

kH3, kH4, kH5 Torsional stiffness of shafts in the gearbox
kH6 Torsional stiffness of the shaft between IO3 and IP2
kH7 Torsional stiffness of the shaft between IP2 and ISKM
kH8 Torsional stiffness of the shaft between ISKMand IP3
kH9 Torsional stiffness of the shaft between IP3 and ILT
kH10 Torsional stiffness of the shaft between ILT and IP4
kH11 Torsional stiffness of the shaft between IP4 and ISA

kS Torsional stiffness of the pneumatic coupling
kH12 Torsional stiffness of the shaft between ISB and IP5
kH13 Torsional stiffness of the shaft between IP5 and IPK
bS Pneumatic coupling damping coefficient

MAM Electric motor torque
MPK Load torque of the piston compressor

The gear ratios between the shafts of the system are calculated as follows:

i1-2 =
n1

n2
, i2-3 =

n2

n3
, i1-3 =

n1

n3
. (1)

Assuming that the shaft stiffnesses kH3, kH4, and kH5 (Figure 4) show a higher value
than the other stiffnesses and the input shaft revolutions of the gearbox are equal to the
output shaft revolutions n1 = n3, a reduction as shown in Table 3 could be done. This
reduction is applied to the high-revolution shaft with stiffness kH1.

Table 3. Reduction in mass moments of inertia and torsional stiffness on the high-revolution shaft.

Mass Moments of Inertia Element Torsional Stiffnesses

I1 = IAM I7 = ILT
i2
1-3

k1 = kH1 k7 = kH10
i2
1-3

I2 = IP1 I8 = IP4
i2
1-3

k2 = kH2 k8 = kH11
i2
1-3

I3 = 2·IO1 +
2·IO2
i2
1-2

+ 2·IO3
i2
1-3

I9 = ISA
i2
1-3

k3 = kH6
i2
1-3

k9 = kS
i2
1-3

I4 = IP2
i2
1-3

I10 = ISB
i2
1-3

k4 = kH7
i2
1-3

k10 = kH12
i2
1-3

I5 = ISKM
i2
1-3

I11 = IP5
i2
1-3

k5 = kH8
i2
1-3

k11 = kH13
i2
1-3

I6 = IP3
i2
1-3

I12 = IPK
i2
1-3

k6 = kH9
i2
1-3

—-

A dynamic model with twelve-mass discs after the first reduction is shown in Figure 5.
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Figure 5. A twelve-mass chain mechanical system.

Using the method of partial frequencies [42], this twelve-mass system was reduced to
a two-mass system. The resulting values after reduction by this method usually show an
accuracy of 3–5% [42,44].

The dynamical model of this reduced two-mass mechanical system is shown in Figure 6.
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Figure 6. Two-mass reduced mechanical system.

The analysis of torsional vibration of a mechanical system is based on a system of
differential equations of motion. The equations describing a two-mass reduced mechanical
system without damping (Figure 6) have the following form:

I∗1 ·
..
φ1 + k∗·(φ1 − φ2) = MAM, (2)

−I∗2 ·
..
φ2 + k∗·(φ1 − φ2) = MPK. (3)

The variable load torque of a piston compressor is given by:

MPK = MNPK + ∑∞
i=1 MiPK·cos(i·ωPK·t + γiPK). (4)

The mode shape of the oscillation at coupling pressure is shown in Figure 7.
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Figure 7. Mode shape of the strain curve for Ω0 = 201.431 rad·s−1.

A Campbell diagram is an interference diagram that identifies possible matches
between the expected excitation frequencies and the calculated natural torsional frequencies
over the operating speed range. Each ascending line on the interference diagram represents
a single mechanical or electrical excitation frequency or harmonic; when they intersect
with the torsional natural frequency (horizontal line), torsional resonance occurs. The
intersection of those lines indicates a possible torsional resonance condition. For some
systems, an interference diagram may be all that is needed to show that torsional resonances
will not be excited [45,46].

