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Abstract: A Very Low Frequency (VLF) communication system is a communication system with
limited transmit bandwidth, mainly because the VLF antenna is a high-Q electrically small antenna
(ESA) with a narrow effective bandwidth, which limits the improvement of communication rate.
To achieve broadband VLF communication, the commonly used method is synchronous tuning
technology. In this paper, a synchronous control algorithm based on real-time impedance detection
and a synchronous control system structure are proposed. Simulation results show that the method
can improve the antenna matching performance, increase the effective bandwidth of the antenna
feeder system, and improve the signaling rate.

Keywords: VLF communication; ESA; impedance detection; synchronous tuning techniques; logic gate

1. Introduction

A VLF antenna is a typical electrically small antenna [1,2], the electrically small antenna
(ESA) is the antenna whose antenna size is much smaller than the wavelength (l ≪ λ),
which can be equivalent to a capacitor or inductor with a small radiation resistance, which
also leads to the ESA having a high quality factor, Q. Q is inversely proportional to the
antenna bandwidth, so the electrically small antenna with high Q is a narrow band antenna.
Chu’s theorem gives the formula for calculating the Q value of electrically small antennas
as follows [1–3].

Q =
1 + 3k2a2

(ka)3(1 + k2a2)
(1)

k is the wave number, k = 2π/λ, and as shown in Figure 1, a is the radius of the sphere
that exactly surrounds the antenna. It can be known from Equation (1) that when the
antenna electrical size decreases, the Q value will increase and the antenna bandwidth
will become narrow. When the antenna size decreases to less than λ/2π, the Q value will
increase greatly.
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At present, the VLF communication system mainly uses an MSK (Minimum Shift
Keying) signal source [4,5], and the traditional VLF transmitter system uses a fixed tun-
ing network, and the resonant frequency of the antenna feeder system is at the center
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frequency of the MSK signal. In order to ensure that the transmitted signal has enough
power, the symbol rate of the MSK signal will be very low, which also leads to a low
communication rate.

SMSK = cos(2π fct +
πak
2Ts

t + φk), (k − 1)Ts ≤ t ≤ kTs (2)

Formula (2) is the expression of MSK signal [6], where fc is the carrier frequency;
ak = ±1 (corresponding to the input symbol is “1” or “0”); Ts is the symbol width; φk is the
initial phase of the kth symbol, which is invariant in one symbol width. When the input
symbol is “1”, ak = +1, frequency is fh = fc + 1/4Ts, and when the input symbol is “0”,
ak = −1, frequency is fl = fc − 1/4Ts and symbol rate is RB = 1/Ts. In this paper, fh is the
“mark” frequency and fl is the “space” frequency.

According to the Shannon formula C = B log2(1 + S/N) [6], under the condition
that SNR is almost unchanged, as the communication rate increases, the communication
capacity increases, and the bandwidth occupied by the signal also gradually increases.
However, when the signal bandwidth exceeds the available bandwidth of the antenna
feeder system, the signal will be greatly attenuated and the information carried by the
waveform will be lost.

Therefore, the reason that limits the improvement of the communication rate lies in
the narrowband characteristics of the high-Q electric small antenna. In order to enhance the
effective bandwidth and optimize the communication rate of the VLF system, two primary
approaches can be employed. One involves augmenting the series resistance between the
antenna and transmitter; however, this comes at a cost of reduced efficiency, which may
impact the overall communicative capability of the system [7].

Another approach to enhance the effective bandwidth is synchronous tuning technol-
ogy [8], enabling the feeder system to dynamically tune to both the “space” frequency fl
and “transmission” frequency fh of MSK signals instead of being statically tuned at the
center frequency. This technique effectively broadens the system’s effective bandwidth and
enhances communication speed without compromising antenna efficiency, as depicted in
Figure 2 [9–14]. Presently, countries such as the United States and Australia have embraced
synchronous tuning technology, achieving communication speeds ranging from 200 bps to
1000 bps or even higher [15].
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This technology has been developing continuously for many years and has achieved
good results, including magnetic saturation switching amplifier methods, frequency shift
keying methods based on electronic switching capacitors, high current variable inductor
methods and so on [16–21]. Based on the above methods, A synchronous tuning control
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strategy for VLF communication based on real-time impedance detection is proposed in this
paper. The resonant frequency of antenna feeder system is controlled by symbol signal and
impedance detection result. This method can quickly determine the inductance of antenna
feeder system and then control the corresponding inductor in the controlled inductor array.

