Evaluating Motor Symptoms in Parkinson’s Disease Through Wearable Sensors: A Systematic Review of Digital Biomarkers
Abstract
:1. Introduction
Review Objectives
2. Background
2.1. Wearable Devices
2.2. Digital Biomarkers
3. Methods
3.1. Research Questions
- RQ-1
- What types of sensors and wearable devices are most commonly employed for monitoring and developing DB-MS-PD?
- RQ-2
- Are there specific digital biomarkers that are commonly measured or tracked using wearables in PD?
- RQ-3
- How reliable and accurate are the digital biomarkers captured by these wearables?
- RQ-4
- What are the main challenges or limitations associated with using wearables for capturing DB-MS-PD?
3.2. Search Strategy
3.3. Inclusion and Exclusion Criteria
- Papers without peer review, books, book chapters, or published as “letter”, “comments”, “perspective” “case reports”, “surveys” or “reviews”.
- Literature not written in English.
- Studies related to diseases other than PD.
- Studies that did not use any wearable devices or portable sensors for data acquisition.
- Studies showing the results of a challenge, competition or programme.
- Studies primarily focused on activities not related to motor symptoms in PD.
- Studies that do not include humans.
3.4. Data Extraction
- Identification of study data, including authors, title and citation.
- Type of test performed.
- Characteristics of the participants in the study.
- Type, number, and location of the wearable sensors and devices used for data acquisition.
- Objective of the study.
- End points.
4. Results
4.1. Systematic Review
4.2. Study Characteristics
4.3. Study Design
4.4. Participant Characteristics
4.5. Device, Sensor and Body Location
4.6. Aim
4.7. Extraction Methods
4.8. Endpoints
5. Discussion
5.1. Challenges
5.2. Limitations of This Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DB-MS-PD | Digital Biomarkers for Motor Symptoms of Parkinson’s Disease |
PD | Parkinson’s Disease |
PwPD | Patients with Parkinson’s Disease |
HC | Healthy Control |
ML | Machine Learning |
DL | Deep Learning |
AUC | Area Under the Curve |
MAE | Mean Absolute Value |
IMU | Inertial Measurement Unit |
VGRF | Vertical Ground Reaction Force |
TUG | Timed Up and Go |
MDS-UPDRS | Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale |
References
- Goetz, C.G. The history of Parkinson’s disease: Early clinical descriptions and neurological therapies. Cold Spring Harb. Perspect. Med. 2011, 1, a008862. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of Parkinson disease: A review. JAMA 2020, 323, 548. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Parkinson Disease. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/parkinson-disease (accessed on 18 March 2024).
- Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloem, B.R. The emerging evidence of the Parkinson pandemic. J. Parkinson’s Dis. 2018, 8, S3–S8. [Google Scholar] [CrossRef] [PubMed]
- Sveinbjornsdottir, S. The clinical symptoms of Parkinson’s disease. J. Neurochem. 2016, 139, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, K.R.; Healy, D.G.; Schapira, A.H. Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurol. 2006, 5, 235–245. [Google Scholar] [CrossRef]
- Tolosa, E.; Wenning, G.; Poewe, W. The diagnosis of Parkinson’s disease. Lancet Neurol. 2006, 5, 75–86. [Google Scholar] [CrossRef]
- Xia, R.; Mao, Z.H. Progression of motor symptoms in Parkinson’s disease. Neurosci. Bull. 2012, 28, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Yang, Y.; Zhang, L.; Zhang, Q.; Balbuena, L.; Ungvari, G.S.; Zang, Y.; Xiang, Y. Quality of life in Parkinson’s disease: A systematic review and meta-analysis of comparative studies. CNS Neurosci. Ther. 2020, 27, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef]
- Jankovic, J. The evolution of diagnosis in early Parkinson disease. Arch. Neurol. 2000, 57, 369. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Pillay, V.; Choonara, Y.E. Advances in the treatment of Parkinson’s disease. Prog. Neurobiol. 2007, 81, 29–44. [Google Scholar] [CrossRef]
