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Abstract: Peptic ulcers and stomach cancer are common conditions that impact the gastrointestinal
(GI) system. Wireless capsule endoscopy (WCE) has emerged as a widely used, noninvasive technique
for diagnosing these issues, providing valuable insights through the detailed imaging of the GI tract.
Therefore, an early and accurate diagnosis of GI diseases is crucial for effective treatment. This paper
introduces the Intelligent Learning Rate Controller (ILRC) mechanism that optimizes the training of
deep learning (DL) models by adaptively adjusting the learning rate (LR) based on training progress.
This helps improve convergence speed and reduce the risk of overfitting. The ILRC was applied to
four DL models: EfficientNet-B0, ResNet101v2, InceptionV3, and InceptionResNetV2. These models
were further enhanced using transfer learning, freezing layers, fine-tuning techniques, residual
learning, and modern regularization methods. The models were evaluated on two datasets, the
Kvasir-Capsule and KVASIR v2 datasets, which contain WCE images. The results demonstrated
that the models, particularly when using ILRC, outperformed existing state-of-the-art methods in
accuracy. On the Kvasir-Capsule dataset, the models achieved accuracies of up to 99.906%, and on
the Kvasir-v2 dataset, they achieved up to 98.062%. This combination of techniques offers a robust
solution for automating the detection of GI abnormalities in WCE images, significantly enhancing
diagnostic efficiency and accuracy in clinical settings.

Keywords: gastrointestinal; wireless capsule endoscopy; EfficientNet-B0; balancing; data augmentation

1. Introduction

The small bowel is the mid-part of the GI tract between the stomach and the large
bowel. It has a surface area of approximately 30 m2, including the villi’s surface, and is three
to four meters long. It is an essential part of the digestive system for absorbing nutrients.
As a result, small bowel disorders may result in nutritional deficiencies in children and
adults and severe growth retardation in children [1].

The most common types of stomach disorders, including bleeding, pylorus erosion,
ulcers, and polyps, require extensive medical attention because stomach abnormalities
cause several diseases. In 2018, stomach cancer was one of the top five most common types
of cancer worldwide, according to a WHO report [2]. An internal view of the digestive
tract is provided by traditional endoscopy. Additionally, the traditional method cannot
observe the small intestine due to its complexity and length. Additionally, this endoscopy
procedure is uncomfortable and painful for patients.

Another innovative GI diagnostic tool is WCE, an imaging device that captures video
frames from the digestive system. It is a tool that does not hurt and has a lot of advantages
over other methods, like imaging the small intestine, which is not possible with other
traditional endoscopy methods [3]. In addition, WCE provides more realistic images of the
digestive system than noninvasive technology like a CT scan [4]. The average number of
frames in a video capture is around 8000. WCE uses a camera and transmitter in a small
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capsule. In WCE, the capsule device contains a transmitter that detects infections of the
gastrointestinal tract.

A capsule can move passively within a patient’s gastrointestinal environment or
selectively under external control to move and examine the patient’s lesions during the
examination phase by peristalsis or magnetic fields [5,6]. The WCE device moves through
the gastrointestinal tract while transmitting color images at a rate of 2–4 frames per second
to a data-recording device [6,7]. Doctors then examine these images to make a diagnosis.

The body’s digestive system includes the GI tract, liver, pancreas, and gallbladder, all
of which aid in food digestion. The body needs digestion to convert food into nutrients
for energy, growth, and cell repair. However, gastrointestinal illnesses pose a significant
threat to human health. For instance, gastric cancer, the fourth most prevalent type of
cancer worldwide, is the second most common cause of cancer-related mortality worldwide,
accounting for 35% of cancer-related deaths [8].

WCE images may show various lesions that are signs of various diseases. Ulcers,
lymphoid hyperplasia (LH), bleeding, polyps, angiodysplasia (AD), erythema, and erosion
are the most significant lesions [9]. Anatomical landmarks, pathological abnormalities, and
poly removal, all important GI disorders, can be seen in WCE images. A more practical
method for diagnosing tumors and gastrointestinal hemorrhages, particularly in the small
intestine, which is now examined with greater precision [10], is provided by providing a
variety of images.

It took a significant amount of time to analyze each patient’s captured image [11].
Physicians may overlook these lesions during an examination because they typically only
appear in a few frames, and they are small relative to the frame size [12]. In addition, search-
ing through a thousand frames for pathological lesions is a tedious and time-consuming
task for physicians [13]. Additionally, there can be a high similarity rate between vari-
ous contextual images at times; as a result, even the most experienced doctors encounter
obstacles that necessitate extensive data analysis.

Despite many of the images being filled with meaningless information, doctors must
watch the entire film in order. Because of doctors’ carelessness or incompetence, this
frequently results in incorrect diagnoses [14,15].

Disorders of the GI system, particularly those of the abdominal, small, and large in-
testines, affect many people worldwide. In Bangladesh, gastrointestinal infections account
for more than 27% of deaths. Inflammatory bowel disease (IBD) affects approximately
1.6 million people in the United States, with a rise of over 200,000 since 2011. Each year,
more than 70,000 new IBD cases are discovered. Eighty thousand children have Crohn’s
disease (CD) or ulcerative colitis (UC). IBD is on the rise worldwide. Cases must be dis-
covered as soon as possible to find a cure for IG disorders. As a result, a computer-aided
method (CAD) is required to identify them automatically [16].

Processing images to extract, analyze, and comprehend useful information from a
single image or image sequence is the focus of the science known as computer vision (CV).
For the machine to see, it aims to develop an artificial system with the capabilities of a
human visual system. CV examines images for scenes, objects, faces, and other content in
videos, photos, and pictures, using a variety of machine learning (ML) or DL algorithms.

In the last ten years, DL has developed and expanded significantly in tandem with
the rapid advancement of technology for automation and visual analysis. Numerous
fields have utilized DL methods extensively. Automatic WCE diagnosis and analysis are
increasingly using DL algorithms, which have produced excellent outcomes. DL algorithms
have the potential to improve diagnostic accuracy while also assisting in reducing physician
workload. In the meantime, some researchers use DL to estimate WCE’s depth and motion.
In WCE data, DL methodologies have demonstrated great potential and will be of great
assistance to future WCE technology and enhancing this technology [7].

In this paper, we introduce the ILRC mechanism designed to optimize the training of
DL models. The ILRC adaptively adjusts the LR based on the progress of the training pro-
cess, which improves the speed of convergence and decreases the likelihood of overfitting.
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We tested this mechanism on various DL models, including EfficientNet-B0, ResNet101v2,
InceptionV3, and InceptionResNetV2. Furthermore, we enhanced the model layers in con-
junction with traditional transfer learning, freezing layers, fine-tuning techniques, residual
learning, and modern regularization methods. As a result, the four models achieved better
accuracy than other advanced models while requiring fewer parameters and FLOPs. These
models were fine-tuned using the Kvasir-Capsule and KVASIR v2 datasets, which consist
of images obtained from WCE.

To tackle the problem of the class imbalance of the Kvasir-Capsule dataset, we im-
plemented an under-sampling technique to ensure an even distribution of images across
classes. In addition, we applied a data augmentation technique (over-sampling) to gener-
ate additional WCE images from existing ones, effectively increasing the size of the two
datasets. This technique involved modifying the values of five attributes of the existing
WCE images. Moreover, we scaled the resolution of the dataset images to 336 × 336 pixels
and normalized the contrast of the images.

The models—EfficientNet-B0, ResNet101v2, InceptionV3, and InceptionResNetV2—
exhibited outstanding performance compared to the current state of the art, achieving
accuracies of 99.906%, 98.765%, 98.312%, 99.344%, and 99.719%, respectively, on the Kvasir-
Capsule dataset. Additionally, they achieved accuracies of 97.770%, 97.375%, 98%, 98.0625%,
and 98.062%, respectively, on the Kvasir-v2 dataset. The integration of the ILRC, traditional
transfer learning, freezing layers, fine-tuning techniques, residual learning, and modern
regularization methods in our proposed models offers a robust solution for automating the
detection of GI abnormalities in WCE images, thereby improving diagnostic efficiency and
accuracy in clinical settings. Below is a summary of this research’s contributions:

1. We introduced the ILRC mechanism designed to optimize the training of DL models.
The ILRC adaptively adjusts the LR based on the progress of the training process,
which improves the speed of convergence and decreases the likelihood of overfitting.

2. The integration of the ILRC, traditional transfer learning, fine-tuning techniques, resid-
ual learning, and modern regularization methods for the EfficientNet-B0, ResNet101,
ResNet101v2, InceptionV3, and InceptionRestNetV2 models offers a robust solution
for automating the detection of GI abnormalities in WCE images, thereby improving
diagnostic efficiency and accuracy in clinical settings.

3. We lowered the parameter cost by truncating or compressing layers and partially
freezing some layers.

4. Our models with the ILRC successfully diagnosed GI disorders, reducing the time
and financial resources required for diagnosis and aiding the medical community in
promptly and accurately providing appropriate treatment for GI patients.

5. To tackle the problem of class imbalance, we used an under-sampling method on the
Kvasir-Capsule dataset. Furthermore, we applied a data augmentation technique to
increase the size of the Kvasir-Capsule and Kvasir-v2 datasets that were used to train
our model.

The structure of the remaining sections of this paper is as follows: Section 2: A
Literature Review on the GI Diagnosis System; Section 3: A Description of the Model’s
Materials and Architecture; Section 4: Implementation and Evaluation; and Section 5:
Conclusion and Suggestions for Future Work.

