
Citation: Zhang, Y.; Qi, H.; Cheng, Q.;

Li, Z.; Hao, L. Modeling and

Compensation of Stiffness-Dependent

Hysteresis Coupling Behavior for

Parallel Pneumatic Artificial

Muscle-Driven Soft Manipulator.

Appl. Sci. 2024, 14, 10240. https://

doi.org/10.3390/app142210240

Academic Editor: Christos Bouras

Received: 17 October 2024

Revised: 3 November 2024

Accepted: 5 November 2024

Published: 7 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Modeling and Compensation of Stiffness-Dependent Hysteresis
Coupling Behavior for Parallel Pneumatic Artificial
Muscle-Driven Soft Manipulator
Ying Zhang *, Huiming Qi, Qiang Cheng , Zhi Li and Lina Hao

School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China;
2300429@stu.neu.edu.cn (H.Q.); qcheng1022@163.com (Q.C.); lizhi1@mail.neu.edu.cn (Z.L.);
haolina@me.neu.edu.cn (L.H.)
* Correspondence: zhangying@me.neu.edu.cn

Abstract: The parallel driving soft manipulator with multiple extensors and contractile pneumatic
artificial muscles (PAMs) is able to operate continuously and has varying stiffness, achieving smooth
movements and a fundamental trade-off between flexibility and stiffness. Owing to the hysteresis
of PAMs and actuator couplings, the manipulator outputs display coupled hysteresis behaviors
with stiffness dependence, causing significant positioning errors. For precise positioning control,
this paper takes the lead in proposing a comprehensive model aimed at accurately predicting the
coupled hysteresis behavior with the stiffness dependence of the soft manipulator. The model consists
of an inherent hysteresis submodule, an actuator coupling submodule, and a stiffness-dependent
submodule in series. The asymmetrical hysteresis nonlinearity of the PAM is established by the
generalized Prandtl–Ishlinskii model in the inherent hysteresis submodule. The serial actuator
coupling submodule is dedicated to modeling the actuator couplings, and the stiffness-dependent
submodule is implemented with a fuzzy neural network to characterize the stiffness dependence
and other system nonlinearities. In addition, an inverse compensator on the basis of the proposed
model is conducted. Experiments demonstrate that this model possesses high accuracy and good
generalization, and its compensator is effective in decoupling and mitigating hysteresis coupling of
the manipulator. The proposed model and control methods significantly improve the positioning
accuracy of the pneumatic soft manipulator.

Keywords: pneumatic artificial muscles; soft manipulator; variable stiffness; hysteresis coupling
effects; inverse compensation

1. Introduction

Pneumatic artificial muscles (PAMs) are mainly made up of braided woven meshes,
rubber tubes, and sealed connectors [1]. As a kind of soft actuator, the PAM features a high
power density ratio and a large driving force, breaking through the flexibility limitations
of the rigid actuator to widely serve as a bionic actuator in robotic fields for underwater
tasks [2], elderly care services [3,4], rescues [5], rehabilitation [6–8], and other flexible
manipulations [9]. By comparison with rigid manipulators, PAM-driven soft manipulators
have a stronger ability to adapt to unstructured environments and produce safer inter-
actions with human beings. Whether contractile PAMs (initial braided angle is less than
54◦44′) or extensor PAMs (initial braided angle is more than 54◦44′) are used, they can only
provide linear motions. PAM-driven soft manipulators usually move in 3D spaces through
combined deformations of multiple parallel PAMs. For example, as shown in Figure 1,
Walker et al. [10] presented an OCTARM continuum manipulator design (Figure 1a) with
three sections, with each section containing different numbers of parallel extensor PAMs,
achieving nine total degrees of freedom. Similarly, Falkenhahn et al. proposed a BIONIC
HANDLING ASSISTANT (Figure 1b) [11], which has three connections in series, and a
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total of nine bellow-based pneumatic actuators are arranged and connected in parallel.
Reference [12] designed a cylindrical manipulator (Figure 1c) with each section having
three radially symmetric pneumatic chambers. In addition, a dual-plane constraint design
(Figure 1d) for the backbone structure was proposed in reference [13] to integrate the
parallel cables and pneumatic artificial muscles into the continuum robot. A soft manipula-
tor controlled by antagonistically arranged extensor and contractile PAMs was proposed
to enhance their anti-interference capability and load-bearing capacity in reference [14]
(Figure 1e), and our previous work also designed a soft manipulator driven by three con-
tractile PAMs and one extensor PAM in parallel [15,16], as shown in Figure 1f. Based on
opposing configurations of extensor PAMs and contractile PAMs, the soft manipulator can
output different stiffnesses varying independently from its position.
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pneumatic artificial muscles; (e) seven parallel PAMs-based manipulator with variable stiffness; (f) 
four parallel PAMs-based manipulators with variable stiffness. 
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sion on pneumatic manipulators takes actuator coupling, inherent hysteresis, varia-
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can predict the hysteresis coupling of the manipulator under various operation con-
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(3) The model is readily applicable to compensation for parallel PAMs-driven robots. 
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Figure 1. PAM-driven soft manipulators. (a) OCTARM continuum manipulator; (b) BIONIC HAN-
DLING ASSISTANT; (c) a cylindrical manipulator; (d) continuum robot with parallel cable and
pneumatic artificial muscles; (e) seven parallel PAMs-based manipulator with variable stiffness;
(f) four parallel PAMs-based manipulators with variable stiffness.