- The Parkinson Study Group. Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med. 2004, 351, 2498–2508. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J. Motor fluctuations and dyskinesias in Parkinson’s disease: Clinical manifestations. Mov. Disord. 2005, 20, S11–S16. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Schrag, A. How valid is the clinical diagnosis of Parkinson’s disease in the community? J. Neurol. Neurosurg. Psychiatry 2002, 73, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Albanese, A. Standard strategies for diagnosis and treatment of patients with newly diagnosed Parkinson’s disease. Neurol. Clin. Pract. 2013, 3, 476–477. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.B.; McGhee, D.J.; Counsell, C.E. Comparison of patient rated treatment response with measured improvement in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Luis-Martínez, R.; Monje, M.H.G.; Antonini, A.; Sánchez-Ferro, Á.; Mestre, T.A. Technology-enabled care: Integrating multidisciplinary care in Parkinson’s disease through digital technology. Front. Neurol. 2020, 11, 575975. [Google Scholar] [CrossRef] [PubMed]
- Sigcha, L.; Borzì, L.; Amato, F.; Rechichi, I.; Ramos-Romero, C.; Cárdenas, A.; Gascó, L.; Olmo, G. Deep learning and wearable sensors for the diagnosis and monitoring of Parkinson’s disease: A systematic review. Expert Syst. Appl. 2023, 229, 120541. [Google Scholar] [CrossRef]
- Shah, V.V.; McNames, J.; Mancini, M.; Carlson-Kuhta, P.; Nutt, J.G.; El-Gohary, M.; Lapidus, J.A.; Horak, F.B.; Curtze, C. Digital biomarkers of mobility in Parkinson’s disease during daily living. J. Parkinson’s Dis. 2020, 10, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, H.; Bontridder, N.; Petrovska-Delacréta, D.; Glaab, E.; Kluge, F.; Yacoubi, M.E.; Marín Valero, M.; Corvol, J.C.; Eskofier, B.; Van Gyseghem, J.M.; et al. Leveraging the potential of digital technology for better individualized treatment of Parkinson’s disease. Front. Neurol. 2022, 13, 788427. [Google Scholar] [CrossRef] [PubMed]
- Chudzik, A.; Śledzianowski, A.; Przybyszewski, A.W. Machine learning and digital biomarkers can detect early stages of neurodegenerative diseases. Sensors 2024, 24, 1572. [Google Scholar] [CrossRef] [PubMed]
- Bonato, P. Wearable sensors and systems. IEEE Eng. Med. Biol. Mag. 2010, 29, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Ometov, A.; Shubina, V.; Klus, L.; Skibińska, J.; Saafi, S.; Pascacio, P.; Flueratoru, L.; Gaibor, D.Q.; Chukhno, N.; Chukhno, O.; et al. A survey on wearable technology: History, state-of-the-art and current challenges. Comput. Netw. 2021, 193, 108074. [Google Scholar] [CrossRef]
- Iqbal, S.M.A.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in healthcare wearable devices. npj Flex. Electron. 2021, 5. [Google Scholar] [CrossRef]
- Dunn, J.; Runge, R.; Snyder, M. Wearables and the medical revolution. Pers. Med. 2018, 15, 429–448. [Google Scholar] [CrossRef]
- Martin, T.; Healey, J. 2006’s wearable computing advances and fashions. IEEE Pervasive Comput. 2007, 6, 14–16. [Google Scholar] [CrossRef]
- Jiang, W.; Yin, Z. Human activity recognition using wearable sensors by deep convolutional neural networks. In Proceedings of the 23rd ACM International Conference on Multimedia, MM ’15, Brisbane, Australia, 26–30 October 2015; ACM: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Borzì, L.; Sigcha, L.; Olmo, G. Context recognition algorithms for energy-efficient freezing-of-gait detection in Parkinsons disease. Sensors 2023, 23, 4426. [Google Scholar] [CrossRef]
- Li, B.; Yao, Z.; Wang, J.; Wang, S.; Yang, X.; Sun, Y. Improved deep learning technique to detect freezing of gait in Parkinson’s disease based on wearable sensors. Electronics 2020, 9, 1919. [Google Scholar] [CrossRef]
- Yao, S.; Swetha, P.; Zhu, Y. Nanomaterial-enabled wearable sensors for healthcare. Adv. Healthc. Mater. 2017, 7, 1700889. [Google Scholar] [CrossRef] [PubMed]
- Ates, H.C.; Nguyen, P.Q.; Gonzalez-Macia, L.; Morales-Narváez, E.; Güder, F.; Collins, J.J.; Dincer, C. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887–907. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, S.; Khosravani, M.R. Progress and challenges in fabrication of wearable sensors for health monitoring. Sens. Actuators A Phys. 2020, 312, 112105. [Google Scholar] [CrossRef]
- Stefana, E.; Marciano, F.; Rossi, D.; Cocca, P.; Tomasoni, G. Wearable devices for ergonomics: A systematic literature review. Sensors 2021, 21, 777. [Google Scholar] [CrossRef] [PubMed]
- Son, D.; Lee, J.; Qiao, S.; Ghaffari, R.; Kim, J.; Lee, J.E.; Song, C.; Kim, S.J.; Lee, D.J.; Jun, S.W.; et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Del Din, S.; Godfrey, A.; Mazzà, C.; Lord, S.; Rochester, L. Free-living monitoring of Parkinson’s disease: Lessons from the field. Mov. Disord. 2016, 31, 1293–1313. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Zhang, X.; Liu, X.; Lei, J. Evaluating the consistency of current mainstream wearable devices in health monitoring: A comparison under free-living conditions. J. Med. Internet Res. 2017, 19, e68. [Google Scholar] [CrossRef]