2. Literature Review

Identifying GI diseases is a prominent area of research within medical image analysis.
Numerous studies approach this issue from various angles. For example, in L. Bai et al. [7], a
transformer neural network (TNU) with a spatial pooling configuration was used. The self-
attention mechanism of a TUN enabled it to capture long-range information effectively, and
the exploration of Vision Transformer’s (ViT’s) spatial structure through pooling had the
potential to enhance further ViT’s performance on a small-scale capsule endoscopy dataset.
For capsule endoscopy disease classification, L. Bai et al. trained the model entirely on two
publicly available datasets and achieved good generalization effects with 79.15% accuracy
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on the multi-classification task of the Kvasir-Capsule dataset and 98.63% accuracy on the
binary classification task of the Red Lesion Endoscopy dataset.

In V. Kumar et al. [15], a hybrid CNN was developed to detect abnormalities by extract-
ing a comprehensive set of meaningful features from wireless capsule endoscopy images
using various convolution operations. The architecture consisted of three parallel CNNs,
each with distinct feature learning capabilities. The first network employed depthwise
separable convolution, while the second utilized cosine normalized convolution. The third
network introduced an innovative meta-feature extraction mechanism to identify patterns
from the statistical data derived from the features produced by the first two networks,
as well as its own preceding layer. This combination of networks effectively managed
intra-class variance and successfully identifies GI abnormalities. The proposed hybrid
CNN model was trained and evaluated on two widely used publicly available datasets. The
results indicated that the model outperformed six leading methods, achieving classification
accuracies of 97% and 98% on the KID and Kvasir-Capsule datasets, respectively.

In H. Modi et al. [16], a method for dealing with a difficult dataset was developed using
a convolutional neural network (CNN). With an accuracy of 97.82%, the proposed method
could classify digestive tract abnormalities into 13 categories. The proposed approach’s
performance was enhanced when the authors utilized the appropriate optimizer and
learning rates. The model’s accuracy was also improved as a result of the convolution
layer’s filter modification. A more balanced dataset for training and higher-quality images
could improve the model’s accuracy.

In Z. Xiao et al. [17], to generate WCE images from existing WCE images, a WCE-
DCGAN network was proposed. On SSD, YOLOv5, and YOLOv4, there were various
degrees of performance improvement, achieving an average recognition accuracy of 97.25%
on SSD with the images generated by this network and the original images as the input. In
the meantime, the diversity of the images produced by WCE-DCGAN not only increased
the size of the dataset but also gave the model a good generalization effect.

Using WCE images and a deep CNN, S. Mahmood et al. [18] proposed a method that
was both reliable and effective for classifying GI tract anomalies. To accomplish this, the
authors proposed the GI Disease-Detection Network (GIDD-Net) custom CNN architecture,
which was built from the ground up and has relatively few parameters. Its goal was to
detect disorders of the gastrointestinal tract with greater accuracy and efficiency at a lower
computational cost. Additionally, by displaying class activation patterns in the bowels
as a heat map, the proposed model successfully differentiated GI disorders. The authors
in [18] used the synthetic over-sampling technique BORDERLINE SMOTE (BL-SMOTE)
to evenly distribute the images among the classes to avoid the issue of class imbalance
in the Kvasir-Capsule image dataset. The proposed model achieved the following values
for evaluation metrics when compared to a variety of metrics: 98.8%, 98.9%, 98.9%, 99.8%,
0.0474, and 98.8% for precision, accuracy, F1-score, AUC, loss, and recall, respectively.

In A. K. Kundu [13], WCE images were analyzed in normalized RGB color space
to investigate bleeding because different shades of red are associated with the human
perception of bleeding. An effective region of interest (ROI) was first extracted from the
WCE image frame using the interplane intensity variation profile in normalized RGB
space in the proposed method. The variation in the normalized green plane from the
extracted ROI was then displayed using a histogram. The suggested normalized green
plane histograms were used to extract features. The K-nearest neighbor (KNN) classifier
was used for classification purposes. Furthermore, morphological operations were used
to extract bleeding zones from a bleeding image. A tenfold cross-validation scheme used
2300 WCE images from 30 publicly available WCE videos for performance evaluation. The
proposed method outperformed the four reported existing methods with an accuracy of
97.86%, a sensitivity of 95.20%, and a specificity of 98.32%.

S. Fan et al. [19] found small intestinal ulcers and erosion in WCE images by proposing
a novel computer-aided detection (CAD) approach based on a deep learning framework.
The compression and cropping of images were included in the developed method. The
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authors trained the AlexNet convolutional neural network on a database of tens of thou-
sands of WCE images to distinguish between the lesion and normal tissue. The detection
of ulcers and erosions yielded results with high specificities of 94.79% and 95.98%, a high
sensitivity of 96.80%, and a high accuracy of 95.34%, respectively. In both networks, the
area under the receiver operating characteristic curve was greater than 0.98.

S. Charfi et al. [20] proposed an approach to ulcer recognition and detection in WCE
images. The authors pre-processed the input WCE images in the first step. Then, they
suggested combining color and texture saliency maps by thresholding the resulting map
and segmenting it. They discovered that CLBP, PHOG, and BoW produced the best results
for feature extraction. A new classification method employing conventional classifiers and
the HMM model was fed these features. The proposed method was effective at detecting
ulcerous images because it significantly improved classification results with an accuracy
of 94.8%.

In A. Caroppo et al. [21], a bleeding detection system utilizing deep transfer learning
has been proposed. To extract features, three well-known CNN models—InceptionV3,
VGG19, and ResNet50—were employed. Feature selection was performed using the mini-
mum redundancy maximum relevance method. Ultimately, supervised ML methods were
applied to classify the selected features into two categories: non-bleeding images and bleed-
ing images. The proposed architecture demonstrated exceptional performance, achieving
average accuracies of 97.65% and 95.70% on leading datasets, surpassing the performance
of single DL architectures. The optimal combination of accuracy and training time was
attained by employing mean value pooling as a fusion rule and SVM as the classifier.

H. Gunasekaran et al. [22] introduced an ensemble model that utilized the predic-
tions from three pre-trained models, DenseNet201, InceptionV3, and ResNet50, which
achieved accuracies of 94.54%, 88.38%, and 90.58%, respectively. The predictions from these
foundational models were merged using two techniques: model averaging and weighted
averaging. After evaluating the model performances on the Kvasir v2 dataset, the au-
thors found that the model averaging ensemble achieved an accuracy of 92.96%, while the
weighted average ensemble reached an accuracy of 95.00%.

All the studies mentioned above have the following limitations:

• All the research mentioned above utilized a static LR.
• Training on a small dataset may not provide a comprehensive representation of all

possible abnormalities in the digestive system. This can limit the model’s ability to
generalize to new unseen cases.

• Insufficient data can hinder the model’s ability to learn robust features, especially for
less frequent conditions, potentially reducing the accuracy and reliability of the model.

• Class imbalance can cause the model to be biased towards the majority class, resulting
in poor performance in minority classes. This is particularly problematic in medical
diagnosis, where the accurate detection of rare conditions is critical.

• Models trained on limited datasets may overfit the training data, reducing their ability
to generalize to new or different datasets.

Our research differs from research mentioned above by introducing the ILRC algorithm
to improve the training process of DL models. The ILRC algorithm dynamically adjusts
the LR based on the training progress, which leads to faster convergence and reduces the
risk of overfitting. We assessed this mechanism across various DL architectures, including
EfficientNet-B0, ResNet101v2, InceptionV3, and InceptionResNetV2. Furthermore, we
enhanced these models using transfer learning, freezing layers, fine-tuning techniques,
residual learning, and regularization strategies. The models were fine-tuned using the
Kvasir-Capsule and KVASIR v2 datasets, which contain images from wireless capsule
endoscopy (WCE). Moreover, we implemented several data pre-processing techniques, in-
cluding under-sampling, augmentation, scaling, and normalization, specifically to address
class imbalance. This comprehensive approach to pre-processing for class imbalance is
crucial in improving model performance and ensuring a balanced dataset. The proposed
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model aims to provide real-time analysis to assist clinicians in preventing emergencies,
which is a critical advancement in the practical application of WCE technology.

3. Materials and Methods
3.1. Dataset Description

The Open Science Framework (OSF) has the Kvasir-Capsule dataset [1]. It was created
in partnership with the Vestre Viken Health Trust to aid research in computer-assisted
diagnosis systems for gastrointestinal endoscopy. The Kvasir-Capsule is a WCE dataset
with various labeled images that have been made available to the public. It was made
in 2020 and brought up to date in 2021 [15]. The entirety of the dataset’s data records
is summarized in Table 1. The dataset includes 4,741,621 main data records, comprising
47,238 images with labels, 43 corresponding labeled videos (the videos from which the
images were extracted), and 74 un-labeled videos (the videos from which the labeled
images were not extracted). Further, 4,694,266 un-labeled images from all of the videos can
be extracted. Figure 1 depicts examples of images from the Kvasir-Capsule dataset. Due to
unnecessary data duplication, the un-labeled images were not extracted or included in the
uploaded data. However, they can be easily extracted from the videos.

Table 1. A description of the Kvasir-Capsule dataset.

Class Image Count

Labeled images 47,238
Labeled videos 43

Un-labeled images 4,694,266
Un-labeled videos 74
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Figure 1. Images from the Kvasir-Capsule dataset: (a) polyp; (b) reduced mucosal; (c) pylorus;
(d) ulcer; (e) lymphangiectasia; (f) ileocecal valve; (g) foreign body; (h) erythema; (i) erosion; (j) blood
hematin; (k) blood fresh; (l) telangiectasia; (m) ampulla of Vater; and (n) normal clean mucosa.

Videos were gathered from a series of clinical examinations at the Department of
Medicine, the Barium Hospital, and the Vestre Viken Hospital Trust in Norway, which
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serves 490,000 people and covers about 200,000 of them. At a resolution of 336 × 336, the
videos were initially recorded at a rate of 2 frames per second. The videos were exported
in AVI format using the Olympus system’s export tool. It was packed, but the export tool
changed the specification for the frame rate to 30 fps [18].