2. Basic Structure of the System

As shown in Figure 3, Ca is the equivalent capacitor of the VLF antenna, Ra is the
equivalent radiation resistor of the VLF antenna, L0 is the fixed tuning inductor, and
∆L is the variable inductor, which is specifically composed of different combinations of
controlled inductor arrays (Lcn) in this paper. When the frequency of the MSK signal is
fh, the tuning inductance required for this system is L0 and ∆L = 0. When the frequency
of the MSK signal is fl , the required tuning inductance for this system becomes L0 + ∆L,
∆L = 1/(ω2

l Ca)− L0.
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Figure 4 shows the structure diagram of the synchronous Tuning Control described in
this paper. The system is mainly composed of the controlled inductance matrix, the driver
and switch matrix, and the control matrix. L0 is the fixed inductor and LC1 and LC2 are
the controlled inductors, which form the primary loop through the MSK signal, and when
the MSK signal carrier frequency is fh, all IGBTs are in the conduction state [22,23]. At this
time, only the inductor L0 is in operation in the system. Then, the resonant frequency of
the antenna feeder system is adjusted to fh when the MSK signal carrier frequency is fl .
The IGBT of the corresponding numerical inductor Lcn is controlled to be turned off, so

that the inductance in the antenna feeder system is L0 +
n
∑

i=1
Lcn, n ∈ N+, and the resonant

frequency of the antenna feeder system is adjusted to fl .
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As shown in Figure 4, the key part of the system is the control matrix, and the
controller is used to control the enable state of each logic unit. Now, the function of the
logic control unit is mainly expounded. As shown in Figure 5, each output port of the
controller corresponds to one logic control unit, and each logic control unit is composed of
two XOR gates and one AND gate. The AND gate input is the control signal output from
the controller port and the demodulated MSK symbol signal, the XOR gate input to the left
of the AND gate is logic 1 and the control signal output from the controller port, and the
XOR gate input above is the AND gate and the logic output of the XOR gate to the left of
the AND gate. The logic truth table is as follows [24]:
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As can be seen from Table 1, when the controller outputs logic 0, the logic output
of F is always 1, which is not affected by the symbol signal. At this time, the IGBT
always remains in the conduct state, and the logic 0 output by the controller is called the
failure instruction.

Table 1. Logic truth table.

A B: Symbol Signal C: Controller Signal D E F

1 1 0 1 0 1
1 0 0 1 0 1
1 1 1 0 1 1
1 0 1 0 0 0

When the controller outputs logic 1, the logic output of F is controlled by the symbol
signal. When the symbol is 1, F is 1, and when the symbol is 0, F is 0. At this time, the IGBT
is in the symbol signal control state, and the logic 1 output by the controller is called the
enabling instruction.

After ∆L is calculated, the corresponding controller port is determined by the table
look-up method, and the corresponding port will always remain in the enabled state.

3. Synchronous Control Strategy Based on Real-Time Impedance Detection

Basic condition: The high level of the control signal corresponds to the high frequency
point fh of the MSK signal, and the low level corresponds to the low frequency point,
fl , of the MSK signal. The system is resonant at high frequency by adjusting the fixed



Appl. Sci. 2024, 14, 10244 5 of 14

tuning inductor, L0, and the initial state of the power electronic switches at both ends of the
controlled inductor is conduction.

Figure 6 shows the flow of synchronous control strategy based on real-time impedance
detection (hereinafter referred to as SYNT-RTID synchronous control strategy). The calcula-
tion process of the controlled inductance, ∆L, is as follows [16].

Z =

•
U
•
I
=

U∠φu

I∠φi
= |Z|∠φZ = z∠φZ (3)

Z =

•
U
•
I
= R + j(ωL − 1

ωC
) (4)

ωL − 1
ωC

= zsinφZ (5)

L =
zsinφZ

ω
+

1
ω2C

(6)

∆L =
Im[Z]
ω

=
zsinφZ

ω
(7)
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As shown in Figure 6, after ∆L is obtained, the appropriate combination of controlled
inductors is selected by the table look-up method. Each ∆L corresponds to a group of
controlled inductor combinations, and each controlled inductor corresponds to the control
port of a controller to ensure that the controller can control the corresponding number
of inductors.
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The actual accuracy of the inductor is difficult to reach the accuracy of the theoretical
value. At the same time, considering the cost, the accuracy of the inductor should also be
controlled within a reasonable range. The VLF communication system is a narrowband
system, and the accuracy of the inductor has a great impact on the system. We mainly
discuss the influence of the inductor accuracy on the power factor angle, φ, and the antenna
radiation efficiency of the antenna feeder system.