- Guk, K.; Han, G.; Lim, J.; Jeong, K.; Kang, T.; Lim, E.K.; Jung, J. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials 2019, 9, 813. [Google Scholar] [CrossRef]
- Erdmier, C.; Hatcher, J.; Lee, M. Wearable device implications in the healthcare industry. J. Med. Eng. Technol. 2016, 40, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.S.; Asch, D.A.; Volpp, K.G. Wearable devices as facilitators, not drivers, of health behavior change. JAMA 2015, 313, 459. [Google Scholar] [CrossRef]
- Aroganam, G.; Manivannan, N.; Harrison, D. Review on wearable technology sensors used in consumer sport applications. Sensors 2019, 19, 1983. [Google Scholar] [CrossRef] [PubMed]
- Aşuroğlu, T.; Oğul, H. A deep learning approach for Parkinson’s disease severity assessment. Health Technol. 2022, 12, 943–953. [Google Scholar] [CrossRef]
- Sigcha, L.; Polvorinos-Fernández, C.; Costa, N.; Costa, S.; Arezes, P.; Gago, M.; Lee, C.; López, J.M.; de Arcas, G.; Pavón, I. Monipar: Movement data collection tool to monitor motor symptoms in Parkinson’s disease using smartwatches and smartphones. Front. Neurol. 2023, 14, 1326640. [Google Scholar] [CrossRef] [PubMed]
- Sigcha, L.; Pavón, I.; Costa, N.; Costa, S.; Gago, M.; Arezes, P.; López, J.M.; De Arcas, G. Automatic resting tremor assessment in Parkinson’s disease using smartwatches and multitask convolutional neural networks. Sensors 2021, 21, 291. [Google Scholar] [CrossRef] [PubMed]
- Sigcha, L.; Domínguez, B.; Borzì, L.; Costa, N.; Costa, S.; Arezes, P.; López, J.M.; De Arcas, G.; Pavón, I. Bradykinesia detection in Parkinson’s disease using smartwatches’ inertial sensors and deep learning methods. Electronics 2022, 11, 3879. [Google Scholar] [CrossRef]
- Sigcha, L.; Borzì, L.; Pavón, I.; Costa, N.; Costa, S.; Arezes, P.; López, J.M.; De Arcas, G. Improvement of performance in freezing of gait detection in Parkinson’s disease using transformer networks and a single waist-worn triaxial accelerometer. Eng. Appl. Artif. Intell. 2022, 116, 105482. [Google Scholar] [CrossRef]
- Rodríguez-Martín, D.; Cabestany, J.; Pérez-López, C.; Pie, M.; Calvet, J.; Samà, A.; Capra, C.; Català, A.; Rodríguez-Molinero, A. A new paradigm in Parkinson’s disease evaluation with wearable medical devices: A review of STAT-ON. Front. Neurol. 2022, 13, 912343. [Google Scholar] [CrossRef] [PubMed]
- Santiago, A.; Langston, J.W.; Gandhy, R.; Dhall, R.; Brillman, S.; Rees, L.; Barlow, C. Qualitative evaluation of the Personal KinetiGraph™ movement recording system in a Parkinson’s clinic. J. Parkinson’s Dis. 2019, 9, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Antonini, A.; Reichmann, H.; Gentile, G.; Garon, M.; Tedesco, C.; Frank, A.; Falkenburger, B.; Konitsiotis, S.; Tsamis, K.; Rigas, G.; et al. Toward objective monitoring of Parkinson’s disease motor symptoms using a wearable device: Wearability and performance evaluation of PDMonitor®. Front. Neurol. 2023, 14, 1080752. [Google Scholar] [CrossRef] [PubMed]
- Moreau, C.; Rouaud, T.; Grabli, D.; Benatru, I.; Remy, P.; Marques, A.R.; Drapier, S.; Mariani, L.L.; Roze, E.; Devos, D.; et al. Overview on wearable sensors for the management of Parkinson’s disease. npj Parkinson’s Dis. 2023, 9, 153. [Google Scholar] [CrossRef]
- Tam, W.; Alajlani, M.; Abd-alrazaq, A. An exploration of wearable device features used in UK hospital Parkinson disease care: Scoping review. J. Med. Internet Res. 2023, 25, e42950. [Google Scholar] [CrossRef]
- Rovini, E.; Maremmani, C.; Cavallo, F. How wearable sensors can support Parkinson’s disease diagnosis and treatment: A systematic review. Front. Neurosci. 2017, 11, 555. [Google Scholar] [CrossRef]
- Del Din, S.; Kirk, C.; Yarnall, A.J.; Rochester, L.; Hausdorff, J.M. Body-worn sensors for remote monitoring of Parkinson’s disease motor symptoms: Vision, state of the art, and challenges ahead. J. Parkinson’s Dis. 2021, 11, S35–S47. [Google Scholar] [CrossRef] [PubMed]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, A.J., Jr.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Schooley, R.T.; Spilker, B.A.; et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Park, J.E.; Gunasekaran, T.I.; Cho, Y.H.; Choi, S.M.; Song, M.K.; Cho, S.H.; Kim, J.; Song, H.C.; Choi, K.Y.; Lee, J.J.; et al. Diagnostic blood biomarkers in Alzheimer’s disease. Biomedicines 2022, 10, 169. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Patient-Focused Drug Development: Collecting Comprehensive and Representative Input. Available online: https://www.federalregister.gov/d/2020-13046 (accessed on 18 March 2024).