Despite the fact that PAM possesses excellent application prospects in soft robots, be-
cause of friction loss, rubber tube elasticity, and the unique geometric structure, it presents
a severe asymmetric hysteresis phenomenon, preventing PAM-driven soft manipulators
from positioning accurately [17–19]. Further complicating matters, parallel PAMs con-
tained in the soft manipulator are constrained to interact with each other; thus, the system
is negatively affected by the coupled hysteresis among different PAMs, increasing diffi-
culties in precise modeling and control of the PAM-driven soft manipulators to a higher
degree. It is noted that the hysteresis coupling effect almost exists in any multiple PAMs-
actuated parallel system. In order to compensate and decouple the hysteresis coupling
effect, an effective modeling and control strategy should be investigated. Currently, hys-
teresis modeling and compensation control for smart materials have significantly attracted
the attention of researchers [20–22]. Now, available hysteresis models can be broadly
classified into physics-based models and phenomenology-based models. Physics-based
models, such as the Maxwell-slip model, are derived from the working principles of sys-
tems and material properties [23], meeting difficulties in establishing hysteresis models
with high precision for some simplifications. Therefore, phenomenology-based hysteresis
models appear, and plenty of work has been conducted. The models based on differen-
tial equations and the models based on operators are dominant phenomenology-based
hysteresis models. For example, the Bouc–Wen model, as a representation of the differential-
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based models, adopts nonlinear differential equations to calculate the PAM hysteresis [24].
Krasnosel’skii–Pokrovskii (KP) models [25,26], modified Prandtl–Ishlinskii (MPI) mod-
els [27], Preisach models [28,29], generalized Prandtl–Ishlinskii (GPI) [30,31] models, and
some other operator-based models fit hysteresis by weighting and summing multiple
hysteresis operators. The above existing hysteresis models are mostly concerned with the
inherent hysteresis (compared with coupled hysteresis effects) in PAMs, and different PAM
couplings are rarely concerned in hysteresis models. For compensation control of parallel
PAMs-based manipulators, mechanical couplings are usually regarded as unmodeled dis-
turbances, and they are solved by introducing feedback controllers parallel with individual
inverse hysteresis compensators, complicating the controller design. As an example, ref-
erence [32] employed the Preisach model to characterize the hysteresis behavior of PAMs
and integrated a feedback controller with the inverse Preisach compensator to address the
interference among different PAMs. Although reference [33] proposed a lumped model
considering mechanical coupling and simple friction with constant curvature assumption
for a pneumatic manipulator, it did not accurately describe the hysteresis behavior of the
soft manipulator. Particularly, the model calculation is too complicated to achieve control;
hence, it needs to be linearized, and a closed-loop controller is employed simultaneously to
enhance control accuracy. To avoid time-consuming calculation and model simplification,
reference [34] derived a recurrent neural network-based model for a pneumatic manipula-
tor, focusing on learning the coupled relationship between actuator length variations and
the manipulator’s posture. However, this model lacks sufficient calculations for hysteresis
effects between pressure and the actuator length responses, and is not suitable for low-level
controller design.

Based on the above discussions, the research work on modeling of the coupled hystere-
sis effect in the multiple PAMs-based manipulator is still open, and successful modeling
methods can greatly promote the further development of pneumatic manipulator control.
This paper conducts research on modeling and compensation of the coupled hysteresis
behavior of the soft manipulator with variable stiffness. The main contributions of this
paper are illustrated as follows:

(1) This paper firstly presents a series of experiments to characterize the coupled hystere-
sis behavior of the soft manipulator with variable stiffness based on PAMs.

(2) According to existing literature reviews, now, available hysteresis models mostly
concentrate on modeling individual hysteresis effects (compared with coupled hys-
teresis effects) in the PAM, and few hysteresis models have been established involving
hysteresis couplings of the PAM-based manipulator, especially with variable stiffness.
Based on the input–output behavior characteristics, a coupled hysteresis model that
comprehensively considers stiffness influence is proposed. The newly proposed model
is constructed of three serial parts, including an inherent hysteresis part, an actuator
coupling part, and a stiffness-dependent part. To our knowledge, the model in this
paper innovatively predicts the hysteresis coupling of the parallel PAMs-based robot
with variable stiffness, exhibiting outstanding generalization ability and precision. We
aim to demonstrate that the proposed model with high precision on pneumatic ma-
nipulators takes actuator coupling, inherent hysteresis, variable stiffness mechanism,
and other nonlinearities in complicated systems into account as much as possible.
Experimental validations show that the proposed model can predict the hysteresis
coupling of the manipulator under various operation conditions.

(3) The model is readily applicable to compensation for parallel PAMs-driven robots. Through
directly learning the compensator, decoupling and compensation for the manipulator have
been successfully achieved, prominently enhancing its positioning precision.

The rest of the paper is as follows. Section 2 tests and analyzes quantitatively cou-
pled hysteresis responses of a PAM-driven manipulator with variable stiffness. Section 3
establishes a coupled hysteresis model. Section 4 derives a decoupled inverse compensator
using the model proposed in Section 3. Additionally, Section 5 of this paper conducts
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identifications and validations of the proposed model and compensator, accompanied by
relevant discussions. Finally, Section 6 of the paper summarizes the conclusions.

2. Coupled Hysteresis Characteristics of the Soft Manipulator
2.1. Experiment Setup

The experimental system for quantitatively investigating and analyzing the input–
output responses of the pneumatic manipulator is completed in our laboratory, as shown
in the Figure 2, which contains the following elements.
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Figure 2. Experimental system for coupled input–output response test of the soft manipulator.

(1) Soft manipulator: Figure 3a illustrates the structural design of the soft manipulator
manufactured in the laboratory. Between the two parallel disks, one extensor PAM
and three contractile PAMs are installed. To ensure continuous interaction between
contractile and extensor PAMs during movements, the braided woven meshes of
the extensor PAM and the contractile PAM are tied up with nylon ties along the
axis direction. Figure 3b shows the cross-direction view of the manipulator. It can
be seen that contractile PAM I, PAM II, and PAM III are placed evenly around the
extensor PAM, indicating an angle of ∠O1OO2 = ∠O1OO3 = ∠O2OO3 = 120◦.
To be customized easily and reduce cost, PAMs adopted in the manipulator are
manufactured by hand in the laboratory. Geometrical parameters are shown in
Table 1. Due to parallel and symmetrical structure design, after inflation, the length
variation of the extensor PAM can be calculated by the average length variations of
different contractile PAMs; thus, the end position of the manipulator is determined by
the outputs of contractile PAMs. The extensor PAM has an effect on regulating the
stiffness of the manipulator. The manipulator with higher pressure in the extensor
PAM has higher stiffness than that of the manipulator with lower pressure under
the same pressure in contractile PAMs [15]. In addition, based on the antagonistic
driving mechanism of extensor and contractile PAMs, the soft manipulator can achieve
stiffness varying independently from its position by simultaneously inflating or
deflating two types of PAMs [15,16].

Table 1. The structural parameters of the soft manipulator.

Initial Length Initial Braid Angel Initial Diameter Withstand Voltage Range

Extensor PAM 600 mm 60◦ 45 mm 2.5 bar
Contractile PAM 600 mm 35◦ 30 mm 2.5 bar

(2) Driving system: To actuate the manipulator, the driving system consists of an air
compressor, four proportional valves (SMC, ITV2050-212L), a pneumatic triplet, a
host PC, and a dSPACE. A host PC with Simulink is used to communicate with the
dSPACE. The analog signals designed in the Simulink are downloaded to the dSPACE
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and excite proportional valves; thus, the desired inflation pressure is applied to the
soft manipulator.

(3) Perception system: The experimental perception system mainly includes four pressure
sensors and three displacement sensors. During experiments, in order to measure the
length variations of contractile PAM I, PAM II, and PAM III, displacement sensor wires
are threaded through cable guides located along every contractile PAM. Measurements
from displacement sensors and pressure sensors are received by the dSPACE and
saved on the PC for further investigation.
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Figure 3. The pneumatic soft manipulator. (a) Actual photograph of the manipulator. (b) Front view
of the manipulator.