For the convenience of discussion, in this section, the antenna equivalent capacitance
is Ca = 39.79 nF, the antenna equivalent radiation resistance is Ra = 1 Ω, the MSK signal
center frequency, f0, are 15 kHz, 20 kHz, 25 kHz, and 30 kHz, respectively, and the symbol
rate, RB, is 200 bps, 300 bps, 500 bps, 700 bps, and 900 bps. L0 is the amount of tuning
inductance required by the antenna fed system at frequency fh resonant, and Ll is the
amount of tuning inductance required by the antenna fed system at frequency fl resonant,
and ∆L = Ll − L0. The heat loss is ignored in this paper.

3.1. Power Factor Angle of Antenna Feeder System

The power factor cosφ is the ratio of active power, P, to apparent power, S, in an AC
circuit, commonly represented as λ. φ is referred to as the power factor angle and can be
obtained by subtracting the phase of port current from the phase of port voltage [25–27].
Let us assume:

•
U = U∠φu (8)
•
I = I∠φi (9)

φ = φu −φi (10)

According to Equations (8)–(10), we can obtain the power factor angle, φ, of the
antenna feeder system, as shown in Section 3.1 and Figure 8.
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Figure 7. The power factor angle, φ, of the antenna feeder system when the carrier frequency of the
MSK signal is fh (a) The power factor angle, φ, of the antenna feeder system when the accuracy of L0

reaches n × 10−2mH; (b) The power factor angle, φ, of the antenna feeder system when the accuracy
of L0 reaches n × 10−3mH.

According to Section 3.1 and Figure 8, when the accuracy of L0 and Ll is n × 10−2mH,
the power factor angle, φ, of the antenna feeder system is approximately between −40◦

and +40◦, which translates to a power factor of approximately 0.766 < cosφ < 1. When
the accuracy of L0 and Ll is n × 10−3mH, the power factor angle, φ, of the antenna feeder
system is approximately between −4◦ and 4◦, which translates to a power factor of approx-
imately 0.998 < cosφ < 1. It can be seen that the improvement of accuracy greatly reduces
the power factor angle PHI of the antenna feeder system, and we can consider that the
voltage signal and the current signal are approximately in phase. In general, cosφ > 0.8 is
required [27].
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Figure 8. The power factor angle, φ, of the antenna feeder system when the carrier frequency of the
MSK signal is fl (a) The power factor angle, φ, of the antenna feeder system when the accuracy of L0

reaches n × 10−2mH; (b) The power factor angle, φ, of the antenna feeder system when the accuracy
of L0 reaches n × 10−3mH.

3.2. Radiation Efficiency of the Antenna

The apparent power, S, of the antenna feeder system includes the active power, Pa,
and the reactive power, Q. In this paper, Pa is the antenna radiated power [4].

Pa = Ra ×
•
I
2

(11)

Q =

∣∣∣∣ωL − 1
ωCa

∣∣∣∣×•
I
2

(12)

η =
Pa

Pa + Q
=

Ra

Ra+
∣∣∣ωL − 1

ωCa

∣∣∣ (13)

It can be seen from Figures 9 and 10 that when the accuracy of L0 and Ll is n× 10−2mH
(n is a positive integer, for example, n = 1, which means that the inductance is N), the
variation range of antenna radiation efficiency is about 50% to 95%, and the variation range
of antenna radiation efficiency is large and the decline is obvious. When the accuracy of
L0 and Ll is n × 10−3mH, the variation range of antenna radiation efficiency is about 91%
to 100%.
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Considering that there are many factors that affect the performance of the commu-
nication system, the superposition of multiple factors may lead to a serious degradation
of the system performance, so the influence of the accuracy of the inductor on the system
performance should be as little as possible. Combining Sections 3.1 and 3.2 , the accuracy
of L0 and Ll is at least n × 10−3 mH under the proposed conditions in this paper, and at
this time, we can obtain Tables 2 and 3.