The fourteen distinct classes in this dataset were created by extracting video frames
from WCE videos. The fourteen distinct classes are ampulla of Vater (class 0), telangiec-
tasia (class 1), blood fresh (class 2), blood hematin (class 3), erosion (class 4), erythema
(class 5), foreign body (class 6), ileocecal valve (class 7), lymphangiectasia (class 8), normal
mucosa (class 9), polyp (class 10), pylorus (class 11), reduced mucosal (class 12), and ulcer
(class 13) [18]. The samples of the Kvasir-Capsule dataset are individual RGB images with
three channels and a dimension of 128 × 128 pixels that belong to four distinct classes [23].
Table 1 shows a description of the Kvasir-Capsule dataset.

The Kvasir-Capsule dataset is imbalanced because the normal class clean mucosa
contains too many images (34,338) in comparison to other class samples. The class ulcer has
854 images; the class reduced mucosal has 2906 images; the class pylorus has 1529; the class
polyp has 55 images; the class lymphangiectasia has 592 images; the class ileocecal valve
has 4189 images; the class foreign body has 776 images; the class erythema has 159 images;
the class erosion has 506 images; the class blood hematin has 12 images; the class blood
fresh has 446 images; the class telangiectasia has 866 images; and the class ampulla of Vater
has ten images, as shown in Figure 1 [18].

We divided the Kvasir-Capsule dataset into three sets: a training set with 26,453 images
(70%), a test set with 5669 images (15%), and a validation set with 5668 images (15%). Table 2
presents the number of images for each class in the three sets.

Table 2. The distribution of classes in the Kvasir-Capsule dataset.

Class#Id Class Name Training Set Test Set Validation Set

0 ulcer 478 103 102
1 reduced mucosal 1627 349 349
2 pylorus 856 184 183
3 polyp 31 6 7
4 lymphangiectasia 331 71 71
5 ileocecal valve 2346 503 502
6 foreign body 435 93 93
7 erythema 89 19 19
8 erosion 283 61 61
9 blood hematin 7 1 2

10 blood fresh 250 53 54
11 telangiectasia 485 104 104
12 ampulla of Vater 6 1 1
13 normal clean mucosa 19,229 4121 4120

Total 26,453 5669 5668

The second dataset is the KVASIR v2 dataset [24]. The Kvasir v2 dataset comprises a
collection of images that were annotated and verified by medical professionals, specifically
experienced endoscopists. It contains 8000 images classified as eight different classes,
namely, esophagitis, dyed lifted polyps, dyed resection margins, normal pylorus, normal
z-line, normal, polyps, and ulcerative colitis, as shown in Figure 2. The dataset contains
endoscopic images of the GI tract. The samples in each category are evenly distributed,
containing 1000 images for each class. Table 3 shows the distribution of Kvasir v2 classes in
the test set.
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Table 3. The distribution of classes in Kvasir v2 in the test set.

Class#Id Class Name Test Set

0 dyed lifted polyps 154.0
1 dyed resection-margins 134.0
2 esophagitis 140.0
3 normal cecum 141.0
4 normal pylorus 166.0
5 normal z-line 154.0
6 polyps 150.0
7 ulcerative colitis 161.0

3.2. Model Architecture and Training

To identify GI diseases from WCE images, we present the ILRC mechanism aimed at
optimizing the training of DL models. The ILRC adjusts the LR adaptively based on the
progress of training, which improves convergence speed and reduces the risk of overfitting.
The mechanism was tested on several DL models, including EfficientNet-B0, ResNet101,
ResNet101v2, InceptionV3, and InceptionResNetV2. Furthermore, we enhanced these
models by using traditional transfer learning, fine-tuning techniques, residual learning,
and modern regularization methods. The models were fine-tuned with the Kvasir-Capsule
and KVASIR v2 datasets for multi-class classification. The architecture of the DL models is
illustrated in Figure 3, and the algorithm for fine-tuning the four DL models is described
in Algorithm 1, and the algorithm of the ILRC is depicted in Algorithm 2. The steps for
implementing the ILRC on the four DL models are as follows: Phase 1 (pre-processing
the Kvasir-Capsule and Kvasir v2 datasets): In the first phase, the Kvasir-Capsule dataset
and Kvasir v2 were downloaded and pre-processed. The pre-processing step is critical
because it can chip away at the accuracy of the results. In the pre-processing phase, the
images of the Kvasir-Capsule dataset were under-sampled, augmented, normalized, and
re-scaled. Phase 2 (splitting the Kvasir-Capsule and Kvasir v2 datasets): In the second
phase, the Kvasir-Capsule dataset was divided into three sets: a training set, a test set, and
a validation set. The training set consists of 70% of the total data (26,453 samples), the test
set consists of 15% (5669 samples), and the validation set consists of 15% (5669 samples).
Phase 3 (pre-training for the four DL models): The third phase was the supervised pre-
training step of the transfer learning process. In the supervised pre-training step, the first
step of the transfer learning process, the EfficientNet-B0, ResNet101v2, InceptionV3, and
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InceptionRestNetV2 models were trained on the ImageNet dataset. During the transfer
learning process, we applied a freezing layer. This means that certain layers of a pre-trained
model are locked, and their weights remain unchanged during the training on a new task
or dataset, such as ImageNet. This is important because it allows us to leverage the general
features learned by the model from ImageNet while focusing the training effort on specific
parts of the model that are more relevant to the Kvasir-Capsule and Kvasir v2 datasets.
Phase 4 (fine-tuning): In the fine-tuning step, the second step of the transfer learning
process, the four DL models were fine-tuned on the training set of the Kvasir-Capsule and
Kvasir v2 datasets. Phase 5 (applying the ILRC): by using the ILRC process, the four DL
models were evaluated on the training sets of the Kvasir-Capsule and Kvasir v2 datasets.
In this process, we first assessed the training set error. If the training set error was high,
we re-trained the model. Conversely, if the training set error was low, we proceeded to
calculate the test set error. If the test set error was also high, we re-trained the model again.
Phase 6 (multi-classification using the ILRC): We experimented with multi-classification.
Additionally, we evaluated the performance of the four DL models with the ILRC using
various metrics including accuracy, specificity, precision, and sensitivity.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 33 
 

21          END IF 

22          IF Cr_train_ac < Pr_train_ac THEN 

23               Cr_W = Pr_W 

24               Cr_B = Pr_B 

25               N_ILRC = C_ILRC × fr 

26          END IF 

27   END IF 

28   n_epoch  =    n_epoch − 1 

29   WHILE (n_epoch = 0) 

30 END 

 

Figure 3. The overall model architecture. 

3.2.1. Data Pre-Processing 

Due to data noise, the final prediction may not be as accurate as the raw data. Pre-

processing, which includes under-sampling, data augmentation (over-sampling), scaling, 

and normalization, is necessary to make the images more suitable for training the pro-

posed models. 

Under-Sampling 

Figure 3. The overall model architecture.



Appl. Sci. 2024, 14, 10243 10 of 32

Algorithm 1: The proposed ILRC algorithm for tuning the four DL models.

1 Input→ Kvasir-Capsule or Kvasir v2 dataset K
2 Output← Fine-tuned four DL models for GI disease classification
3 BEGIN
4 STEP 1: Pre-Processing of K
5 FOR EACH X IN KDO
6 Re-scale the dimension of X
7 Resize X to 224 × 224 pixels
8 Normalize pixel values from the range [0, 255] to [0, 1]
9 END FOR
10 STEP 2: Data Splitting
11 SPLIT K INTO
12 Training set → 70% o f K
13 Testing set → 15% o f K
14 Validation set → 15% o f K
15 IF set’s size < 200
16 Under-sampling to 200
17 ELSE
18 IF set’s size > 200
19 Augmentation to 200
20 END IF
21 END IF
22 STEP 3: Model Pre-Training

23
FOR EACH D IN [EfficientNet-B0, ResNet101v2, InceptionV3, and Inception
ResNetV2] DO

24 Load and pre-train D on the ImageNet dataset
25 END FOR
26 STEP 4: Model Fine-Tuning
27 FOR EACH pre-trained D DO
28 Fine-tune pre-trained D on the training set

29
Utilize the validation set for early stopping, based on the best fine-tuned model
performance.

30 END FOR
31 STEP 5: Applying ILRC
32 Apply the ILRC through the training by determining the error of the training set.
33 IF the error of the training set is too high,
34 GOTO line 26.
35 ELSE
36 Calculate the error of the test set.
37 IF the error of the set is too high,
38 GOTO line 26.
39 ELSE
40 GOTO line 42.
41 END IF

42
Use the validation set to apply early stopping by assessing the model’s best
performance.

43 STEP 6: Model Assessment
44 FOR EACH fine-tuned D DO
45 Assess D’s performance on the test set using measured metrics.
46 END FOR
47 END

3.2.1. Data Pre-Processing

Due to data noise, the final prediction may not be as accurate as the raw data. Pre-
processing, which includes under-sampling, data augmentation (over-sampling), scaling,
and normalization, is necessary to make the images more suitable for training the pro-
posed models.
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Algorithm 2: The algorithm of the ILRC.

1 Input→ no_epoch, fr, 1.0 > fr > 0.0
2 Output← ILRC
3 BEGIN
4 DO
5 DO
6 READ N.
7 IF (N ̸= 0 )
8 n_epoch = N
9 ELSE
10 HALT
11 END IF
12 WHILE (n_epoch = 0)
13 READ well_V
14 IF well_V == True THEN
15 Compute Cr_valid_loss
16 Compute Cr_train_accu
17 IF Cr_valid_loss > Pr_valid_loss THEN
18 Cr_W = Pr_W
19 Cr_B = Pr_B
20 N_ILRC = C_ILRC × fr
21 END IF
22 IF Cr_train_ac < Pr_train_ac THEN
23 Cr_W = Pr_W
24 Cr_B = Pr_B
25 N_ILRC = C_ILRC × fr
26 END IF
27 END IF
28 n_epoch = n_epoch − 1
29 WHILE (n_epoch = 0)
30 END

Under-Sampling

Under-sampling refers to a set of methods that aim to even out a classification dataset’s
class distribution when it is skewed. By keeping all of the data in the minority class and
reducing the size of the majority class, under-sampling attempts to balance uneven datasets.
It is one of the methods used to obtain more accurate information from datasets that were
initially imbalanced. The simplest method for under-sampling is random under-sampling,
which removes examples from the training dataset at random from the majority class. This
procedure can be repeated until each class has the same number of examples.