2.2. Hysteresis Coupling Effects and Stiffness-Dependence

In order to provide an understanding of the coupled hysteresis behaviors of the paral-
lel PAMs-driven manipulator system, each of three contractile PAMs in the soft manipulator
is inflated with p∗ = 0.65 + 0.65 sin(0.04πt) bar alternately, as well as the other two with
zero pressure. Pressure p0 in the extensor PAM keeps 1 bar. Experimental results on the
pressure–length variations of contractile PAMs are shown in the first three lines of Figure 4.
And the sampling frequency is set to 1000 Hz. Then, all contractile PAMs are inflated
together. Figure 4j–l show the relationships between p1 (the pressure of PAM I) and y1
(the displacement of PAM I), p2 (the pressure of PAM II) and y2 (the displacement of PAM
II), and p3 (the pressure of PAM III) and y3 (the displacement of PAM III), respectively.
As introduced in the above Section 2.1, when the pressure within contractile PAMs re-
mains unchanged, the manipulator stiffness increases as the pressure of the extensor PAM
rises [15]. Therefore, this paper employs the pressure p0 within the extensor PAM to repre-
sent the manipulator stiffness. To reveal the influence of manipulator stiffness on its output
behavior, relationships between p1 = 0.35 sin(0.04πt) + 0.35 bar and output variations
of PAM I, PAM II, and PAM III corresponding to p0 = 0, 0.5, 1.0, 1.5, 2.0 and 2.5 bar
and p2 = p3 = 0 bar are investigated, respectively. Figure 5 shows partial results with
p0 = 0, 0.5, 1.0 bar. In view of Figures 4 and 5, the hysteresis and mechanical coupling
effects in the manipulator system can be clearly seen. (1) Hysteresis effects: There are
obvious hysteresis characteristics in PAMs, and the hysteresis is asymmetric and possesses
a dead zone. The maximum width ratio of the hysteresis loop calculated in the form of
ew = (

∣∣yup − ydown
∣∣/|ymax − ymin|) × 100%, (yi

up and yi
down are PAM output values cor-

responding to the middle input value, yi
max and yi

min define the maximal and minimal
PAM output, respectively) indicates that ew is within the range of [28.5%, 50.1%]. The
hysteresis will cause serious inaccuracy and even oscillation during the manipulator’s
motion. (2) Actuator coupling effects: It can be seen that there are coupling behaviors
among three contractile PAMs. Taking the first line of Figure 4 as an example, if no coupling
exists, the displacements of PAM II (y2) and PAM III (y3) should be equal to zero, with
p2 = p3 = 0, while the outputs of PAM II and PAM III show obvious responses to the
input excitation p1. And their hysteresis curves exhibit different appearances although
p2 = p3 = 0. This is because there exist handmade errors in the structure parameters of
pneumatic artificial muscles, causing more intricate nonlinearity with coupled hysteresis.
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(3) Variable stiffness effects: The comprehensive experimental results in Figure 5 suggest
that the stiffness variation produces non-negligible effects on coupled hysteresis loops,
especially on the outputs of PAMs with low pressure. It is very intuitive to see that the
pressure p0 has a nonlinear effect on the outputs of contractile PAMs, which means that
the stiffness state acts on the coupled outputs of the soft manipulator system. The output
amplitudes of contractile PAM II and PAM III sharply decrease with increasing stiffness,
while the output amplitude of the contractile PAM I has a small change compared to PAM
II and PAM III. The reason is that pressure in the PAM II and PAM III remains zero, which
is much lower than that in the PAM I, and they have weaker anti-interference ability. To our
best knowledge, there are few studies comprehensively considering the above-mentioned
hysteresis effects and mechanical coupling, especially with variable stiffness effects, when
modeling the PAM-based soft manipulator with high precision. A comprehensive coupled
hysteresis model should be developed first for better positioning.
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3. Modeling of Coupled Hysteresis

The experimental results in Section 2 show that not only do PAMs have inherent hys-
teresis properties, outputs of different PAMs distributed parallelly in the soft manipulator,
but they also depend on each other and show strongly stiffness-dependent characteristics.
To describe this complex behavior, a stiffness-dependent and coupled hysteresis model
(SDCHM) consisting of three parts is established, as shown in Figure 6. Generalized Prandtl–
Ishlinskii (GPI) models GPI1, GPI2, and GPI3 are used to model the inherent hysteresis
behavior of each contractile PAM, respectively. The GPI model features a simple structure
and high flexibility, suitable for addressing PAM hysteresis with dead zones and asymmetry.
Furthermore, the GPI model has an analytical inverse solution, providing convenience for
the inverse compensator derivation. A linear coupling structure is cascaded in series in the
actuator coupling submodule. Gij(i = 1, 2, 3; j = 1, 2, 3) are gains that describe the input–
output coupling in the manipulator system. For circumventing simplifying assumptions
and facilitating the completion of compensators, inspired by data-driven modeling ap-
proaches, the stiffness dependence of the output behavior of the soft manipulator and other
unmodeled errors in the first two subparts are fitted in the stiffness-dependent submodule
g(·) using a T-S fuzzy neural network (TSFNN) [35]. The inflation pressure of p1, p2, and
p3 in contractile PAMs firstly acts upon the inherent hysteresis submodule, and outputs
v1, v2, and v3 from the inherent hysteresis submodule are subsequently input into the
actuator coupling submodule. Before the final calculated displacement of ŷk(k = 1, 2, 3) is



Appl. Sci. 2024, 14, 10240 8 of 23

generated, the actuator coupling submodule outputs hk(k = 1, 2, 3) and inflation pressure
p0 in the extensor PAM flow into the stiffness-dependent submodule for further calculation.
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3.1. Inherent Hysteresis Submodel

Among many kinds of available inherent hysteresis models, the generalized P-I hys-
teresis (GPI) model [36] is applied for its simplicity, good generalization ability for sym-
metric and asymmetric hysteresis, and the availability of its analytical inverse model. It
should be noted that many other asymmetric hysteresis models for the PAM can also be
used, such as the EUPI model [37], MPI model, etc.

The GPI model is defined by using weighted generalized play operators [33] to estab-
lish asymmetric and saturated hysteresis. The generalized play operator can be derived by
a discontinuous function switching between envelop functions of rising and falling edges.
The expression of the generalized play operator is shown in Equation (1):{

w(0) = Fr, γ [pk](0) = fr, γ(pk(0), 0),
w(t) = Fr, γ [pk](t) = fr, γ(pk(t), Fr, γ [pk](t− 1)).

(1)

with

fr, γ(pk(t), w(t− 1)) =


Γ ◦ γR ◦ pk(t), if pk(t) > pk(t− 1),
Γ ◦ γL ◦ pk(t), if pk(t) < pk(t− 1),
w(t− 1), if pk(t) = pk(t− 1).