- Vasudevan, S.; Saha, A.; Tarver, M.E.; Patel, B. Digital biomarkers: Convergence of digital health technologies and biomarkers. npg Digit. Med. 2022, 5, 36. [Google Scholar] [CrossRef]
- Manta, C.; Patrick-Lake, B.; Goldsack, J.C. Digital measures that matter to patients: A framework to guide the selection and development of digital measures of health. Digit. Biomark. 2020, 4, 69–77. [Google Scholar] [CrossRef]
- Insel, T.R. Digital phenotyping: Technology for a new science of behavior. JAMA 2017, 318, 1215. [Google Scholar] [CrossRef]
- Babrak, L.M.; Menetski, J.; Rebhan, M.; Nisato, G.; Zinggeler, M.; Brasier, N.; Baerenfaller, K.; Brenzikofer, T.; Baltzer, L.; Vogler, C.; et al. Traditional and digital biomarkers: Two worlds apart? Digit. Biomark. 2019, 3, 92–102. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.; Yamada, Y.; Rogers, J.L.; Shinakwa, K.; Nemoto, M.; Nemoto, K.; Arai, T. An automated digital biomarker of mobility. In Proceedings of the 2023 IEEE International Conference on Digital Health (ICDH), Chicago, IL, USA, 2–8 July 2023; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Shah, V.V.; McNames, J.; Harker, G.; Mancini, M.; Carlson-Kuhta, P.; Nutt, J.G.; El-Gohary, M.; Curtze, C.; Horak, F.B. Effect of bout length on gait measures in people with and without Parkinson’s disease during daily life. Sensors 2020, 20, 5769. [Google Scholar] [CrossRef] [PubMed]
- Coates, L.; Shi, J.; Rochester, L.; Del Din, S.; Pantall, A. Entropy of real-world gait in Parkinson’s disease determined from wearable sensors as a digital marker of altered ambulatory behavior. Sensors 2020, 20, 2631. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Li, Y.; Zhang, H.; Wang, J.; Albin, R.L.; Guan, Y. Heterogeneous digital biomarker integration out-performs patient self-reports in predicting Parkinson’s disease. Commun. Biol. 2022, 5, 58. [Google Scholar] [CrossRef]
- Vidya, B.; Sasikumar, P. Gait based Parkinson’s disease diagnosis and severity rating using multi-class support vector machine. Appl. Soft Comput. 2021, 113, 107939. [Google Scholar] [CrossRef]
- Khera, P.; Kumar, N. Novel machine learning-based hybrid strategy for severity assessment of Parkinson’s disorders. Med. Biol. Eng. Comput. 2022, 60, 811–828. [Google Scholar] [CrossRef] [PubMed]
- Atrsaei, A.; Corrà, M.F.; Dadashi, F.; Vila-Chã, N.; Maia, L.; Mariani, B.; Maetzler, W.; Aminian, K. Gait speed in clinical and daily living assessments in Parkinson’s disease patients: Performance versus capacity. npj Parkinson’s Dis. 2021, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Wissel, B.D.; Mitsi, G.; Dwivedi, A.K.; Papapetropoulos, S.; Larkin, S.; López Castellanos, J.R.; Shanks, E.; Duker, A.P.; Rodriguez-Porcel, F.; Vaughan, J.E.; et al. Tablet-based application for objective measurement of motor fluctuations in Parkinson disease. Digit. Biomark. 2018, 1, 126–135. [Google Scholar] [CrossRef]
- Di Lazzaro, G.; Ricci, M.; Saggio, G.; Costantini, G.; Schirinzi, T.; Alwardat, M.; Pietrosanti, L.; Patera, M.; Scalise, S.; Giannini, F.; et al. Technology-based therapy-response and prognostic biomarkers in a prospective study of a de novo Parkinson’s disease cohort. npj Parkinson’s Dis. 2021, 7, 82. [Google Scholar] [CrossRef]
- Sharma, M.; Mishra, R.k.; Hall, A.J.; Casado, J.; Cole, R.; Nunes, A.S.; Barchard, G.; Vaziri, A.; Pantelyat, A.; Wills, A.M. Remote at-home wearable-based gait assessments in progressive supranuclear palsy compared to Parkinson’s disease. BMC Neurol. 2023, 23, 434. [Google Scholar] [CrossRef]