Since the images of various diseases in the Kvasir-Capsule dataset were not evenly
distributed, and although there were numerous images of common diseases, only a small
number of images of rare diseases were utilized for training; we applied the under-sampling
technique to solve this issue by decreasing the size of all training, test, and validation sets’
classes that had more than 200 images to 200 images.

Data Augmentation

Data augmentation refers to a set of methods for artificially increasing the number
of data by creating new data points from existing data or creating new synthetic data
from existing data. By creating new and distinct examples to train small datasets, data
augmentation can help DL models perform better and produce better results. A DL
model performs better and is more accurate when the dataset it uses is extensive and
sufficient. Data collection and labeling can be time-consuming and expensive processes for
DL models, but the use of data augmentation techniques can reduce these operational costs
by transforming datasets.
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Simple alterations to visual data are popular for data augmentation. For data augmen-
tation, typical image processing tasks include padding, re-scaling, vertical and horizontal
flipping, zooming, random erasing, random rotating, translation (where the image is moved
in the X and Y directions), color modification, cropping, gray scaling, changing contrast,
and adding noise. Data augmentation improves the model’s accuracy, lowering the costs of
data collection and labeling, enabling the prediction of rare events, and preventing issues
with data privacy.

Since the size of the Kvasir-Capsule and Kvasir v2 datasets was small, we generated
WCE images from existing WCE images to increase the dataset’s size. We altered the values
of five attributes of the existing WCE images using the augmentation method. Table 4
shows the used attributes and their values.

Table 4. The used attributes in the data augmentation techniques and their values.

Attribute Value

horizontal_flip True
rotation_range 20

width_shift_range 0.2
height_shift_range 0.2

zoom_range 0.2

By using the data augmentation technique, we increased the number of images in all
training set classes of the Kvasir-Capsule dataset that had fewer than 200 images to a total
of 200 images each. Specifically, the class “erythema” gained 111 images; the class “blood
hematin” increased by 193 images; the class “ampulla of Vater” grew by 194 images; and
the class “polyp” had 169 images added. Additionally, the overall size of the Kvasir v2
dataset was expanded from 8000 to 12,000 images.

As a result of applying both under-sampling and data augmentation techniques to the
Kvasir-Capsule dataset, each class in the training set was adjusted to contain 200 images.
Consequently, the total size of the training set decreased from 26,453 images to 2800 images.
Furthermore, the size of the test set was reduced from 5669 images to 2133 images, and the
validation set size was also decreased from 5668 images to 2133 images.

Normalization

Since size, pixel-level noise, symbols, bright text, and other characteristics of the
images vary, we normalized the images of the Kvasir-Capsule dataset. By normalizing
the data in a variety of ways, the effect of various pixel intensities can be defined. From
the pixel intensity that is recorded as PI, the normalized datum PI* is obtained using the
normalization method. For each of the three primary colors, the value of this pixel ranges
from 0 to 255. To achieve normalization, the value of each pixel was divided by 255. The
experiment’s maximum and minimum values served as the foundation for normalization,
as shown in Equation (1).

P∗I = (PI l −Minold)
Maxnew −Minnew

Maxold −Minold
+ Minnew, l ∈ [0, n] (1)

Scaling

In CV, resizing an image is an important step before processing it. Primarily, small
images allow DL models to train more quickly. The neural network must learn from four
times as many pixels in a larger input image, which increases the architecture’s training
time. Therefore, images are frequently resized to a smaller dimension when training DL
models so that mini-batch learning can continue, and the computed limitations can be
maintained [25]. Common DL models like DenseNet-121, ResNet-50, MobileNetV2, and
EfficientNets, which were pre-trained on ImageNet, consistently benefit from this concept.
In this research, we scaled the images of the Kvasir-Capsule dataset, as shown in Table 5.
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Table 5. The properties of the images of the Kvasir-Capsule dataset after scaling.

Attribute Value

height 336
width 336

channels 3
batch_size 30

Hence, the images were resized to a fixed 224-by-224 resolution.

3.2.2. Freezing Layers

Freezing layers in DL models is a technique where the weights of specific layers in a
pre-trained model are locked, meaning they do not change during further training. This
method is important in transfer learning, where a model that has been pre-trained on
ImageNet is adapted to a new, usually smaller, dataset. The significance of freezing layers
is that they help preserve the general features the model has already learned, such as
detecting edges in images, which are often useful across different tasks. By freezing these
layers, the model keeps its foundational knowledge, which reduces the risk of overfitting
while allowing the other layers to focus on the new task. This technique not only speeds up
the training process but also enhances the model’s ability to generalize new data [26].

During the transfer learning process, we applied the technique of freezing layers in the
four DL models. This approach enabled the remaining layers to focus their training efforts
on the Kvasir-Capsule and Kvasir v2 datasets. Additionally, the partial layer freezing
method decreased the number of trainable parameters needed by disabling certain layers
from re-training. As a result, we maintained the initial features obtained from transfer
learning in the upper layers.

3.2.3. Regularization

Regularization is a method used in ML and DL to stop overfitting. Overfitting happens
when a model learns to perform well on training data but struggles with new unseen data.
Regularization helps by adding extra rules or penalties during training, which prevents the
model from fitting too closely to the training examples. This approach allows the model to
learn broader patterns, leading to better performance on test data [27].

L1, L2, and dropout are the three main types of regularization [27]: there is L2 regular-
ization (also known as Ridge Regression or Weight Decay), L1 Regularization (or Lasso
Regression), and dropout.

L2 regularization adds a penalty to the loss function that is equal to the sum of the
squared weights. This helps prevent the model from learning excessively large weights,
which can lead to an overly complex model that is likely to overfit training data.

L1 Regularization introduces a penalty equal to the sum of the absolute values of
the weights in the loss function. This approach can result in sparse models, where some
weights become exactly zero, effectively selecting important features by eliminating those
that are not significant.

Dropout is a technique where a portion of the neurons in a layer is randomly “dropped
out” or ignored during training. This practice helps to prevent the model from relying too
heavily on any single neuron and encourages it to learn more robust and general features.
Typically, dropout is applied with a probability parameter (e.g., 0.5), indicating that half of
the neurons drop out during training. In our methodology, we used L2 regularization to
stop the overfitting for the four DL models.

3.2.4. Network Modification for Transfer Learning

Transfer learning is a method used in DL where a model that has been trained on one
task is adapted to work on a different, but often related, task. This approach utilizes the
knowledge gained from the first task to improve the learning process and performance in
the new task, especially when there is a shortage of labeled data for the second task [28].
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In our approach, we fine-tuned the models ResNet101v2, InceptionV3, Inception-
ResNetV2, and EfficientNetB0 for accurate GI disease detection. During the tuning phase,
we employed the Kvasir-Capsule or Kvasir v2 dataset, splitting the data into training,
validation, and testing sets at a ratio of 70:15:15. Each image was labeled accordingly, and
we set up the input and output layers for training. This method was applied consistently
across all the four DL models.

For the EfficientNetB0 model, we used the input convolution layer (conv_1), which
contained 64 filters sized at 3 × 3 × 64. The output layer chosen was FC8. An activation
function was applied to this layer, and we trained a modified CNN that concentrated
solely on GI image features. We added a batch normalization layer for the base model
with momentum and epsilon parameters. After the batch normalization layer, a dropout of
50% was applied to reduce the overfitting of the model. Additionally, the last two layers,
specifically the classification and Softmax layers, were modified. Consequently, the length
of the output is equal to the number of GI classes.

For the ResNet101v2, InceptionV3, and InceptionResNetV2 models, the last two layers
were also removed. The convolutional layer (conv_1) was used as the input layer, featuring
64 filters of size 3 × 3 × 64. We again selected the FC8 layer as the output layer, applying
the activation function softmax. This layer experienced activation, resulting in the training
of a modified CNN that focused exclusively on the features of GI images.

3.2.5. Resnet101v2

Resnet101 and Resnet101v2 are enhanced convolutional neural networks (CNNs) from
the deep residual networks (Resnet) with 101 layers. These architectures were introduced
to address the challenges of training very deep neural networks (DNNs), which were prone
to the vanishing gradient problem. ResNet introduced the concept of residual learning,
allowing for a more effective training of extremely deep networks. They were trained on
the ImageNet database. The two models learned rich feature representations for a variety
of images as a result. The two models accept images 224 × 224 pixels in size with three
RGB colors. The concept of skip connections, also known as fast-forward connections,
was utilized by Resnet. Before applying the rectified linear unit (ReLU) activation, the
idea of feeding deeper layers from earlier layers was considered. The risk of vanishing
gradient issues in the network is reduced by this shortcut or skip connection. In Resnet, the
identity or residual block has both a forward and a fast-forward connection. The fact that
ResNet101v2 uses batch normalization before each weight layer is the primary distinction
between ResNet101v2 and ResNet101 [29].