(2)

where Γ defines the classical play operator, and ‘◦’ represents the composition of functions.
w(t) is the generalized play operator output, and pk(t), (k= 1, 2, 3) is the input value.
r denotes the dead zone threshold. γL(·) and γR(·) are envelop functions satisfying
γR(pk(t))− r ≤ γL(pk(t)) + r. Then, according to the play operator [38], Equation (2) can
be expanded as

fr, γ(pk(t), w(t− 1)) =


max(γR(pk(t))− r, w(t− 1)), if pk(t) > pk(t− 1),
min(γL(pk(t)) + r, w(t− 1)), if pk(t) < pk(t− 1),
w(t− 1), if pk(t) = pk(t− 1).

(3)

In order to describe and compensate for the PAM hysteresis with output saturation
characteristics, hyperbolic tangent envelope functions are adopted in Equation (4). It is
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worth noting that envelop functions can be defined as other function forms, and we only
chose one form to discuss in this paper.{

γR(pk(t)) = tanh(ak
1 pk(t) + ak

2) + ak
3,

γL(pk(t)) = tanh(bk
1 pk(t) + bk

2) + bk
3.

(4)

Then, the output of the GPI model can be defined as:

GPI[pk](t) =
∫ R

0
xk(rk)Fr, γ[pk](t)dr (5)

where xk(rk) is the weight coefficient of the GPI[pk](t). In practical application, a finite
number of GPI operators are sufficient to characterize the hysteresis; thus, the GPI model
in Equation (5) can be discretized as Equation (6):

GPI[pk](t) =
N

∑
i=0

xk(rk
i )Fri , γ[pk](k) (6)

In Equation (6), N denotes the number of operators. xk (rk
i ) denotes the weight

coefficient of the ith generalized play operator, and the value of rk
i is given as

rk
i =

i
N

pkmax(i = 0, 1, 2, · · · , N) (7)

In Equation (7), pkmax represents the maximum input value. Parameters xk
i (r

k
i ),

[ak
1, ak

2, ak
3], and [bk

1, bk
2, bk

3] should be identified based on experimental data.

3.2. Actuator Coupling Submodule

Outputs [h1, h2, h3] of the actuator coupling submodule are regarded as the combina-
tion of individual outputs from different PAMs represented by v1, v2, and v3. The mathe-
matical formulation of the mechanical coupling submodule is as shown in Equation (8):

h1(t) = G11v1 + G21v2 + G31v3,
h2(t) = G12v1 + G22v2 + G32v3,
h3(t) = G13v1 + G23v2 + G33v3.

(8)

where v1 = GPI1[p1](t), v2 = GPI[p2](t), and v3 = GPI[p3](t). Gij(i = 1, 2, 3; j = 1, 2, 3)
are coupling coefficients. The actuator coupling submodule is able to extend to a combina-
tion of n GPI models, contingent on the number of actuators coupled with each other.

3.3. Stiffness-Dependent Submodule

Neural networks have strong nonlinear mapping abilities to comprehensively and
accurately describe highly nonlinear systems. In this paper, the stiffness-dependent sub-
module g(·) is fitted by the T-S fuzzy neural network (TSFNN) that has good generalization
capacity for modeling the nonlinear systems. The structure of g(·) is shown in the following
Figure 7.

This structure of g(·) in Figure 7 is referred to the TSFNN structure [39] based on
if–then rules. The fuzzification process is achieved in the first layer. Each input element
corresponds to three fuzzy variables, and membership relations are represented by the
Gaussian membership function calculated in Equation (9):{

L1
ij(t) = µij(t) = exp {− (Ii(t)−mij)

2/2σ2
ij}, ( i= 1, 2, . . . , n; j= 1, 2, 3),

Ii(t) ∈ {h1(t), h2(t), h3(t), p0(t)}.
(9)
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where input elements I1(t), I2(t), · · · , In(t) are composed of {h1(t), h2(t), h3(t), p0(t)}, and
there are n = 4 input nodes in total. Figure 7 shows that every input matches with three
membership functions µij(i = 1, 2, . . . , n; j = 1, 2, 3). L1

ij(t) = µij(t) shows outputs of the
first layer. σij and mij are antecedent parameters representing the width and center of Gaus-
sian function, respectively. There are N1 = 3n nodes in the first layer. The complexity of
the stiffness-dependent submodule is mainly determined by the number of fuzzy variables.
Fewer fuzzy variables will reduce model accuracy, but more fuzzy variables will reduce
the real-time performance of the model, and more training samples will be required. The
output L2

d(t) of the second layer is calculated as shown in Equation (10):

L2
d(t) =

n

∏
i=1

µij(t), (j ∈ {1, 2, 3}; d= 1, 2, · · · , N2) (10)

Then, L2
d(t) is normalized in the third layer with the output L3

d(t):

L3
d(t) = ωh = L2

d(t)/
3n

∑
d=1

L2
d(t), (d= 1, 2, · · · , N3) (11)

The node number in the third layer is equal to that in the second layer, meaning that
N2 = N3 = 3n.
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The fourth layer and the fifth layer in this paper constitute the consequent network
part with three parallel subnetwork outputs corresponding to estimated length variations
of different contractile PAMs. Each node in the consequent network part carries out a
selection of inputs of this layer according to the if–then fuzzy logic rule. Thus, each
subnetwork has the same number of nodes as the third layer (N4 = N3). As shown in
Equation (12), L4

dk(t) (d= 1, 2, · · · , N4) defines the output of the kth subnetwork in the
fourth layer, where pk

di(t) represents the consequent parameter and k indicates different
subnetworks, respectively.

L4
dk(t) = ωh

n

∑
i=1

pk
di Ai(t), (d= 1, 2, · · · , N4; k = 1, 2, 3) (12)
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The final outputs L5
k(t) of the SDCHM are obtained in the fifth layer with the calcula-

tion shown in Equation (13):

L5
k(t) = ŷk(t) =

N4

∑
d=1

L4
d(t), (k = 1, 2, 3) (13)

In the above stiffness-dependent submodule g(·), mij, σij, and pk
di should be identified

by experimental data.

4. Decoupling Inverse Compensation

On the basis of the newly developed SDCHM model, an inverse and decoupling
compensator is constructed to mitigate coupled hysteresis. In order to compensate for the
SDCHM model with three submodules, the stiffness-dependent and decoupled inverse
compensator (SDIHC) also includes three parts: the inverse hysteresis part, the decoupling
part, and the inverse stiffness-dependent part, as shown in Figure 8.
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First, the inverse stiffness-dependent submodule is constructed. g−1(·) in Figure 8
defines the inversion of g(·). Because g(·) is calculated by the TSFNN, g−1(·) is also
constructed by the same structure, as shown in Figure 7. The inverse modeling based
on neural networks has been utilized for a valid method for identifying the inversion of
a known model. Particularly, analytical solutions of the inverse model are challenging
to determine.