- Arora, S.; Baig, F.; Lo, C.; Barber, T.R.; Lawton, M.A.; Zhan, A.; Rolinski, M.; Ruffmann, C.; Klein, J.C.; Rumbold, J.; et al. Smartphone motor testing to distinguish idiopathic REM sleep behavior disorder, controls, and PD. Neurology 2018, 91, e1528–e1538. [Google Scholar] [CrossRef] [PubMed]
- Tsoulos, I.G.; Mitsi, G.; Stavrakoudis, A.; Papapetropoulos, S. Application of machine learning in a Parkinson’s disease digital biomarker dataset using Neural Network Construction (NNC) methodology discriminates patient motor status. Front. ICT 2019, 6, 10. [Google Scholar] [CrossRef]
- Rehman, R.Z.U.; Buckley, C.; Mico-Amigo, M.E.; Kirk, C.; Dunne-Willows, M.; Mazza, C.; Shi, J.Q.; Alcock, L.; Rochester, L.; Del Din, S. Accelerometry-based digital gait characteristics for classification of Parkinson’s disease: What counts? IEEE Open J. Eng. Med. Biol. 2020, 1, 65–73. [Google Scholar] [CrossRef]
- Gonçalves, H.R.; Branquinho, A.; Pinto, J.; Rodrigues, A.M.; Santos, C.P. Digital biomarkers of mobility and quality of life in Parkinson’s disease based on a wearable motion analysis LAB. Comput. Methods Programs Biomed. 2024, 244, 107967. [Google Scholar] [CrossRef]
- Sahandi Far, M.; Eickhoff, S.B.; Goni, M.; Dukart, J. Exploring test-retest reliability and longitudinal stability of digital biomarkers for Parkinson disease in the m-Power data set: Cohort study. J. Med. Internet Res. 2021, 23, e26608. [Google Scholar] [CrossRef] [PubMed]
- Lipsmeier, F.; Taylor, K.I.; Kilchenmann, T.; Wolf, D.; Scotland, A.; Schjodt-Eriksen, J.; Cheng, W.; Fernandez-Garcia, I.; Siebourg-Polster, J.; Jin, L.; et al. Evaluation of smartphone-based testing to generate exploratory outcome measures in a phase 1 Parkinson’s disease clinical trial. Mov. Disord. 2018, 33, 1287–1297. [Google Scholar] [CrossRef]
- Mahadevan, N.; Demanuele, C.; Zhang, H.; Volfson, D.; Ho, B.; Erb, M.K.; Patel, S. Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device. npg Digit. Med. 2020, 3, 5. [Google Scholar] [CrossRef]
- Evers, L.J.; Raykov, Y.P.; Krijthe, J.H.; Silva de Lima, A.L.; Badawy, R.; Claes, K.; Heskes, T.M.; Little, M.A.; Meinders, M.J.; Bloem, B.R. Real-life gait performance as a digital biomarker for motor fluctuations: The Parkinson@Home validation study. J. Med. Internet Res. 2020, 22, e19068. [Google Scholar] [CrossRef]
- ZhuParris, A.; Thijssen, E.; Elzinga, W.O.; Makai-Bölöni, S.; Kraaij, W.; Groeneveld, G.J.; Doll, R.J. Treatment detection and movement disorder society-unified Parkinson’s disease rating scale, part III estimation using finger tapping tasks. Mov. Disord. 2023, 38, 1795–1805. [Google Scholar] [CrossRef] [PubMed]
- Goni, M.; Eickhoff, S.B.; Far, M.S.; Patil, K.R.; Dukart, J. Smartphone-based digital biomarkers for Parkinson’s disease in a remotely-administered setting. IEEE Access 2022, 10, 28361–28384. [Google Scholar] [CrossRef]
- Greene, B.R.; Premoli, I.; McManus, K.; McGrath, D.; Caulfield, B. Predicting fall counts using wearable sensors: A novel digital biomarker for Parkinson’s disease. Sensors 2021, 22, 54. [Google Scholar] [CrossRef] [PubMed]
- mPower Public Researcher Portal. Mobile Parkinson’s Disease Study. [CrossRef]
- Hausdorff, J.M. Gait in Parkinson’s Disease. Available online: https://physionet.org/content/gaitpdb/ (accessed on 18 March 2024).