Figure 8 shows the Campbell diagram for a system operating at coupling pressure
700 kPa with the following parameters marked in it: the operating rotational frequency
nP = 600 min−1, the critical revolutions from the principal harmonic element nK3 = 641.2 min−1

and the natural rotational frequency N0 = 1923.526 min−1.
The detuning coefficient for the i-th harmonic component is defined by the formula:

ηi =
n·i
N0

. (5)

Table 4 gives the detuning coefficients of the harmonic components operating rota-
tional frequency nP = 600 min−1. Since this is a three-cylinder piston compressor, the main
harmonic components will be integer multiples of the third harmonic component.
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Table 4. The detuning coefficient of the selected harmonic components at coupling pressure 700 kPa.

i 1 2 3 4 5 6

ηi 0.312 0.624 0.936 1.248 1.560 1.872

These will always appear during the load torque; the other harmonic components are
the so-called secondary harmonic components, which will only appear if the compressor
cylinders do not operate evenly [45–48].

According to the literature [27], the system operates in the resonance region if:

0.8 < ηi < 1.2. (6)

From the results shown in Table 4, we can say that the system at coupling pressure 700
kPa operates in the resonance region.

3.2. Dynamic Calculation of a Mechanical System Under Forced Oscillation

To calculate the excitation of the forced oscillation, we based it on the aforementioned
compressor parameters, where we first determined the p-V diagram of the operating cycle
of a single cylinder of a three-cylinder piston compressor, which is contained in Figure 9.

Figure 10 is already a graphical representation of the total load torque MC and its
mean load torque MS at the crankshaft from all three cylinders of the compressor.

In this case, it is a fault-free condition of the piston compressor. The amplitudes and
phases of the harmonic components of the dynamic torque in the fault-free condition are
described in Table 5.
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Figure 10. The total load torque MC vs. the rotation angle of the crankshaft of the piston compressor
and its static component MS.

Table 5. Amplitudes and phases of harmonic components of the dynamic torque of the piston
compressor.

i MiPK [N·m] γiPK [rad] i MiPK [N·m] γiPK [rad]

1 0 0 7 0 0
2 0 0 8 0 0
3 40.381 3.804 9 3.658 4.818
4 0 0 10 0 0
5 0 0 11 0 0
6 1.394 1.286 12 1.233 1.976

3.3. Dynamic Calculation of the Mechanical System at Steady Compressor Operation

Figure 11 plots the calculated time waveform of the dynamic torque transmitted by
the coupling for the duration of one operating cycle (one crankshaft revolution) of a piston
compressor at its steady-state operation and operating revolutions nP = 600 min−1.

The hysteresis loop of the pneumatic flexible coupling (Figure 12) was plotted from
the time waveform (Figure 11).
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The amplitude of the dynamic load torque transmitted by the pneumatic coupling as
a function of revolutions is shown in Figure 13.
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Figure 13. Dynamic load torque transmitted by the flexible pneumatic coupling at pressure 700 kPa.

In order to compare the result of the effective value of the dynamic load torque
component of the RMS MDS simulation model with the experimental model, we modified
the MDS (Figure 13) to the RMS MDS (Figure 14).
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3.4. Simulation Model for Steady (Even) Compressor Operation

In technical practice, as already mentioned, machine failures often occur, such as
cylinders falling out of action. The following section is devoted to this issue. The failure
of one cylinder was simulated by setting its overpressure value at displacement against
atmospheric pressure to p = 0 Pa. Figure 15 shows the calculated waveform of the total
load torque MC and mean load torque MS at the compressor crankshaft.
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Figure 15. Total load torque MC depending on the angle of rotation of the α crankshaft when the
cylinder of the piston compressor is out of operation and its static component MS.

Table 6 gives the amplitudes and phases of the harmonic components of the load
torque with one cylinder out of operation.