Second, in the decoupling submodule, the inverse operation of Equation (8) is derived
as follows: 

v1d(t) = 1
G11

(h1d − G21v2d(t)− G31v3d(t)),
v2d(t) = 1

G22
(h2d − G12v1d(t)− G32v3d(t)),

v3d(t) = 1
G33

(h3d − G13v1d(t)− G23v2d(t)).
(14)

Thirdly, the inverse hysteresis component is constructed. The inverse compensation
method for the GPI model is applied as the following Equation (15):

p̂1(t) = GPI−1[v1d](t),
p̂2(t) = GPI−1[v2d](t),
p̂3(t) = GPI−1[v3d](t).

(15)
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Because the envelop functions γR and γL are invertible, the inverse model of the GPI
model is expressed as

p̂k(t) = GPI−1[νkd](t) =


γ−1

R ◦ Γ−1 ◦ νkd(t), if νkd(t) > νkd(t− 1),
γ−1

L ◦ Γ−1 ◦ νkd(t), if νkd(t) < νkd(t− 1),
p̂k(t− 1), if νkd(t) = νkd(t− 1).

(k = 1, 2, 3) (16)

where:
Γ−1 ◦ νkd(t) = Γ−1[νkd](t)

= x̂k(rk
0)νkd(t) +

N
∑

i=1
x̂k(r̂k

i )Fr̂k
i
[νkd](t)

(17)

with
x̂k(rk

0) =
1

x(rk
0)

(18)

r̂k
i = x(rk

0)r
k
i +

i−1

∑
j=1

xk(rk
j )(r

k
i − rk

j ) (19)

x̂k(r̂k
i ) = −

xk(rk
i )

(xk(rk
0) +

i
∑

j=1
xk(rk

j ))(xk(rk
0) +

i−1
∑

j=1
xk(rk

j ))

(20)

5. Experimental Results and Discussion

In this section, experiments are performed to verify the proposed SDCHM and its
inverse compensator, SDIHC. The SDCHM identification is conducted firstly to identify
parameters. Then, the model validation is completed to show the prediction accuracy of the
SDCHM. Finally, the SDIHC is implemented for compensating and decoupling the outputs
of the soft manipulator.

5.1. SDCHM Model Identification and Validation

Since the SDCHM includes three components, identification procedures for the inher-
ent hysteresis submodule, actuator coupling submodule, and stiffness-dependent submod-
ule are conducted in three steps in order.

In the first step, outputs of the actuator coupling submodule and stiffness-dependent
submodule are set to 1. Parameters including xk

i (r
k
i ), [a

k
1, ak

2, ak
3], and [bk

1, bk
2, bk

3] in three GPI
models are identified. Since the GPI is utilized to describe the inherent hysteresis behavior
of the single PAM, pressure-displacement experimental data of each contractile PAM used
for identification are collected separately. Taking the identification of GPI1 for instance, the
input pressure signal for the manipulator is set as Equations (21) and (22):{

p1(t) =
As(t)

2 sin(0.04πt) + As(t)
2 ,

p2(t) = p3(t) = p0(t) = 0.
(21)

and

As(t) =


1.0 bar,
1.5 bar,
2.0 bar,
2.5 bar,

t ∈ [0s, 50s),
t ∈ [51s, 100s),

t ∈ [101s, 150s),
t ∈ [151s, 200s).

(22)

Input signal p1(t) and corresponding output y1(t) of the PAM I, experimentally
measured with the experimental setup in Figure 2 with the sampling frequency of 50 Hz,
are adopted to identify parameters in GPI1, and they can be found using least square (LS)
optimization. The number of generalized play operators is chosen to be N = 10, which
decides the model’s accuracy and complexity. Table 2 reflects the influence of N on model
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accuracy and complexity, where Err =
(

H
∑

t=1
|y1(t)− ŷ1(t)|/

H
∑

t=1
|y1(t)− y1,mean(t)|

)
× 100%,

and y1,mean computes the mean value of y1(t). This indicates that as N increases, the Err
value decreases, and it tends to saturate when N ≥ 10. By repeating the above process,
other parameters to be identified in GPI2 and GPI3 can be found. The final identification
results of the inherent hysteresis model are presented in Figure 9.

Table 2. Influence of the number of generalized play operators.

N 5 10 15 20

accuracy of GPI1 (Err) 2.65% 1.36% 1.52% 1.63%
number of identified parameters 12 17 22 27

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 24 
 

In the first step, outputs of the actuator coupling submodule and stiffness-dependent 
submodule are set to 1. Parameters including ( )k k

i ix r  , 1 2 3[ , , ]k k ka a a  , and 1 2 3[ , , ]k k kb b b   in 
three GPI models are identified. Since the GPI is utilized to describe the inherent hystere-
sis behavior of the single PAM, pressure-displacement experimental data of each contrac-
tile PAM used for identification are collected separately. Taking the identification of 1GPI  
for instance, the input pressure signal for the manipulator is set as Equations (21) and (22): 

1

2 3 0

( ) ( )( ) sin(0.04 ) ,
2 2

( ) ( ) ( ) 0.

s sA t A t
p t t

p t p t p t

π = +

 = = =

 (21)

and 

1.0 bar, [0 ,50 ),
1.5 bar, [51 ,100 ),

( )=
2.0 bar, [101 ,150 ),
2.5 bar, [151 , 200 ).

s

t s s
t s s

A t
t s s
t s s

∈
 ∈
 ∈
 ∈

 (22)

Input signal 1( )p t   and corresponding output 1( )y t   of the PAM I, experimentally 
measured with the experimental setup in Figure 2 with the sampling frequency of 50 Hz, 
are adopted to identify parameters in 1GPI , and they can be found using least square (LS) 
optimization. The number of generalized play operators is chosen to be N = 10, which 
decides the model’s accuracy and complexity. Table 2 reflects the influence of N on model 

accuracy and complexity, where 1 1 1 1,
1 1

ˆ( ) ( ) ( ) ( ) 100%
H H

mean
t t

Err y t y t y t y t
= =

 = − − × 
 
   , and 

1,meany  computes the mean value of 1( )y t . This indicates that as N increases, the Err value 
decreases, and it tends to saturate when 10N ≥ . By repeating the above process, other 
parameters to be identified in 2GPI  and 3GPI  can be found. The final identification results 
of the inherent hysteresis model are presented in Figure 9. 

Table 2. Influence of the number of generalized play operators. 

N 5 10 15 20 
accuracy of 1GPI  (Err) 2.65% 1.36% 1.52% 1.63% 

number of identified parameters 12 17 22 27 
 

   
(a) (b) (c) 

Figure 9. Identification results and errors of the inherent hysteresis model. (a) Identification results 

for 1GPI ; (b) identification results for 2GPI ; (c) identification results for 3GPI . 
Figure 9. Identification results and errors of the inherent hysteresis model. (a) Identification results
for GPI1; (b) identification results for GPI2; (c) identification results for GPI3.