The mathematical model for ResNet101 involves the specifications of the individual
building blocks and the overall architecture of the network. Resnet is composed of resid-
ual blocks, and ResNet101, in particular, has 101 layers. The following is a simplified
representation of the mathematical model for a basic residual block in ResNet:

Let x be the input to the block, and F(x) represents the residual function to be learned.
The output y of the residual block is given by the following:

y = F(x) + x (2)

The residual function F(x) is typically implemented as a series of convolutional layers
with batch normalization and activation functions. This can be written as follows:

F(x) = W2σ (W1x ) (3)

In ResNet101v2, improvements are often introduced, such as pre-activation, which
means that batch normalization and activation are applied before the convolutional layer.
This can be written as follows:

F(x) = σ(W2.BatchNorm(W1.x)) (4)
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where W1 and W2 are the learnable weights of the convolutional layers, and σ represents
the activation function such as ReLU.

3.2.6. InceptionV3

InceptionV3 is a deep CNN architecture that belongs to the Inception family. It was
introduced by Google researchers as an extension and improvement over the original In-
ception architecture. InceptionV3 is designed for image classification and object recognition
tasks and is known for its efficient use of computational resources. InceptionV3 introduces
the concept of Inception modules, which are blocks containing multiple parallel convolu-
tional branches with different filter sizes. This allows the network to capture features at
different scales. InceptionV3 uses factorization techniques, such as 1× 1 convolutions, to re-
duce the number of parameters in the network and make it computationally efficient. Batch
normalization is applied after each convolutional layer, and ReLU activation functions
introduce non-linearity.

InceptionV3 includes auxiliary classifiers at intermediate layers during training. These
auxiliary classifiers help with the training process by providing additional supervision
signals and gradients. Instead of traditional fully connected layers at the end of the network,
InceptionV3 uses global average pooling. This reduces the number of parameters and helps
make the model more robust to spatial translations and distortions.

The overall architecture of InceptionV3 consists of a series of Inception modules, and
the network is trained for image classification tasks using datasets such as ImageNet. It
achieved competitive performance with relatively fewer parameters compared to previous
architectures [29].

A simplified representation of the mathematical model for a basic Inception module in
InceptionV3 is as follows: Let X be the input tensor; W1×1, W3×3_reduce, W3×3, W5×5_reduce,
W5×5, Wpool−proj represent the learnable weights of the convolutional filters; γ and β
represent the scale and shift parameters for batch normalization; and σ represents the
activation function.

1. The 1 × 1 Convolution Branch:

X1×1 = Conv2D(X, W1×1, padding = ‘same’, activation = ‘relu’) (5)

2. The 3 × 3 Convolution Branch:

X3×3_reduce = Conv2D(X, W3×3_reduce, padding = ‘same’, activation = ‘relu’) (6)

X3×3 = Conv2D
(
X, W3×3reduce , W3×3, padding = ‘same’, activation = ‘relu’

)
(7)

3. The 5 × 5 Convolution Branch:

X5×5_reduce = Conv2D(X, W5×3_reduce, padding = ‘same’, activation = ‘relu’) (8)

X5×5 = Conv2D(X, W5×5_reduce, W5x5, padding = ‘same’, activation = ‘relu’) (9)

4. The Max Pooling Branch:

Xpool = MaxPooling2D(X, poolsize = strides (1, 1), padding = ‘same’) (10)

Xpool_proj = Conv2D
(

Xpool , Wpool , padding = ‘same’, activation = ‘relu’
)

(11)

5. The Concatenation of Branch Outputs:

Xout = Concatenate
([

X1×1, X3×3, X5×5, Xpool_proj

])
(12)
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The overall InceptionV3 architecture is composed of multiple repeated Inception
modules, auxiliary classifiers, global average pooling, and a final fully connected layer
for classification.

3.2.7. InceptionResNetV2

The InceptionResNet architecture combines elements of the Inception architecture
with residual connections inspired by ResNet. This hybrid architecture aims to leverage the
benefits of both Inception’s multi-scale feature extraction and ResNet’s residual learning,
resulting in a powerful and effective deep neural network. The InceptionResNet archi-
tecture was introduced to improve training convergence and overall performance. The
core building blocks in InceptionResNet are Inception modules, like those in InceptionV3,
but with added residual connections. Each Inception module consists of parallel convolu-
tional branches with different filter sizes. The output of each branch is combined with the
original input through a residual connection. InceptionResNet employs factorized convo-
lutions, including 1 × 1 convolutions, to reduce the number of parameters and enhance
computational efficiency.

Batch normalization is applied after each convolutional layer to improve training
stability. Activation functions, typically ReLU, introduce non-linearity into the model.
Residual connections are added to facilitate the flow of gradients during backpropagation,
addressing the vanishing gradient problem. The residual connections allow the network to
learn residual functions, making it easier to train very deep networks.

Similar to InceptionV3, InceptionResNet uses global average pooling instead of fully
connected layers at the end of the network. InceptionResNet typically includes a stem net-
work for initial feature extraction. Reduction blocks are used to reduce spatial dimensions
and computational complexity.

The combination of Inception modules and residual connections in InceptionResNet
aims to create a more efficient and trainable architecture for image classification and other
computer vision tasks [29].

The mathematical model for a simplified version of an InceptionResNet block is similar
to the simplified representation of the mathematical model for a basic Inception module in
InceptionV3 that was mentioned above, with an additional equation that can be expressed
as follows:

Residual Connection:
Xout = X + Xout (13)

In this block, each branch applies convolutional operations with different filter sizes,
and the results are concatenated. The residual connection allows the model to learn
residuals and facilitates the training of deep networks.

3.2.8. EfficientNe-B0

EfficientNet-B0 is part of the EfficientNet family of neural network architectures, which
are designed to achieve state-of-the-art accuracy while being computationally efficient
in terms of parameters and computation cost. EfficientNet was proposed by Mingxing
Tan and Quoc V. Le. It serves as the foundational model within the EfficientNet family,
which comprises eight variants denoted as B0 to B7. Each variant differs in terms of
dimensions and performance. EfficientNet-B0, for instance, contains 5.3 million parameters
and achieves a top-1 accuracy of 77.3% on the ImageNet dataset [30].

EfficientNet introduces a compound scaling method that optimally scales the model’s
depth, width, and resolution simultaneously. This method allows EfficientNet models to
achieve better accuracy than traditional models with a similar number of parameters [31].
The scaling factors are controlled by three parameters: ∅ for depth, β for width, and γ for
resolution. EfficientNet-B0 has ∅ = 1, β = 1, and γ = 1.

EfficientNet-B0 builds upon the inverted bottleneck residual blocks of MobileNetV2.
Additionally, it incorporates squeeze-and-excitation blocks, which bolster the model’s
ability to learn expressive features by adaptively recalibrating the channel-wise feature
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responses [32,33]. EfficientNet-B0 uses the Swish activation function, which is a smooth,
non-monotonic activation function designed to improve model performance. The network
ends with a global average pooling layer, followed by a fully connected layer for the
final classification. EfficientNet-B0 includes regularization techniques like dropout to
prevent overfitting.

A simplified representation of the mathematical model for a basic building block in
EfficientNet-B0 is as follows:

1. Depthwise Separable Convolution:

Xd = DepthwiseConv2D(X, Wd, padding = ‘same’, activation = None) (14)

Batch Normalization after Depthwise Convolution:

Xbnd = BatchNormalization(Xd, γd, βd) (15)

2. Swish Activation after Depthwise Batch Normalization:

Xs wish = σ
(
Xbnd

)
(16)

3. Pointwise Convolution:

Xp = Conv2D
(
Xswish, Wp, adding = ‘same’, activation = None

)
(17)

4. Batch Normalization after Pointwise Convolution:

Xbnp = BatchNormalization
(
Xp, γp, βp

)
(18)

5. Skip Connection (Identity Connection):

Xout = X + Xbnp (19)

This block, often referred to as a depthwise separable convolution block with Swish
activation, is a fundamental component repeated multiple times in the EfficientNet-
B0 architecture.

4. Model Implementation and Evaluation
4.1. Model Evaluation Metrics

The proposed models were evaluated using accuracy, precision, recall, and the F1-score.
The used measured metrics are defined in Equations (20)–(23).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (20)

Precision = TP/(TP + FP) (21)

Recall = TP/(TP + FN) (22)

F1-score= 2 × (Precision × Recall)/(Precision + Recall) (23)

TP, TN, FP, and FN represent true positive, false negative, false positive, and false
negative, respectively. The degree to which the result corresponds to the actual value
that we were aiming for is called accuracy. The proportion of positive samples correctly
predicted by the model is what is meant by the term precision. The ratio of the number of
actual positives to the number of true positives is what is meant by the term recall. The
harmonic average of recall and precision is known as the F1-score.

4.2. Model Implementation

We conducted three experiments using the Kvasir-Capsule and Kvasir v2 datasets. In
the first experiment, we integrated the ILRC process with the EfficientNet-B0, ResNet101v2,
InceptionV3, and InceptionResNetV2 DL models. This integration allows for the adaptive
adjustment of the LR based on the training progress, which enhances convergence speed
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and reduces the risk of overfitting. We again evaluated the four DL models on the Kvasir
v2 dataset after applying data augmentation techniques.

In the second and third experiments, we continued to combine the ILRC process with
the four DL models. In the second experiment, we did not use under-sampling or data
augmentation techniques on the Kvasir-Capsule dataset. However, in the third experiment,
we applied both under-sampling and data augmentation techniques on the same dataset.

For our experiments, the Kvasir-Capsule and Kvasir datasets were split into 70%
for training, 15% for testing, and 15% for validation. All three experiments were per-
formed in the Kaggle environment. Table 6 lists the specifications of the computer used in
our experiments.

Table 6. The used PC’s description.