Table 6. Amplitudes and phases of harmonic components of the dynamic torque of the piston
compressor with one cylinder out of operation.

i MiPK [N·m] γiPK [rad] i MiPK [N·m] γiPK [rad]

1 22.804 0.039 7 1.507 0.61
2 19.55 3.4 8 1.676 4.321
3 26.664 3.786 9 2.438 4.817
4 7.84 4.43 10 0.739 5.056
5 3.163 1.884 11 0.526 1.917
6 0.917 1.33 12 0.826 1.989

Figure 16 shows the time waveform of the dynamic load torque transmitted by the
pneumatic flexible coupling with one cylinder out of operation.
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The hysteresis loop of the pneumatic flexible coupling in Figure 17 was derived from
Figure 16.
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Figure 18 describes the waveform of the amplitude of the dynamic load torque trans-
mitted by the pneumatic flexible coupling with one cylinder out of operation as a function
of revolutions.
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Figure 19 shows the effective value of the dynamic component of the load torque RMS
MDS to compare with the experiment.
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For additional pressures in the elastic element of the coupling, the resulting waveforms
are given in Tables 7 and 8.

Table 7. Dynamic torque-time waveform MDS and hysteresis lop at pressure pS = 500 kPa in the
elastic element.

kDS = 1780 N·m·rad−1

Steady state
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Table 8. Cont.

Out of
operation
cylinder

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 27 
 

For additional pressures in the elastic element of the coupling, the resulting wave-
forms are given in Tables 7 and 8. 

Table 7. Dynamic torque-time waveform MDS and hysteresis lop at pressure pS = 500 kPa in the 
elastic element. 

 kDS = 1780 N·m·rad−1 

St
ea

dy
 s

ta
te

 

  

O
ut

 o
f o

pe
ra

tio
n 

cy
lin

de
r 

  

Table 8. Dynamic torque-time waveform MDS and hysteresis lop at pressure pS = 300 kPa in the 
elastic element. 

 kDS = 1360 N·m·rad−1 

St
ea

dy
 s

ta
te

 
  

O
ut

 o
f o

pe
ra

tio
n 

cy
lin

de
r 

  

3.5. Simulation of the Output Signals on the Coupling Using Fourier Transformation 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 27 
 

For additional pressures in the elastic element of the coupling, the resulting wave-
forms are given in Tables 7 and 8. 

Table 7. Dynamic torque-time waveform MDS and hysteresis lop at pressure pS = 500 kPa in the 
elastic element. 

 kDS = 1780 N·m·rad−1 

St
ea

dy
 s

ta
te

 

  

O
ut

 o
f o

pe
ra

tio
n 

cy
lin

de
r 

  

Table 8. Dynamic torque-time waveform MDS and hysteresis lop at pressure pS = 300 kPa in the 
elastic element. 

 kDS = 1360 N·m·rad−1 

St
ea

dy
 s

ta
te

 
  

O
ut

 o
f o

pe
ra

tio
n 

cy
lin

de
r 

  

3.5. Simulation of the Output Signals on the Coupling Using Fourier Transformation 
3.5. Simulation of the Output Signals on the Coupling Using Fourier Transformation

For the frequency analysis, a MATLAB simulation program was used to input the
amplitudes and phases of the harmonic components of the dynamic torque. The given
program also offers the possibility to choose filters (Hamming window and Hann window).
The flow and results of the MATLAB analysis for the dynamic torque on the flexible
coupling are shown in Figures 20 and 21.
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3.6. Verification of the Simulation Model Using Experimental Measurement

After the description of the mechanical system of the compressor drive and the dy-
namic calculations performed, a description of the experimental measurement follows to
determine the torsional vibration values in the mechanical system consisting of a three-
cylinder air compressor, driven by an electric motor using a pneumatic flexible coupling.

Measuring the Course of the Resonance Curve

The measurement was carried out with stead (even) cylinder operation and then using
a rejector so that one cylinder could be disabled by opening the compressor suction valve.
The calculation of the effective value of the dynamic component of the load torque RMS MD,
which is transmitted by the coupling, was the starting point for determining the magnitude
of torsional vibration. The formula for its calculation was

RMSMD =

√
1
N
·∑N

i=1(MDi)
2, (7)

where

MDi = Mi −
(

1
N
·∑N

i=1 Mi

)
, (8)

where Mi is the i-th signal sample.
The above result from this formula indicates that it was necessary to measure the

time course over time of the total load torque, from which the dynamic component MD
was filtered out. In the next calculation of RMS MD, a moving average was used. The
values were read after a steady state was reached. The measurement was carried out at
varying revolutions in the range from n = 105 min−1 to n = 1500 min−1, at a pressure in
the compression chamber of the pneumatic flexible coupling pS = 700 kPa, pS = 500 kPa
and pS = 300 kPa. The compressor output pressure is set to a constant value, pN = 500 kPa.
The time signal (Figure 3) load torque was recorded with a sampling rate of fV = 1200 Hz
(number of samples N = 2400) with steady (even) cylinder operation and then with one
compressor cylinder out of operation.