- Adams, J.L.; Kangarloo, T.; Gong, Y.; Khachadourian, V.; Tracey, B.; Volfson, D.; Latzman, R.D.; Cosman, J.; Edgerton, J.; Anderson, D.; et al. Using a smartwatch and smartphone to assess early Parkinson’s disease in the WATCH-PD study over 12 months. npj Parkinson’s Dis. 2024, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Borzì, L.; Varrecchia, M.; Sibille, S.; Olmo, G.; Artusi, C.A.; Fabbri, M.; Rizzone, M.G.; Romagnolo, A.; Zibetti, M.; Lopiano, L. Smartphone-based estimation of item 3.8 of the MDS-UPDRS-III for assessing leg agility in people with Parkinson’s disease. IEEE Open J. Eng. Med. Biol. 2020, 1, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R.; Bernstein, M.A.; Fox, N.C.; Thompson, P.; Alexander, G.; Harvey, D.; Borowski, B.; Britson, P.J.; Whitwell, L.J.; Ward, C.; et al. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 2008, 27, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Siirtola, P.; Koskimäki, H.; Röning, J. OpenHAR: A MATLAB toolbox for easy access to publicly open human activity data sets. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, UbiComp ’18, Singapore, 8–12 October 2018; ACM: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
Reference | Study Design | Participants | Device, Sensors, Number (Device, Sensor), Body Location | Aim | Extraction Method | End Point |
---|---|---|---|---|---|---|
[65] | Gait (Physionet database) | PwPD: N = 90 (34 F; 56 M) HC: N = 62 (34 F; 28 M) | Pressure insoles VGRF sensors N = (1, 16) Foot (8 each) | Gait monitoring | Features combined with ML model (Random Forest) | Gait features that impact the predicted TUG scores are gait speed-based features (percentiles, mean, and kurtosis), with 84.8% accuracy. |
[21] | Gait | PwPD: N = 29 (12 F; 17 M) HC: N = 27 (14 F; 13 M) | IMU (Opals by APDM®) 3-axial accelerometer, 3-axial gyroscope and 3-axial magnetometer N = (3, 3) Foot (1 each) and lower back | Classification PwPD-HC | Features combined with ML model (Logistic regression) | Turning and gait indicators discriminate PwPD from HC (Turn angle, swing time variability adn stride length with AUC = 0.87–0.89). |
[66] | Gait | PwPD: N = 29 (12 F; 17 M) HC: N = 20 (8 F; 2 M) | IMU (Opals by APDM®) 3-axial accelerometer, 3-axial gyroscope and 3-axial magnetometer N = (3, 3) Foot (1 each) and lower back. | Classification PwPD-HC | Features combined with ML model (Polynomial regression) | Gait measures (gait speed, stride length) could be used to classify PwPD from HC, with AUC > 0.8. |
[67] | Gait | PwPD: N = 5 HC: N = 5 | IMU (Axivity AX3®) 3-axial accelerometer N = (1, 1) Lower back | Classification PwPD-HC | Features | The sample entropy of the gait signal of PwPD are higher than HC participants. |
[68] | Gait Balance Task Finger Tapping (Mpower database) | PwPD: N = 1057 (359 F; 698 M)HC:N = 5343 (1014 F; 4329 M) | Smartphone 3-axial accelerometer (gait and balance) and pixel coordinates (tapping)N = (1, 2) Pocket (gait and balance) and front of participant (tapping) | Classification PwPD-HC | Raw data + DL model (Convolutional neural network) | Tapping positions (Centered tapping coordinates) are the most relevant data (AUC = 0.935) for PD detection. |
[69] | Gait (Physionet database) | PwPD: N = 93 (35 F; 58 M) HC: N = 73 (33 F; 40 M) | Pressure insoles VGRF sensors N = (1, 16) Foot (8 each) | Gait monitoring and classification PwPD-HC | Features combined with ML model (Support vector machine) | Gait parameters (stride time, step time, stance time, swing time, cadence, step length, stride length, gait speed) differentiate PD severity and HC with 98.65% accuracy. |
[70] | Gait (Physionet database) | PwPD: N = 93 (35 F; 58 M) HC: N = 72 (32 F; 40 M) | Pressure insoles VGRF sensors N = (1, 16) Foot (8 each) | Gait monitoring and classification PwPD-HC | Features combined with ML model (Decission Tree) | Gait parameters (step length, force variations at heel strike, centre of pressure variability, swing stance ratio, and double support phase) are able to detect PwPD with 99.9% accuracy and its severity shows = 98.7%. |
[71] | Gait Activities of daily living | PwPD: N = 27 (11 F; 16 M) | IMU (RehaGait®) (clinical assessment) and IMU (Physilog 5®) (home assessment) 3-axial accelerometer and 3-axial gyroscope (clinical assessment), and 3-axial accelerometer, 3-axial gyroscope, and barometrer (home assessment) N = (3, 3) Foot (1 each in clinical assessment) (only 1 in home assessment) | Gait monitoring and treatment detection | Features | Gait speed could be used to control of medication intake in PD. |