Item Description

CPU
GPU

Intel(R) Xeon(R) CPU @ 2.20 GHz
NVIDIA Tesla P100 with 16 GB of memory

RAM 32 GB of memory
OS Ubuntu 2024 x86_64 GNU/Linux

In the first experiment, we applied the data augmentation technique to the bal-
anced Kvasir v2 dataset, and we integrated the ILRC process with the EfficientNet-B0,
ResNet101v2, InceptionV3, and InceptionResNetV2 DL models. This integration allows
for the adaptive adjustment of the LR based on the training progress, which enhances
convergence speed and reduces the risk of overfitting. The Kvasir v2 dataset contains
8000 images classified as eight different classes, namely, esophagitis, dyed lifted polyps,
dyed resection margins, normal pylorus, normal z-line, normal, polyps, and ulcera-
tive colitis.

Table 7 shows the results of the first experiment conducted with EfficientNet-B0,
ResNet101V2, InceptionV3, and InceptionResNetV2. For multi-classification, we used the
four CNN models on the Kvasir v2 dataset to distinguish images from eight classes.

Table 7. The results of multi-classification for the balanced Kvasir v2 dataset.

Model Accuracy (%) Recall (%) Precision (%) F1-Score (%)

EfficientNet-B0 97.770 91.071 91.107 91.061
ResNet101V2 97.375 89.506 89.623 89.471
InceptionV3 98 92.004 92.071 92

InceptionResNetV2 98.062 92.284 92.290 92.242

According to Table 7, the average accuracies for the models EfficientNet-B0, ResNet101,
ResNet101V2, InceptionV3, and InceptionResNetV2 were 97.770%, 97.375%, 98%, and
98.062%, respectively. Among these models, InceptionResNetV2 achieved the highest
averages for accuracy, recall, precision, and the F1-score, with values of 98.062%, 92.284%,
92.290%, and 92.242%, respectively. On the other hand, the ResNet101V2 model had
the lowest averages for these metrics, recording 97.375% for accuracy, 89.506% for recall,
89.623% for precision, and 89.471% for the F1-score.

Figure 4 shows the training and validation loss for each epoch of both the training and
validation sets across four DL models that utilize the ILRC algorithm. For EfficientNet-B0,
between 0 and 2.5 epochs, both the training and validation losses begin high and decrease
quickly, which is typical as the model starts to learn patterns from the data. From 2.5 to
7.5 epochs, the validation loss experiences some fluctuations with noticeable spikes, while
the training loss continues to decrease steadily. These spikes in the validation loss indicate
that the model may be struggling to generalize to unseen data, a common occurrence in
the early phases of training. This suggests that the model might be starting to overfit the
training data slightly. However, these fluctuations stabilize as training progresses. From 7.5
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to 17.5 epochs, both the training and validation losses become more stable, with the training
loss continuing to decrease slightly and the validation loss leveling off. The validation loss
remains slightly higher than the training loss, suggesting that while the model has learned
effectively, it may be beginning to overfit the training data. The small gap between the
two losses indicates that overfitting is not significant. The stability of the validation loss
during this phase is encouraging, showing that the model has reached a point of reasonable
generalization. Overall, the model displays positive learning behavior, as evidenced by the
consistent decrease in both training and validation losses.
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For the models ResNet101V2, InceptionV3, and InceptionResNetV2, both the training
and validation loss begin at a high level and decrease quickly during the first few epochs.
This pattern is common as the models start to recognize the patterns in the training data.
Throughout this phase, the training and validation losses are closely aligned, indicating
effective learning without overfitting at this stage. As training continues, both losses keep
decreasing, although the rate of decline begins to slow down.

Around epoch 5, there is a noticeable fluctuation in the validation loss, which may
suggest that the models are starting to experience some instability when trying to generalize
to new unseen data. This is a typical occurrence during training, especially as models refine
their understanding of data. Eventually, both the training and validation losses level off,
with training loss showing a gradual decrease while validation loss stabilizes. The small
gap between the training and validation losses indicates that the model is not significantly
overfitting. However, there is a slight increase in the validation loss toward the end, which
could signal an early indication of overfitting if training were to continue for additional
epochs. Overall, the models demonstrate good learning behavior, with both training and
validation losses decreasing steadily and remaining closely aligned for the majority of the
training process.
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Figure 5 displays the training and validation accuracy for the four models: EfficientNet-
B0, ResNet101V2, InceptionV3, and InceptionResNetV2. For EfficientNet-B0, from 0 to
2.5 epochs, both the training and validation accuracy start at low levels and increase
rapidly during the initial epochs. The training accuracy climbs quickly, while the validation
accuracy experiences more fluctuations, particularly between epochs 1 and 3. The validation
accuracy curve shows significant oscillations, indicating that the model is having difficulty
generalizing well during the early training stages. This may be attributed to the model’s
attempts to adapt to the validation data, resulting in varying performance.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 21 of 33 
 

elements (from top-left to bottom-right) indicate the number of correct predictions for 

each class. Off-diagonal elements indicate misclassifications, where the model predicted 

the wrong class. 

The EfficientNet-B0 model correctly predicted the following number of instances for 

each class: 137 for class 0, 132 for class 1, 111 for class 2, 138 for class 3, 155 for class 4, 132 

for class 5, 141 for class 6, and 147 for class 7. The ResNet101V2 model accurately predicted 

the number of instances for each class as follows: 141 for class 0, 129 for class 1, 105 for 

class 2, 138 for class 3, 156 for class 4, 122 for class 5, 134 for class 6, and 149 for class 7. 

The InceptionV3 model accurately predicted the number of instances for each class 

as follows: 139 for class 0, 134 for class 1, 123 for class 2, 132 for class 3, 155 for class 4, 125 

for class 5, 145 for class 6, and 151 for class 7. The InceptionResNetV2 model accurately 

predicted the following number of instances for each class: 142 for class 0, 133 for class 1, 

119 for class 2, 139 for class 3, 156 for class 4, 130 for class 5, 140 for class 6, and 148 for 

class 7. 

EfficientNet-B0 

 

ResNet101V2 

 
InceptionV3 

 

InceptionResNetV2 

 

Figure 4. The training and validation loss of the four CNN models for each epoch using the test set 

with the ILRC. 

EfficientNet-B0 

 
 

ResNet101V2 

 
 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 22 of 33 
 

InceptionV3 

 

InceptionResNetV2 

 

Figure 5. The training and validation accuracy of the four CNN models for each epoch using the test 

set with the ILRC. 

EfficientNet-B0 

 

ResNet101V2 

 

InceptionV3 

 

InceptionResNetV2 

 

Figure 6. The confusion matrices for the four CNN models using the test set with the ILRC. 

Table 8 shows the results of the second experiment conducted with EfficientNet-B0, 

ResNet101V2, InceptionV3, and InceptionResNetV2. In this experiment, we integrated the 

ILRC process with the four DL models. The Kvasir-Capsule dataset was utilized to evalu-

ate the performance of the models prior to implementing under-sampling and data aug-

mentation techniques. For multi-classification, we used the four CNN models on the Kva-

sir-Capsule dataset to distinguish images from fourteen distinct classes named normal 

mucosa, ampulla of Vater, telangiectasia, blood fresh, blood hematin, erosion, erythema, 

foreign body, ileocecal valve, lymphangiectasia, polyp, pylorus, reduced mucosal, and ul-

cer. 

According to Table 8, the accuracy averages of EfficientNet-B0, ResNet101V2, Incep-

tionV3, and InceptionResNetV2 were, respectively, 99.295%, 98.413%, 97.354%, and 

Figure 5. The training and validation accuracy of the four CNN models for each epoch using the test
set with the ILRC.

From 2.5 to 7.5 epochs, the training accuracy continues to improve and eventually
stabilizes near 1.0, suggesting that the model is fitting the training data very well. How-
ever, the validation accuracy continues to fluctuate significantly, with noticeable increases
and decreases.

ResNet101V2 performance analysis shows that from 0 to 3 epochs, both the training
and validation accuracy start at around 0.6 and increase rapidly. Initially, the training
accuracy is slightly lower than the validation accuracy, which is typical as the model begins
to adapt to the training data. By about epoch 3, the validation accuracy briefly exceeds the
training accuracy, indicating that the model is learning general features that are effective
for both datasets.

From 3 to 10 epochs, the training accuracy continues to rise, approaching 1.0, which
shows that the model fits the training data very well. The validation accuracy stabilizes
around 0.9 but exhibits minor fluctuations, suggesting that the model is encountering diffi-
culties in maintaining consistent performance on the validation dataset while optimizing
for the training data.

From 10 to 18 epochs, the training accuracy plateaus near 1.0, indicating that the model
has nearly perfectly learned the training data. Meanwhile, the validation accuracy remains
steady around 0.9, with slight fluctuations. Overall, the model demonstrates significant
learning progress, with both training and validation accuracy improving rapidly during
the early epochs.
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InceptionV3 training and validation accuracy analysis shows that during the first 0
to 3 epochs, both the training and validation accuracy start off relatively low but increase
rapidly. The validation accuracy shows fluctuations during this time, suggesting that the
model is refining its understanding of the data. Notably, the validation accuracy is higher
than the training accuracy early on, indicating that the model generalizes well at this stage,
potentially due to the regularization effect from using validation data.

From 3 to 8 epochs, the training accuracy continues to rise and nearly reaches 1.0,
demonstrating that the model is effectively fitting the training data. However, the validation
accuracy displays some instability with fluctuations, which may indicate the model’s
sensitivity to varying batches of validation data.

Between 8 to 13 epochs, the training accuracy stabilizes close to 1.0, indicating that the
model has almost perfectly learned the training data. The validation accuracy stabilizes
around 0.90 to 0.95, although it still experiences minor fluctuations. Overall, the model
initially generalizes well to the validation data, as reflected by the high validation accuracy
observed early in the training process.

For InceptionResNetV2, the training accuracy rises quickly in the early epochs, show-
ing that the model learns the training data patterns effectively. After around 5 epochs, the
training accuracy levels off near 1.0, indicating a strong fit to the training data. In contrast,
the validation accuracy starts to increase but then fluctuates between 0.90 and 0.92 after a
few epochs.