The Campbell diagram (Figure 22) for pressure coupling 700 kPa compiled from
the measured values also contains marked, predetermined operating revolutions and
critical revolutions from the principal harmonic. Based on the point of intersection of the
critical revolutions and the beam (harmonic component) on the diagram, it is possible
to determine the value of the rotational natural frequency N0 and calculate the natural
frequency f 0 and the angular natural frequency Ω0. From what is shown, it follows that
resonances at higher values of RMS MD occur at compressor revolutions of approximately
nK3 = 638 min−1. These are resonances from the main harmonic component of the torque
of the three-cylinder compressor i = 3. When the cylinder is out of operation, resonances
occur from both the main and the secondary components at critical s nK4 = 450 min−1,
nK3 = 660 min−1 a nK2 = 956 min−1.

From the measured values, the development of the static (central) load torque is
plotted (Figure 23).

Figure 24 shows the resonance curve, i.e., the RMS MD waveform depending on the
revolutions n of the mechanical system.

When the cylinder was out of operation (Figure 25), the value of the effective value of
the dynamic component of the load torque RMS MD decreased as compared to Figure 24,
but secondary harmonic components were manifested.

Shown below is the development of frequency analysis at revolutions n = 500 min−1

(Figures 26 and 27). The first representation describes the use of the Hamming window
when running evenly, and the second after one cylinder was out of operation.
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4. Comparison of Experimental and Simulation Models

The comparison of the experimental model in the laboratory with the simulation
model was mainly aimed at determining the position of the critical revolutions based
on the waveform of the effective value of the dynamic component of the RMS MD load
torque. The comparison of the experimental and simulation model results is shown in
Figures 28–33, where the waveforms of the effective values of the dynamic component
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of the load torque RMS MD as a function of the steady-state and dropped single cylinder
revolutions at pressures of 700, 500, and 300 kPa, respectively, are compared.
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Figure 30. Comparison of the characteristics at steady operation of a piston compressor—pressure in
the elastic element of the coupling pS = 500 kPa.
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Figure 33. Comparison of the characteristics at one cylinder out of operation of a piston compressor—
pressure in the elastic element of the coupling pS = 300 kPa.

Table 9 shows the values of the natural circular frequencies obtained from the solution
of the simulation model and the realization of the experimental measurements for the
steady-state operation at pressure pS = 700 kPa, pS = 500 kPa, and pS = 300 kPa in the elastic
element of the coupling.

Accuracy in terms of the meaning of correspondence between the calculated and
experimentally determined critical revolutions is determined as the ratio of experimentally
determined revolutions to the revolutions determined by calculation. The sign (+) in the
column indicates an increase, and the sign (−) indicates a decrease in the value of the critical
revolutions determined experimentally compared to the value of the critical revolutions
determined by calculation.
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Table 9. Comparison of simulation and experimental results.

Pressure in Coupling [kPa] Parameter Value [rad·s−1] Parameter Value [min−1] Accuracy [%]

700
Ω0SIM 201.431 nK3SIM 641 −0.47
Ω0EXP 200.434 nK3EXP 638

500
Ω0SIM 179.167 nK3SIM 570

5.26
Ω0EXP 188.496 nK3EXP 600

300
Ω0SIM 156.610 nK3SIM 498

10.44
Ω0EXP 172.788 nK3EXP 550

In general, the difference between the results can be caused by a number of different
factors and their combination:

• Incomplete information on the input parameters, i.e., torsional shaft stiffness and mass
moments of inertia.