In the second step, parameter identifications of the actuator coupling submodule
focus on coupling coefficients Gij(i = 1, 2, 3; j = 1, 2, 3). The stiffness-dependent sub-
module is still set to 1. G11 = G22 = G33 = 1 are set to consider the cascade connection
between GPIi and Gii, (i = 1, 2, 3). Gij(i ̸= j) stands for the effect of the PAM i on the
PAM j. Identifications for each parameter Gij(i ̸= j) are the same, so we only state the
identification procedure of parameter G12 in detail. First, we apply the sinusoidal signal in
Equation (21) into the identified model GPI1 to obtain the output ν1 = GPI1[p1](t); then,
G12 can be determined by the LS method to obtain the minimum result of the objective
function min

{
[C21G21 − d12]

T [C21G21 − d12]
}

, in which C21 = [ν1[1], ν1[2], · · · , ν1[Nc]],
d12 = [y2[1], y2[2], · · · , y2[Nc]]. Nc indicates the number of experimental data involved in
optimization and relies on signal period and sampling frequency. All optimized coefficients
Gij(i = 1, 2, 3; j = 1, 2, 3) are listed in Table 3.

Table 3. Optimized coefficients Gij.

Gij i = 1 i = 2 i = 3

j = 1 1 0.1521 0.5368
j = 2 0.1124 1 0.6321
j = 3 0.0356 0.2153 1

In the third step, identification of the stiffness-dependent submodule is, in fact, in-
tended to train the TSFNN in Figure 7. The stiffness-dependent submodule is employed
to model the output stiffness dependence of the pneumatic soft manipulator and other
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nonlinearities unable to be completely established in the first two submodels. As mentioned
in Figure 6, inputs to the stiffness-dependent submodule consist of virtual displacements
generated from the actuator coupling submodule and p0(t) in the extensor PAM. Therefore,
the sample set S = {INPUT, OUTPUT} is constructed with the following structure:

INPUT =


H1[t] 0 0 H1[t]

0 H2[t] 0 0
0 0 H3[t] 0

p0[t] p0[t] p0[t] p0[t]

 (23)

with 

H1[t] =
3
∑

i=1
[Gi1 ·GPIi[pi][t]],

H2[t] =
3
∑

i=1
[Gi2 ·GPIi[pi][t]],

H3[t] =
3
∑

i=1
[Gi3 ·GPIi[pi][t]].

with t = 1, 2, · · · , N1 (24)

where Hi, (i = 1, 2, 3) is obtained from the output of the actuator coupling submodule.
Contractile PAMs are inflated with pressure pi[t] =

As(t)
2 sin(0.04πt) + As(t)

2 , (i = 1, 2, 3)
in Equation (21), and N1 = fr · t f 1 · Ts, where the sampling frequency is fr = 20 Hz, the
number of cycles is t f 1 = 2, and the period is Ts = 50s. The output sample set, OUTPUT,
is shown in the following Equation (25):

OUTPUT =

y1
1[t] y2

1[t] y3
1[t] y4

1[t]
y1

2[t] y2
2[t] y3

2[t] y4
2[t]

y1
3[t] y2

3[t] y3
3[t] y4

3[t]

, with t = 1, 2, · · · , N1 (25)

In Equation (25), y1[t], y2[t], and y3[t] are the experimental displacements of contractile
PAM I, PAM II, and PAM III, respectively. Each column in matrix (25) represents experi-
mentally collected outputs of contractile PAMs in the soft manipulator corresponding to
every column input of Equation (24), and superscripts mark the number of columns.

In order to highlight the influence of manipulator stiffness on the manipulator outputs,
experiments are repeated under different inflation pressures p0, and p0 increases from 0 to
2.5 bar, with an increment of 0.1 bar. In order to sufficiently train the stiffness-dependent
submodel, among the experimental data collected above, the data corresponding to pres-
sure p0 ∈ [0 bar, 0.2 bar, 0.4 bar, 0.6 bar, 0.8 bar, 1.0 bar, 1.2 bar, 1.4 bar, 1.6 bar, 1.8 bar, 2.0 bar,
2.2 bar, 2.5 bar] are selected as the training set. Meanwhile, data corresponding to pressure
p0 ∈ [0.1 bar, 0.5 bar, 0.7 bar, 1.1 bar, 1.5 bar, 1.7 bar, 2.3 bar] are selected as the validation set,
and the rest of the samplings are utilized as the test set. Hence, 104,000 training samples in
total are employed to train the stiffness-dependent submodule, and 56,000 samples and
48,000 samples act as the validation and test set, respectively. By providing the TSFNN
with a diverse dataset that comprehensively covers the normal operating pressure ranges
of PAMs, its generalization ability can be enhanced. Furthermore, through training and
optimization with large-scale sample data, the computational efficiency and response speed
of the TSFNN can be improved.

During the training process of the stiffness-dependent submodule, the particle swarm
optimization method is used for antecedent parameter identifications due to its excellent
global and local search capacity, and the LS method is utilized to complete consequent
parameter identifications to improve the training efficiency of the stiffness-dependent
submodule. The loss function is shown in Equation (26):

loss =

N1
∑

t=1
[(y1[t]− ŷ1[t])

2 + (y2[t]− ŷ2[t])
2 + (y3[t]− ŷ3[t])

2]

N1
(26)
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where ŷ1[t], ŷ2[t], and ŷ3[t] are model results regarding the length variations of PAM I, PAM
II, and PAM III.

Based on the above analysis, Algorithm 1 gives the identification process of the
proposed SDCHM. The neural network training and experiments discussed in this paper
are all conducted on a computer equipped with a 3.40 GHz × 64 Intel Core i7 processor, 24
GB of RAM, and a GeForce RTX 3050 GPU.