Figure 6 depicts the confusion matrices for the four CNN models over the test set of the
balanced Kvasir v2 dataset. The test set was divided into eight classes: namely, esophagitis
(313 images), dyed lifted polyps (333 images), dyed resection margins (291 images), normal
pylorus (269 images), normal z-line (300 images), normal (300 images), polyps (308 im-
ages), and ulcerative colitis (286 images). The rows of the confusion matrix represent the
actual classes. The columns represent the predicted classes by the model. The diagonal
elements (from top-left to bottom-right) indicate the number of correct predictions for each
class. Off-diagonal elements indicate misclassifications, where the model predicted the
wrong class.

The EfficientNet-B0 model correctly predicted the following number of instances for
each class: 137 for class 0, 132 for class 1, 111 for class 2, 138 for class 3, 155 for class 4, 132
for class 5, 141 for class 6, and 147 for class 7. The ResNet101V2 model accurately predicted
the number of instances for each class as follows: 141 for class 0, 129 for class 1, 105 for
class 2, 138 for class 3, 156 for class 4, 122 for class 5, 134 for class 6, and 149 for class 7.

The InceptionV3 model accurately predicted the number of instances for each class
as follows: 139 for class 0, 134 for class 1, 123 for class 2, 132 for class 3, 155 for class 4,
125 for class 5, 145 for class 6, and 151 for class 7. The InceptionResNetV2 model accurately
predicted the following number of instances for each class: 142 for class 0, 133 for class 1,
119 for class 2, 139 for class 3, 156 for class 4, 130 for class 5, 140 for class 6, and 148 for
class 7.

Table 8 shows the results of the second experiment conducted with EfficientNet-B0,
ResNet101V2, InceptionV3, and InceptionResNetV2. In this experiment, we integrated
the ILRC process with the four DL models. The Kvasir-Capsule dataset was utilized to
evaluate the performance of the models prior to implementing under-sampling and data
augmentation techniques. For multi-classification, we used the four CNN models on
the Kvasir-Capsule dataset to distinguish images from fourteen distinct classes named
normal mucosa, ampulla of Vater, telangiectasia, blood fresh, blood hematin, erosion,
erythema, foreign body, ileocecal valve, lymphangiectasia, polyp, pylorus, reduced mucosal,
and ulcer.
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Table 8. The results of multi-classification for the imbalanced Kvasir-Capsule dataset using the ILRC.

Model Accuracy (%) Recall (%) Precision (%) F1-Score (%)

EfficientNet-B0 99.295 99.306 99.295 99.261
ResNet101V2 98.413 98.445 98.413 98.384
InceptionV3 97.354 97.363 97.354 97.091

InceptionResNetV2 98.765 98.628 98.765 98.598

According to Table 8, the accuracy averages of EfficientNet-B0, ResNet101V2, Incep-
tionV3, and InceptionResNetV2 were, respectively, 99.295%, 98.413%, 97.354%, and 98.765%.
Accuracy, recall, precision, and F1-score averages were all the highest in the EfficientNet-B0
model, with 99.295%, 99.306%, 99.295%, and 99.261%, respectively. Accuracy, recall, preci-
sion, and F1-score averages were all the lowest in the InceptionV3 model, with 97.354%,
97.363%, 97.354%, and 97.091%, respectively.

Figures 7 and 8 illustrate the loss and accuracy for each epoch of both the validation and
training datasets. After approximately epoch 17.5, the training accuracy of the EfficientNet-
B0 model neared 100%, while the validation accuracy surpassed 98%. The training and
validation losses were comparable, fluctuating between 0.0 and 0.5. For the ResNet101V2
model, both the training and validation accuracies exceeded 95%, with losses ranging from
0.0 to 1. The InceptionV3 model achieved a training accuracy of over 98%, with validation
accuracy also at 98%. The training and validation losses for InceptionV3 varied between 0.0
and 1. The InceptionRestNetV2 model recorded training and validation accuracies above
95%, with losses also falling within the range of 0.0 to 1.
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The confusion matrices for the four CNN models in the imbalanced test set are de-
picted in Figure 9. The test dataset was divided into fourteen categories: normal mucosa
(4121 images), ampulla of Vater (1 image), telangiectasia (104 images), blood fresh (53 im-
ages), blood hematin (1 image), erosion (61 images), erythema (19 images), foreign body
(93 images), ileocecal valve (503 images), lymphangiectasia (71 images), polyp (6 images),
pylorus (184 images), reduced mucosal (349 images), and ulcer (103 images).

With an accuracy of 99.8%, EfficientNet-B0 correctly predicted 4115 images out of
4121 for the class normal mucosa. With an accuracy of 99.2%, the ResNet101V2 model
correctly predicted 4092 images. With an accuracy of 99.5%, the InceptionV3 model correctly
predicted 4101 images. The InceptionResNetV2 model was 99.8% accurate and correctly
predicted 4116 images.

The EfficientNet-B0 model correctly predicted 493 images out of 503, giving it an
accuracy of 98% for the class ileocecal valve. The ResNet101V2 and InceptionV3 models
correctly predicted 481 images, giving them an accuracy of 95.6%. The InceptionResNetV2
model was 97% accurate in predicting 488 images.

Out of 184 images, the EfficientNet-B0 model correctly predicted 175, achieving an
accuracy of 95.1% for the class pylorus. With an accuracy of 84.2%, ResNet101V2 correctly
predicted 155 images. With an accuracy of 91.3%, the InceptionV3 model correctly predicted
168 images. A total of 174 images were predicted with 94.5% accuracy by the Inception-
ResNetV2 model.

After utilizing the imbalanced small Kvasir-Capsule dataset, we conducted a third
experiment where we combined the ILRC process with the four DL models. In this experi-
ment, we implemented under-sampling and data augmentation (over-sampling) techniques
on the imbalanced small Kvasir-Capsule dataset. In the balanced Kvasir-Capsule dataset,
ten classes of the test set have 200 images. The results of the third experiment for the
four CNN models with the balanced Kvasir-Capsule dataset, including EfficientNet-B0,
ResNet101v2, InceptionV3, and InceptionRestNetV2, are shown in Table 9.

Table 9. The results of multi-classification for the balanced Kvasir-Capsule dataset using the ILRC.

Model Accuracy (%) Recall (%) Precision (%) F1-Score (%)

EfficientNet-B0 99.906 99.929 99.929 99.929
ResNet101V2 98.765 98.765 98.628 98.598
InceptionV3 98.312 97.835 98.765 98.244

InceptionResNetV2 99.344 99.500 99.509 99.500
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As shown in Table 9, the average accuracy rates for EfficientNet-B0, ResNet101V2,
InceptionV3, and InceptionResNetV2 are 99.906%, 98.765%, 98.312%, and 99.344%, respec-
tively. The EfficientNet-B0 model achieved the highest average accuracy, recall, precision,
and F1-score, with values of 99.906%, 99.929%, 99.929%, and 99.929%. In contrast, the
InceptionV3 model recorded the lowest average accuracy, recall, and F1-score, which are
98.312%, 97.835%, and 98.244%, respectively. Additionally, the ResNet101V2 model had the
lowest average precision at 98.628%.

The loss and accuracy for each epoch of the validation and training sets are shown
in Figures 10 and 11. The EfficientNet-B0 model’s training and validation accuracies were
close to 100% after epoch 15. The training and validation loss ranged between 0 and 1. The
ResNet101V2 model achieved a training accuracy close to 100% and achieved a validation
accuracy ranging between 80 and 100%. ResNet101V2’s training and validation loss ranged
from 0 to 2. The InceptionV3 model had a training and validation accuracy of close to 100%.
InceptionV3’s training and validation loss ranged from 0 to 2. The InceptionRestNetV2
model was 100% accurate during training and validation, and its training and validation
losses were close to 0.
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Figure 12 shows the confusion matrices for the four CNN models in the balanced test
set. There were fourteen classes in the test dataset. Ten classes of the test set have 200 images.
With an accuracy of 100%, the EfficientNet-B0 model correctly predicted 200 images out of
200 for the class normal mucosa. With an accuracy of 96%, the ResNet101V2 model correctly
predicted 192 images. With an accuracy of 99.5%, the InceptionV3 and InceptionResNetV2
models correctly predicted 199 images.

Out of 200 images, the EfficientNet-B0 model correctly predicted 200, achieving an
accuracy of 100% for the class ileocecal valve. With an accuracy of 98.5%, the ResNet101V2
model correctly predicted 197 images. With an accuracy of 99.5%, the InceptionV3 and
InceptionResNetV2 models correctly predicted 199 images.

The EfficientNet-B0 model correctly predicted 200 images out of 200 images for the
class pylorus, with an accuracy of 100%. ResNet101V2 correctly predicted 193 images
with an accuracy of 96.5%. The InceptionV3 model correctly predicted 190 images with
an accuracy of 95%. The InceptionResNetV2 model correctly predicted 193 images with
96.5 percent accuracy.

4.3. Ablation Study

In the first experiment, we utilized data augmentation techniques on the balanced
Kvasir v2 dataset using the static LR and the ILRC processes with four DL models:
EfficientNet-B0, ResNet101v2, InceptionV3, and InceptionResNetV2.

Results with Static LR process:
Table 10 presents the results of the first experiment using a static LR with the four

DL models. The average accuracies were as follows: EfficientNet-B0 achieved 97.604%,
ResNet101v2 reached 96.812%, InceptionV3 obtained 97.562%, and InceptionResNetV2
scored 97.625%.

Table 10. The results of multi-classification for the Kvasir v2 dataset utilizing the static LR.