[72] | Finger Tapping Pronation-supination | PwPD: N = 11 (3 F; 8 M) HC: N = 11 (6 F; 5 M) | Smartphone Pixel coordinates N = (1, 1) Front of participant | Classification PwPD-HC and ON-OFF states monitoring | Features combined with ML model (Logistic regression) | Tapping features (total taps, tap interval, and tap accuracy) can detect PwPD with p < 0.0005 and detect ON/OFF state with AUC 0.82. |
[73] | Pronation-supination Leg Agility Toe Tapping TUG test Postural stability Postural Tremor Rest Tremor | PwPD: N = 36 (9 F; 27 M) | IMU (Movit G1®) 3-axial accelerometer and 3-axial gyroscope N = (14, 2) Lower back, upper back, forearm (1 each), arm (1 each), upper leg (1 each), lower leg (1 each), hand (1 each), foot (1 each) | Prognosis (motor symptoms) and therapy response monitoring | Features | A correlation was found between motor symptoms progression and some features (toe tapping amplitude decrement, velocity of arms and legs, sit-to-stand time, p < 0.01). |
[74] | Gait TUG test Sit-to-tand test | PwPD: N = 10 (4 F; 6 M) PSP (Progressive Supranuclear Palsy): N = 10 (4 F; 6 M) | IMU (LEGSys®)3-axial accelerometer, 3-axial gyroscope, 3-axial magnetometer N = (3, 3) Shin (1 each) and lower Back | Classification PwPD-PSP | Features | Gait speed was significantly slower in PSP (p < 0.001). |
[75] | Balance Task Gait Finger tapping Reaction time Rest tremor Postural tremor | PwPD: N = 334 (125 F; 209 M) HC: N = 84 (17 F; 67 M) iRBD (idiopathic REM sleep behavior disorder): N = 104 (88 F; 16 M) | Smartphone 3-axial accelerometer (Balance, gait, rest tremor and postural tremor) and pixel coordinates (Tapping and reaction time) N = (1, 2) Pocket (balance and gait), front of participant (tapping and reaction time) and hand (postural and rest tremor) | Features combined with ML model (Random Forest) | Clasification PwPD-HC and clasification PwPD- iRBD | Postural tremor (mean squared energy, azimuth, 25th quartile, mode, radius) and rest tremor (entropy, root mean square) were the most discriminatory task between PD-HC-iRBD, with 85–88% of sensitivity. |
[76] | Finger Tapping - Two-target finger tapping test - Reaction time - Pronation- supination | PwPD: N = 19 HC: N = 17 | Tablet Pixel coordinates N = (1, 1) Front of participant | Classification of PwPD-HC and ON-OFF states monitoring | Features combined with ML model (Artificial neural network) | All test combined classify PwPD-HC with 93.11% accuracy. Most differentiating test is reaction time (inter-tap interval, tap accuracy) with 83.9% accuracy while ON-OFF state classifies with 76.5% accuracy. |
[77] | Gait | PwPD: N = 81 (28 F; 53 M) HC: N = 61 (27 F; 34 M) | IMU (Axivity AX3®)3-axial accelerometer N = (1, 1) Lower Back | Clasification PwPD-HC | Features combined with ML model (Discriminant analysis) | Gait features (root mean square values, power spectral density, gait speed velocity, step length, step time and age) classify PwPD with AUC = 0.94. |
[78] | Gait | PwPD: N = 40 (19 F; 21 M) | IMU (+sMotion®) 3-axial accelerometer and 3-axial gyroscope N = (1, 2) Lower back | Classification motor condition and Quality of Life. | Features combined with ML model (Logistic regression) | Gait Features (velocity pace, SD swing time variability, Antero-posterior center of mass angle of postural control) classify UPDRS-III severity with AUC 0.89. Gait Features (gait speed, step time rhythm, stance time, step length) correlated with PDQ39 with AUC 0.95. |
[79] | Gait Balance Task Finger Tapping (Mpower database) | PwPD: N = 610 (211 F; 399 M) (gait), 612 (211 F; 401 M) (balance), 970 (340 F; 630 M) (tapping) HC: N = 807 (152 F; 655 M) (gait), 823 (155 F; 668 M) (balance), 1674 (304 F; 1370 M) (tapping) | Smartphone 3-axial accelerometer (gait and balance) and pixel coordinates (tapping) N = (1, 2) Pocket (gait and balance) and front of participant (tapping) | Classification PwPD-HC and therapy response monitoring | Features | Tapping features (total taps, inter-tap intervals, median/standard deviation absolute deviations, correlation X-Y tap) displayed the best performance in classify PwPD-HC (p < 0.05). |
[80] | Activities of Daily Living Rest tremor Postural tremor Finger tapping Balance task Gait | PwPD: N = 43 (8 F; 35 M) HC: N = 35 (8 F; 27 M) | Smartphone 3-axial accelerometer, 3-axial gyroscope and 3-axial magnetometer N = (1, 3) Waist (balance and gait), hand (tremor) and front of participant (tapping) | Classification PwPD-HC and Motor symptoms monitoring | Features | Tapping (inter-tap variability), rest tremor (acceleration skewness), postural tremor (total power of accelerometer), balance (mean velocity), gait (turn speed) differentiated HC from PwPD and PD abnormalities (p < 0.005). |