Algorithm 1: Training process of the SDCHM model

Inputs: The training datasets of pressure and displacements of the soft manipulator
Outputs: The displacement outputs of the manipulator from the SDCHM model
Set: number of generalized play operators N = 10; maximum iterations ite = 50; the population
size of particles L = 20; learning factors c1 = c2 = 0.5;
Initialize parameters: Parameters in the inherent hysteresis submodule such as

xk(rk
i ) = 0, (i= 1, 2, · · · , N; k = 1, 2, 3

)
, [ak

1, ak
2, ak

3] = [0, 0, 0], (k= 1, 2, 3),

[bk
1, bk

2, bk
3] = [0, 0, 0], (k= 1, 2, 3); parameters in the actuator coupling

submodule such as Gij = 1, (i = 1, 2, 3; j = 1, 2, 3); parameters in the
stiffness-dependent submodule such as mij ∼ N(0, 1), σij ∼ N(0, 1), and
pk

di ∼ N(0, 1);
1: Optimize parameters of xk(rk

i ), [a
k
1, ak

2, ak
3], and [bk

1, bk
2, bk

3] in the inherent hysteresis submodule
by LS method with input and output data of each contractile PAM in the soft manipulator, and
outputs of actuator coupling submodule and stiffness-dependent submodule are set as 1.
2: Obtain the identified inherent hysteresis submodule output and input into the actuator
coupling submodule;
3: Calculate the actuator coupling submodule output according to Equation (8);
4: Optimize parameters of Gij, (i = 1, 2, 3; j = 1, 2, 3) in the actuator coupling submodule by LS

method with objective function min
{
[CijGij − dij]

T [CijGij − dij]
}

, and output of the
stiffness-dependent submodule is set as 1;
5: Obtain the identified actuator coupling submodule output and input into the
stiffness-dependent submodule;
6: While i ≤ ite,

i← i+1
Calculate the stiffness-dependent submodule output according to Equations (9)–(13);

Compute loss function loss =

N1
∑

k=1
[(y1[t]−ŷ1[t])

2+(y2[t]−ŷ2[t])
2+(y3[t]−ŷ3[t])

2]

N1
;

Optimize the consequent parameters by the LS method;

Compute loss function again loss =

N1
∑

k=1
[(y1[t]−ŷ1[t])

2+(y2[t]−ŷ2[t])
2+(y3[t]−ŷ3[t])

2]

N1
;

Optimize the antecedent parameters by the particle swarm optimization method;
Update the parameters.

End while
Return training results of the SDCHM model

To validate the identified SDCHM model, the stiffness-dependent and coupled hys-
teresis outputs of the pneumatic manipulator corresponding to pressure in the contractile
PAM p∗ = 0.7 sin(0.04πt) + 0.7 bar and p0 = 0.1, 1.5, 1.7 bar are predicted, respectively.
To further evaluate the performance of the SDCHM, the results of the TSFNN model
whose structure is the same to that of the stiffness-dependent submodule are employed
as control groups. For example, Figure 10 displays the comparisons among the proposed
model results, TSFNN model results, and the experimental data with p0 = 0.1 bar. Figures
in the first line of Figure 10 are the manipulator outputs corresponding to pressures of
[p1, p2, p3] = [p∗ , 0, 0], and the figures in the middle two rows of Figure 10 are manipulator
outputs under inputs of [p1, p2, p3] = [0, p∗ , 0] and [p1, p2, p3] = [0, 0, p∗], respectively. The
remaining figures in Figure 10 are manipulator outputs with [p1, p2, p3] = [p∗, p∗, p∗]. The re-
sults intuitively indicate that the SDCHM models are able to predict the stiffness-dependent
hysteresis coupling behavior of the soft manipulator with high accuracy, surpassing the
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precision of the TSFNN model. This can be attributed to the limited number of fuzzy sets
in the TSFNN used for interpolation and its simple structure when not combined with the
inherent hysteresis submodule and stiffness-dependent model, making it difficult to meet
the demands of high-precision modeling. Increasing the number of fuzzy sets in the TSFNN
would significantly prolong the training time, and it would require collecting more experi-
mental datasets to prevent overfitting in the training process. To quantitatively calculate
the model precision, Err, and root mean square error (RMSE), the RMSE is defined as:

RMSEi =

√√√√num

∑
j=1

(yij − ŷij)
2/num, (i= 1, 2, 3) (27)

where num denotes the number of data involved in the calculation and ŷij(i = 1, 2, 3)
and yij(i = 1, 2, 3) represent SDCHM model outputs and real outputs of contractile
PAMs. Table 4 depicts comparisons of prediction accuracy between different models
based on the results of Figure 10. Figure 11 shows the RMSE of the model results with
p0 = 0.1, 1.5, 1.7 bar, intuitively indicating that the SDCHM model has better prediction
ability and demonstrates good generalization under various working conditions of the soft
manipulator. As mentioned in Section 2, contractile PAMs with the same pressure show
inconsistent output behavior because of manual fabrication errors. However, the SDCHM
model is capable of capturing complex nonlinear effects.
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(a) p1 = p∗, p2 = p3 = 0, p1 − y1; (b) p1 = p∗, p2 = p3 = 0, p1 − y2; (c) p1 = p∗, p2 = p3 = 0,
p1 − y3; (d) p2 = p∗, p1 = p3 = 0, p2 − y1; (e) p2 = p∗, p1 = p3 = 0, p2 − y2; (f) p2 = p∗,
p1 = p3 = 0, p2 − y3; (g) p3 = p∗, p1 = p2 = 0, p3 − y1; (h) p3 = p∗, p1 = p2 = 0, p3 − y2;
(i) p3 = p∗, p1 = p2 = 0, p3 − y3; (j) p3 = p1 = p2 = p∗, p1 − y1; (k) p3 = p1 = p2 = p∗, p2 − y2;
(l) p3 = p1 = p2 = p∗, p3 − y3.

Table 4. Comparisons of prediction accuracy between different models.

SDCHM Model TSFNN Model

Group Err (%) RMSE (mm) Err (%) RMSE (mm)

(a) 1.74 1.17 16.45 11.27
(b) 1.03 0.45 10.59 5.49
(c) 1.02 0.40 13.21 7.20
(d) 1.02 0.43 10.35 4.80
(e) 1.70 1.13 17.37 12.98
(f) 1.02 0.40 7.83 2.60
(g) 0.98 0.37 6.32 2.24
(h) 0.96 0.32 6.53 2.69
(i) 1.71 1.15 10.26 4.84
(j) 2.88 2.14 10.10 4.01
(k) 1.53 1.03 16.12 10.99
(l) 1.55 1.04 18.11 13.64
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*

3 1 2p p p p= = = , 2 2p y− ; (l) 
*

3 1 2p p p p= = = , 3 3p y− . 

Table 4. Comparisons of prediction accuracy between different models. 

 SDCHM Model TSFNN Model 
Group Err (%) RMSE (mm) Err (%) RMSE (mm) 

(a) 1.74 1.17 16.45 11.27 
(b) 1.03 0.45 10.59 5.49 
(c) 1.02 0.40 13.21 7.20 
(d) 1.02 0.43 10.35 4.80 
(e) 1.70 1.13 17.37 12.98 
(f) 1.02 0.40 7.83 2.60 
(g) 0.98 0.37 6.32 2.24 
(h) 0.96 0.32 6.53 2.69 
(i) 1.71 1.15 10.26 4.84 
(j) 2.88 2.14 10.10 4.01 
(k) 1.53 1.03 16.12 10.99 
(l) 1.55 1.04 18.11 13.64 
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5.2. Implementation of the Decoupling Inverse Compensator SDIHC

According to Figure 8, the implementation of the SDIHC also requires three parts: the
inverse stiffness-dependent submodule identification, decoupling submodule identification,
and the inverse hysteresis submodule identification.