Model Accuracy (%) Recall (%) Precision (%) F1-Score (%)

EfficientNet-B0 97.604 90.426 90.488 90.360
ResNet101V2 96.812 87.160 87.961 87.064
InceptionV3 97.562 90.287 90.312 90.163

InceptionResNetV2 97.625 90.559 90.533 90.467
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Results with ILRC Process:
Table 11 displays the results of the first experiment using the ILRC process with the

same four DL models. The average accuracies were as follows: EfficientNet-B0 at 97.770%,
ResNet101v2 at 97.375%, InceptionV3 at 98%, and InceptionResNetV2 at 98.062%.

Table 11. The results of multi-classification for the Kvasir v2 dataset utilizing the ILRC.

Model Accuracy (%) Recall (%) Precision (%) F1-Score (%)

EfficientNet-B0 97.770 91.071 91.107 91.061
ResNet101V2 97.375 89.506 89.623 89.471
InceptionV3 98 92.004 92.071 92

InceptionResNetV2 98.062 92.284 92.290 92.242

4.4. Model Complexity

Table 12 shows the initial parameters for the models EfficientNet-B0, ResNet101V2,
InceptionV3, and InceptionResNetV2. It includes their truncated parameters, the number
of Floating-Point Operations per Second (FLOPs), training duration, and inference dura-
tion. The EfficientNet-B0 model started with approximately 5.3 million parameters before
truncation. After truncation, this number decreased to 4.39 million. These parameters
were set to a frozen state, meaning they were not re-trained and were used only for feature
extraction. Similarly, ResNet101V2 and InceptionV3 also saw significant reductions in
their parameter counts. ResNet101V2 decreased from 44.6 million to 43.16 million, while
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InceptionV3 dropped from 23.8 million to 22.34 million. InceptionResNetV2 experienced a
notable decrease as well, falling from 55.8 million to 54.74 million. Overall, truncation was
crucial because it reduced the complexity of the models and streamlined their architecture,
which may help lower the risk of overfitting.

Table 12. The four DL models’ complexity values (# means number of).

Model/Complexity # Parameters in
Original Model

# Parameters in
Proposed Model

Number of FLOPS
(G-FLOP)

Training Time
(seconds) Inference Time

EfficientNet-B0 5.3 M 4.39 M 1,856,573,707 1161.97 66 s 94 ms/step
ResNet101V2 44.6 M 43.16 M 32,808,287,188 2085.89 100 s 143 ms/step
InceptionV3 23.8 M 22.34 M 14,373,641,268 1212.79 59 s 84 ms/step

InceptionResNetV2 55.8 M 54.74 M 33,009,236,916 1797.28 122 s 175 ms/step

FLOPs refer to the total number of arithmetic operations involving floating-point
numbers (like addition and multiplication) that a system can execute in one second. In
greater detail, multiply–add operations are considered two separate FLOPs because, in
numerous contemporary models, convolutions do not include a bias term. Therefore, it is
logical to classify multiplication and addition as distinct FLOPs.

FLOPs provide an estimate of the computational complexity of the four DL models.
Generally, a higher FLOP count suggests a more intricate model, which can result in
improved performance but also demands greater computational resources. A model that
has fewer FLOPs yet delivers comparable performance to a model with a higher FLOP
count is often seen as more efficient. Knowing a model’s FLOPs assists in choosing suitable
hardware, such as GPUs or TPUs, that can manage the computational workload. Models
with high FLOP counts necessitate more powerful hardware for effective operation. In
real-time applications, the number of FLOPs directly influences inference speed. Fewer
FLOPs can lead to quicker inference times, which is essential for time-sensitive tasks
like autonomous driving or real-time video processing. The FLOPs for EfficientNet-B0,
ResNet101V2, InceptionV3, and InceptionResNetV2 were 1,856,573,707; 32,808,287,188;
14,373,641,268; and 33,009,236,916, respectively.

Inference time is an important metric for assessing the complexity of DL models,
particularly when implementing them in practical applications. It indicates the duration
required for a model to analyze an input and generate an output during the inference
phase, which occurs when the model is utilized for making predictions after its training
has been completed. The inference times for EfficientNet-B0, ResNet101V2, InceptionV3,
and InceptionResNetV2 are 66.094 s per step, 100.143 s per step, 59.084 s per step, 122.175 s
per step, and 76.108 s per step, respectively.

4.5. A Comparison of the Model’s Results with the Literature Review

Our research introduced the ILRC algorithm, which enhances the training process
of DL models, distinguishing it from prior studies. The ILRC algorithm adjusts the LR
dynamically based on the training progress, resulting in faster convergence and a reduced
risk of overfitting. We evaluated this mechanism across multiple DL architectures, in-
cluding EfficientNet-B0, ResNet101v2, InceptionV3, InceptionResNetV2, and Xception.
Additionally, we improved these models through transfer learning by freezing layers, ap-
plying fine-tuning techniques, implementing residual learning, and utilizing regularization
strategies. The models were fine-tuned using the Kvasir-Capsule and KVASIR v2 datasets,
which feature images obtained from wireless capsule endoscopy (WCE).

The models EfficientNet-B0, ResNet101v2, InceptionV3, InceptionResNetV2, and
Xception, when utilizing the ILRC, demonstrated exceptional performance compared
to existing state-of-the-art methods, achieving accuracies of 99.906%, 98.765%, 98.312%,
99.344%, and 99.719%, respectively, on the Kvasir-Capsule dataset. On the Kvasir-v2 dataset,
they attained accuracies of 97.770%, 97.375%, 98%, 98.0625%, and 98.062%, respectively.
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Thus, the ILRC algorithm combined with the EfficientNet-B0, ResNet101v2, Incep-
tionV3, InceptionResNetV2, and Xception models outperformed the most recent methods
listed in Table 13 regarding multi-classification accuracy, as shown by the results. No-
tably, the algorithm achieved an impressive accuracy rate of 99.906%. Moreover, from
the patient’s perspective, our methodology improves the diagnostic process by reducing
costs, expediting diagnosis, and delaying disease progression. By facilitating the multi-
classification of GI diseases, the proposed models with the ILRC will automatically identify
the disease. As a result, the proposed models utilizing the ILRC will help clinicians detect
GI diseases and understand their primary causes. The evaluation of these models showed
that, with appropriate tuning, they produce exceptional results compared to the current
use of other frameworks.

Table 13. A comparison of the proposed model and state-of-the-art methods.

Reference Methodology Accuracy Dataset

L. Bai et al. [7] TNU and ViT
79.15% on multi-classification

and 98.63% on binary
classification

Kvasir-Capsule image and
Red Lesion Endoscopy

V. Kumar et al. [15] Hybrid CNNs 98% Kvasir-Capsule image
H. Modi et al. [16] CNN 97.82% Kvasir-Capsule image
Z. Xiao et al. [17] WCE-DCGAN 97.25% Kvasir-Capsule image

S. Mahmood et al. [18] GIDD-Net and BL-SMOTE 98.9% Kvasir-Capsule image
A. K. Kundu et al. [13] KNNs 97.86% Kvasir-Capsule image

S. Fan et al. [19] AlexNet 95.34% Kvasir-Capsule image

S. Charfi et al. [20]

Segmentation, feature
descriptor

(CLBP + PHOG + Bag of
Words (BoW))

94.8%
WEO clinical endoscopy atlas

and Kvasir Capsule
endoscopy

A. Caroppo et al. [21] VGG19, InceptionV3,
ResNet50, and SVM 95.70%

Kvasir-Capsule image and
Medical Image Computing

and Computer-Assisted
Intervention (MICCAI) 2017

H. Gunasekaran et al. [22] DenseNet201, InceptionV3,
and ResNet50 95% Kvasir v2

The Proposed Models

EfficientNet-B0, ResNet101v2,
InceptionV3,

InceptionResNetV2, and
Xception utilizing the ILRC

99.906% and 98.0625% Kvasir-Capsule image and
Kvasir-v2 datasets

5. Conclusions

In this study, we presented the ILRC mechanism aimed at enhancing the training
efficiency of DL models. The ILRC dynamically modifies the LR in response to the train-
ing process’s advancements, which accelerates convergence and minimizes the risk of
overfitting. We evaluated this mechanism across various DL architectures, including
EfficientNet-B0, ResNet101v2, InceptionV3, InceptionResNetV2, and Xception. Addition-
ally, we improved the model layers by combining traditional transfer learning with freezing
layers, fine-tuning strategies, residual learning, and contemporary regularization tech-
niques. These models were fine-tuned using the Kvasir-Capsule and KVASIR v2 datasets,
which comprise images sourced from WCE.

To address the class imbalance within the Kvasir-Capsule dataset, we employed an
under-sampling method to achieve a balanced distribution of images among the classes.
Furthermore, we utilized a data augmentation strategy (over-sampling) to create additional
WCE images from existing samples, effectively enlarging both datasets. This process
involved altering four attributes of the existing WCE images. We also resized the images in
the two datasets to 336 × 336 pixels and normalized their contrast.

The models—EfficientNet-B0, ResNet101v2, InceptionV3, InceptionResNetV2, and
Xception—demonstrated remarkable performance compared to existing benchmarks, at-
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taining accuracies of 99.906%, 98.765%, 98.312%, 99.344%, and 99.719%, respectively, on
the Kvasir-Capsule dataset. On the Kvasir-v2 dataset, they achieved accuracies of 97.770%,
97.375%, 98%, 98.0625%, and 98.062%, respectively. The combination of the ILRC with
traditional transfer learning, freezing layers, fine-tuning methods, residual learning, and
modern regularization techniques in our proposed models provides a strong solution
for automating the detection of gastrointestinal abnormalities in WCE images, thereby
enhancing diagnostic efficiency and accuracy in clinical practice.

The limitations of our proposed model are related to the training and testing phases.
The structure of the model contributed to this issue. Therefore, we plan to simplify our
model in future work to enhance the speed of the training and testing phases. Additionally,
we will test the proposed model on different types of human diseases and use hyper-
optimization algorithms to automatically improve hyper-parameterization.
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