[81] | Activities of daily living MDS-UPDRS task | PwPD: N = 31 (11 F; 20 M) HC: N = 50 (27 F; 23 M) | IMU (Opals by APDM®) 3-axial accelerometer, 3-axial gyroscope and 3-axial magnetometer N = (1, 3) Wrist | Motor symptoms monitoring; Therapy-response monitoring | Features | RMS (amplitude) of the magnitude vector for resting tremor (p < 0.0004) and RMS (amplitude) and jerk (smoothness) of the magnitude vector forbradykinesia (p < 0.0001) achieve agreement with clinical assessment of symptom severity and treatment-related changes in motor states. |
[82] | Activities of daily living TUG test Abnormal Involuntary Movement Scale MDS-UPDRS task Gait | PwPD: N = 18 (7 F; 11 M) HC: N = 24 (11 F; 13 M) | IMU (Physilog 4®), Android smartwatch, Android smartphone, Empatica E4® smartwatch 3-axial accelerometer, 3-axial gyroscope, 3-axial magnetometer, and barometer (IMU), 3-axial accelerometer, 3-axial gyroscope, barometer, and light (Android smartwatch), 3-axial accelerometer, 3-axial magnetometer, light, proximity, GPS, WiFi, and cellular networks (Android smartphone), and Galvanic skin response, photoplethysmogram, skin temperature, 3-axial accelerometer (Empatica) N = (8, 12) Ankles (1 each), wrist (1 each), lower back (IMU), wrist (Android smartwatch), pocket (Android smartphone), and wrist (Empatica) | Classification of PwPD-HC; ON-OFF states monitoring | Features combined with ML model (Logistic regression) | The total power in the 0.5- to 10-Hz band was most discriminate feature to classify PwPD-HC (AUC = 0.76) and ON-OFF detection (AUC = 0.84). |
[83] | Finger Tapping - Index and middle finger tapping (IMFT) - Alternate index finger tapping (IFT) - Thumb index finger tapping (TIFT) | PwPD: N = 20 (6 F; 14 M) | Tablet (IMFT and IFT) and Biometrics® (TIFT) Pixel Coordinates (IMFT and IFT) and Goniometer (TIFT) N = (2, 2) Front of participant (IMFT and IFT) and hand (TIFT) | Therapy response monitoring and Classification of subjects with therapy and placebo | Features combined with ML model (Discriminant analysis) | The IFT features (total taps, bivariate contour ellipse area, spatial error, velocity changes, intertap intervals) provides the best performance in estimating MDS-UPDRS III, with p < 0.001 and accuracy of 84% in classification of subjects. |
[84] | Gait Balance Task Finger Tapping (Mpower database) | PwPD: N = 610 (211 F; 399 M) (gait), 612 (211 F; 401 M) (balance), 970 (340 F; 630 M) (tapping) HC: N = 787 (147 F; 640 M) (gait), 803 (150 F; 653 M) (balance), 1257 (239 F; 1018 M) (tapping) | Smartphone 3-axial accelerometer (gait and balance) and pixel coordinates (tapping)N = (1, 2) Pocket (gait and balance) and front of participant (tapping) | Classification PwPD-HC | Features combined with ML model (Support vector machine) | Tapping features (inter-tap interval (range, maximum value and Teager-Kaiser energy operator) detect PwPD with AUC = 0.74. |
[85] | TUG test | PwPD dataset 1: N = 15 (5 F; 10 M) PwPD dataset 2: N = 27 (9 F; 17 M) HC: N = 1015 (671 F; 344 M) | IMU (Kinesis QTUG®) 3-axial accelerometer and 3-axial gyroscope N = (1, 2) Shin | Fall risk, prognosis and gait monitoring | Features combined with ML model (Logistic regression) | The mobility parameters (speed, turn, transfers, symmetry, variability) could be used to predict number of fall counts of PwPD ( = 43%). |
Task | Diagnosis | Treatment | Severity | UPDRS–III |
---|---|---|---|---|
Finger tapping | AUC 0.74–0.95 | Acc 0.75–0.84 | - | r = 0.51–0.69, MAE = 8 |
Gait | AUC 0.76–0.98 | AUC 0.82 | AUC 0.85–0.98 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polvorinos-Fernández, C.; Sigcha, L.; Borzì, L.; Olmo, G.; Asensio, C.; López, J.M.; de Arcas, G.; Pavón, I. Evaluating Motor Symptoms in Parkinson’s Disease Through Wearable Sensors: A Systematic Review of Digital Biomarkers. Appl. Sci. 2024, 14, 10189. https://doi.org/10.3390/app142210189
Polvorinos-Fernández C, Sigcha L, Borzì L, Olmo G, Asensio C, López JM, de Arcas G, Pavón I. Evaluating Motor Symptoms in Parkinson’s Disease Through Wearable Sensors: A Systematic Review of Digital Biomarkers. Applied Sciences. 2024; 14(22):10189. https://doi.org/10.3390/app142210189
Chicago/Turabian StylePolvorinos-Fernández, Carlos, Luis Sigcha, Luigi Borzì, Gabriella Olmo, César Asensio, Juan Manuel López, Guillermo de Arcas, and Ignacio Pavón. 2024. "Evaluating Motor Symptoms in Parkinson’s Disease Through Wearable Sensors: A Systematic Review of Digital Biomarkers" Applied Sciences 14, no. 22: 10189. https://doi.org/10.3390/app142210189
APA StylePolvorinos-Fernández, C., Sigcha, L., Borzì, L., Olmo, G., Asensio, C., López, J. M., de Arcas, G., & Pavón, I. (2024). Evaluating Motor Symptoms in Parkinson’s Disease Through Wearable Sensors: A Systematic Review of Digital Biomarkers. Applied Sciences, 14(22), 10189. https://doi.org/10.3390/app142210189