Part 1: The inverse stiffness-dependent submodel is identified. The network structure of
the g−1(·) depicted in the Figure 8 is identical to the TSFNN shown in Figure 6. To identify
the inverse stiffness-dependent submodule, inputs and outputs of S = {INPUT, OUTPUT}
are taken as the corresponding outputs and inputs of g−1(·). During training of the inverse
stiffness-dependent submodule, uniform optimization methods and training parameters
like the iteration number and the population size of particles are employed for training the
stiffness-dependent submodule.

Part 2: The decoupling submodule is identified. According to the identification of
the actuator coupling submodule, parameters in the decoupling submodule have been
confirmed. We adopted the Jacobi iterative method [40] to solve the linear simultaneous
Equation (15) for programming and computation simplification. Thus, the following
iterative formula is used, and m represents the following iterations:

ν
(m+1)
d = BJν

(m)
d + D−1b (28)
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with 

νd = [ν1d, ν2d, ν3d],
BJ = D−1(D−A),

D = diag(G11, G22, G33),

A =

G11 G21 G31
G12 G22 G32
G13 G23 G33

,

b = [h1d, h2d, h3d].

(29)

When the error of two adjacent iteration results
∣∣∣ν(m+1)

id − ν
(m)
id

∣∣∣ ≤ 0.01, (i= 1, 2, 3), the
iteration is suspended, and outputs of the decoupling submodel are finally confirmed.

Proof of Convergence for Equation (28). The Jacobi iterative method declared that, assum-
ing the Jacobi iterative matrix is ∥BJ∥ < 1, the Jacobi iterative method converges to any
initial value. According to the identified actuator coupling submodule,{

D = diag(1, 1, 1),
A = [1 0.1521 0.5368; 0.1124 1 0.6321; 0.0356 0.2153 1].

(30)

Thus, BJ = D−1(D − A) = [0 −0.1521 −0.5368;−0.1124 0 −0.6321;
−0.0356 −0.2153 0] and ∥BJ∥ = −0.016 < 1. The Jacobi iterative method is convergent

for Equation (27). □

Part 3: The inverse hysteresis submodule is identified. The GPI model has an
analytical inverse solution, and based on the determined parameters of the SDCHM
model in the above section, the inverse hysteresis submodule can be completed following
Equations (15)–(20).

Figure 12 illustrates the relationship between desired outputs and compensation
results with the SDIHC and its control groups. In the first line of Figure 12, the desired
outputs of y1d = 6 sin(0.04πt) + 33 mm, y2d = y3d = 33 mm with p0 = 0.7 bar are
tracked. In the second line of Figure 12, the desired outputs of y2d = 6 sin(0.04πt) + 33 mm,
y1d = y3d = 33 mm with p0 = 1.5 bar are tracked; and in the last line, the desired
outputs of y3d = 6 sin(0.04πt) + 33 mm, y1d = y2d = 33 mm with p0 = 2.3 bar are tracked.
Yellow lines in Figure 12 indicate the SDIHC compensator results. As control groups,
experiments of individual hysteresis compensator without the decoupling and inverse
stiffness-dependent submodules are also conducted, and these are represented by blue lines.
Tangerine lines denote the ideal linearity between the desired outputs and reference inputs,
and black lines show PID control results. Table 5 shows the RMSE and ew of different
compensators. It can be found that the results without decoupling and inverse stiffness-
dependent submodules lead to the worst accuracy because the coupling between parallel
PAMs play a significant role in the system behaviors. The SDIHC algorithm successfully
completed hysteresis compensation and decoupling, and the RMSE of the compensation
results was no more than 1.56 mm. As for the hysteresis compensation effect of the SDIHC
compensator, the maximum width ratio ew of the hysteresis loops with different stiffness
states after applying the SDIHC compensator was within the range of [0.58%, 2.33%],
clearly lower than the experimental results before compensation in Section 2.

To further validate the SDIHC, a desired signal y1d = y2d = y3d = abs[40 sin(0.04πt) +
5] mm with p0 = 0.6 bar is tracked in Figure 13. The steady-state error with the proposed
SDIHC was within the range of [−1.33 mm, 1.25 mm]. It can be observed that the proposed
compensator provided an effective method for precise end position control of the pneumatic
soft manipulator.
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Table 5. RMSE and ew comparisons of different compensation methods.

SDIHC Compensator Individual Hysteresis Compensator PID-Based Compensator

Group ew (%) RMSE (mm) ew (%) RMSE (mm) (%) RMSE (mm)

(a) 0.58 0.21 6.12 2.31 2.89 3.01
(b) 0.87 1.09 7.13 7.55 3.51 4.33
(c) 1.02 1.21 6.78 8.53 4.03 4.96
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Table 5. Cont.

SDIHC Compensator Individual Hysteresis Compensator PID-Based Compensator

Group ew (%) RMSE (mm) ew (%) RMSE (mm) (%) RMSE (mm)

(d) 0.83 1.06 7.02 9.12 3.92 4.01
(e) 0.62 0.34 3.58 3.55 1.75 3.36
(f) 0.75 1.02 6.88 11.10 3.42 3.89
(g) 1.86 1.33 10.23 13.86 6.21 5.87
(h) 2.33 1.56 8.89 10.21 3.89 5.12
(i) 0.61 0.29 1.89 2.03 2.05 1.96
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6. Conclusions

Soft manipulators with different PAMs parallel to each other process asymmetric
hysteresis, actuator couplings, and stiffness-dependent nonlinearities, leading to inaccuracy
positioning. To compensate for system nonlinearities and to decouple the actuator cou-
pling effects, a SDCHM model for the parallel PAMs-driven manipulator is proposed. The
SDCHM presents a cascaded model architecture with an inherent hysteresis submodule, an
actuator coupling submodule, and a stiffness-dependent submodule. Based on the estab-
lished model, its compensator SDIHC can be achieved easily without any simplification,
allowing it to compensate and decouple for actuator hysteresis couplings at different stiff-
ness states. The experimental results suggest that the SDCHM performs well and possesses
good accuracy in predicting inputs–outputs of the soft manipulator in different working
conditions. In addition, the compensation effect of the inverse compensator SDIHC is
significantly better than that of the controller only with the inverse hysteresis compensator,
successfully mitigating the hysteresis coupling phenomenon in the PAM-based soft ma-
nipulator. Although the proposed modeling and compensating methods are showcased
on a manipulator driven by three parallel PAMs, they are believed to be easily extended
to parallel driving systems based on more PAMs. However, the proposed model has not
yet considered the impacts of high driving frequencies and external interferences, such
as changes in external loads, on the hysteresis couplings of the PAM-based manipulator.
Additionally, extending the proposed method to soft manipulators with multiple sections
is worth further study, and a closed-loop strategy based on the proposed model will be the
next key point for more robust control.
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