• The method used to determine the natural frequencies and mode shapes of oscillations;
• Tooth clearance in the gearbox.
• The effect of frequency on the stiffness of the flexible coupling.
• Influence of the value of the mean torque and amplitude on the equivalent tor-

sional stiffness of the flexible coupling (non-linearity of the loading characteristic
of the coupling);

• Torsional vibration in the gearbox.
• Tongues clearance in individual flanges.
• Ambient temperature not included in the calculation.
• Temperature of elastic elements not included in the simulation model.
• Location of the torque meter.
• Insufficient heat dissipation from the piston compressor in operating mode.
• Maintaining and regulating constant pressure by a throttle valve at the outlet of the

pressure tank.
• Operating revolutions close to the resonance from the main harmonic component in

steady (even) operation.

Because the decrease in accuracy presented in Table 9 corresponds very well with the
decrease in coupling stiffness due to temperature, it can be stated that the main cause of
the decreasing agreement of the results is precisely this phenomenon. As can be seen, the
results differ from each other in the order of units of percent. It can also be stated that
the lower stiffness of the connection leads to higher torsional deflections of the oscillating
masses, which are manifested by its intense heating. It is therefore very important to
capture this aspect and include it in computational models.

5. Conclusions

The main focus of the research was vibrations, or torsional oscillations, often accompa-
nying the operation of mechanical systems. These disturbances, if not controlled, result
in machine unreliability in mechanical systems, compromising the safe operation of the
plant. Based on the general knowledge of vibration and the known parameters of a real lab-
oratory mechanical system, a simulation model was developed. The original twelve-mass
mechanical system was reduced to a two-mass system by the partial frequency method.
The MATLAB simulation program was used in the calculations and analyses.

The results obtained by calculation were experimentally verified by measurements on
a laboratory mechanical system. After comparing the calculated natural angular frequency
with the measured value, we can evaluate that the applied mathematical model is accurate
to 99.53% at 700 kPa coupling pressure.

In potential future research, it is possible to include the temperature value of the elastic
element of the coupling in the calculations and to determine more accurately the mass
moments of inertia of the individual members of the mechanical system.
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At the same time, it is planned to include in the simulation the occurrence of non-
equilibrium condensation in the compressor, taking into account the research results pre-
sented in publications [49–51].

The aim of our paper is to show the importance of analytical calculations in esti-
mating the natural frequencies and the corresponding mode shapes of oscillations in
engineering work.

A mathematical model for a torsionally oscillating mechanical system has been de-
veloped where the stiffness of the elastic coupling can be continuously varied. Thus, the
critical revolutions at different stiffnesses (pressures in the coupling) can be determined.

It was solved in steady state with harmonic excitation, amplitude, and phase over
resonance curves for the individual harmonic components, which were then summed.
We have simplified the multi-mass system to a two-mass system to analyze the effect of
oscillations on the elastic coupling. This is under the condition of accuracy, where the
frequencies differed from each other minimally.

Benefits of the simulation model:

• The mass reduction method used allows the use of a two-mass instead of a multi-mass
system, which greatly simplifies the calculations.

• We can calculate the critical revolutions as a function of coupling pressure quite
accurately. So, with a system operating with a range of operating revolutions, we can
avoid resonance without having to directly measure the torque; we just need to know
the revolutions, and we can determine the appropriate pressure accordingly.

• Characteristic depending on the ratio of the critical revolutions to the coupling
pressures.
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Abbreviations

I mass moment of inertia [kg·m2]
M load torque [N·m]
N0 rotational frequency [min−1]
N number of signal samples [-]
RMS MD effective value of the dynamic component of the load torque [N·m]
b damping coefficient [N·s·m−1]
f frequency [Hz]
i gear ratio, harmonic component, number of cylinders [-]
k torsional stiffness [N·m·rad−1]
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n RPM [min−1]
p pressure [kPa]
t time [s]
Ω0 natural frequency [rad·s−1]
γ phase shift [rad]
η detuning coefficient [-]
φ angle of torsion, amplitude of rotation [rad]
.
φ angular velocity [rad·s−1]
..
φ angular acceleration [rad·s−1]
ω angular frequency [rad·s−1]
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