Table 2. Inductance values L0/mH corresponding to different Baud rates and center frequencies.
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Table 3. Inductance values Ll/mH corresponding to different Baud rates and center frequencies.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 14 
 

300 bps 2.801 1.580 1.012 0.704 

400 bps 2.792 1.576 1.01 0.703 

500 bps 2.783 1.572 1.008 0.701 

600 bps 2.774 1.568 1.006 0.700 

700 bps 2.764 1.564 1.004 0.699 

800 bps 2.755 1.560 1.002 0.698 

900 bps 2.746 1.556 1.000 0.697 

1000 bps 2.737 1.552 0.998 0.696 

Table 3. Inductance values 𝐿𝑙/mH corresponding to different Baud rates and center frequencies. 

f0 

Ll 

RB 

15 kHz 20 kHz 25 kHz 30 kHz 

100 bps 2.839 1.595 1.021 0.709 

200 bps 2.848 1.599 1.023 0.710 

300 bps 2.858 1.604 1.025 0.711 

400 bps 2.867 1.608 1.027 0.712 

500 bps 2.877 1.612 1.029 0.713 

600 bps 2.887 1.616 1.031 0.714 

700 bps 2.897 1.620 1.033 0.716 

800 bps 2.906 1.624 1.035 0.717 

900 bps 2.916 1.628 1.037 0.718 

1000 bps 2.926 1.632 1.039 0.719 

Because Δ𝐿 = 𝐿𝑙 − 𝐿0, Table 4 can be obtained. ΔL is obtained by combining the in-

ductor array (LCn, n ∈ N +), which is mainly controlled by the controller and the demodu-

lated symbol signal. Table 4 is the number table required by the look-up table method. 

The inductor array combination corresponding to ΔL can be determined according to the 

actual engineering, such as installation space, cost, etc., which will not be further elabo-

rated in this paper. 

Table 4. Inductance values Δ /μH corresponding to different Baud rates and center frequencies. 

f0 

ΔL 

RB 

15 kHz 20 kHz 25 kHz 30 kHz 

100 bps 19 7 4 3 

200 bps 37 15 9 5 

300 bps 57 24 13 7 

400 bps 75 32 17 9 

500 bps 94 40 21 12 

600 bps 113 48 25 14 

700 bps 133 56 29 17 

800 bps 151 64 33 19 

900 bps 170 72 37 21 

1000 bps 189 80 41 23 

4. Simulation Analysis 

According to Figure 4, the simulation model can be established, and the simulation 

parameters are: fixed inductors 𝐿0 = 1.58 mH, 𝐿𝐶1 = 10 μH, 𝐿𝐶2 = 5 μH, 𝐿𝐶3 = 30 μH; the 

MSK signal center frequency is 𝑓0 = 20 kHz; the antenna equivalent capacitance is 𝐶𝑎 =

15 kHz 20 kHz 25 kHz 30 kHz

100 bps 2.839 1.595 1.021 0.709
200 bps 2.848 1.599 1.023 0.710
300 bps 2.858 1.604 1.025 0.711
400 bps 2.867 1.608 1.027 0.712
500 bps 2.877 1.612 1.029 0.713
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Because ∆L = Ll − L0, Table 4 can be obtained. ∆L is obtained by combining the
inductor array (LCn, n ∈ N+), which is mainly controlled by the controller and the demod-
ulated symbol signal. Table 4 is the number table required by the look-up table method.
The inductor array combination corresponding to ∆L can be determined according to the
actual engineering, such as installation space, cost, etc., which will not be further elaborated
in this paper.

Table 4. Inductance values ∆L/µH corresponding to different Baud rates and center frequencies.
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600 bps 113 48 25 14
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4. Simulation Analysis

According to Figure 4, the simulation model can be established, and the simulation
parameters are: fixed inductors L0 = 1.58 mH, LC1 = 10 µH, LC2 = 5 µH, LC3 = 30 µH;
the MSK signal center frequency is f0 = 20 kHz; the antenna equivalent capacitance is
Ca = 39.79 nF; the antenna equivalent radiation resistance is Ra = 1 Ω; and symbol rates
are 200 bps, 500 bps, 1000 bps, respectively. The simulation results are as follows.

As illustrated in Figures 11a, 12a and 13a, an increase in the communication rate
results in a decline of the peak voltage signal across the equivalent radiation resistance of
the very low frequency antenna during traditional tuning, decreasing from approximately
40.9 V to 34.82 V. Concurrently, the fluctuations within the envelope become increasingly
pronounced, with its minimum value dropping from around 38.51 V to 20.98 V. Conversely,
as depicted in Figures 11b, 12b and 13b, under the SYNT-RTID synchronization control
strategy, the peak voltage signal on the equivalent radiation resistance remains stable
between 43.72 V and 43.93 V as communication rates rise, exhibiting both a consistent peak
value and a constant envelope profile. It is evident that signals governed by the SYNT-RTID
control strategy maintain significantly higher peak values compared to those observed
during traditional tuning while also preserving a steady envelope.

However, as illustrated in Figures 11b, 12b and 13b, the signal experiences a period
of detuning. This phenomenon arises from the fact that, according to the previously de-
scribed control strategy flowchart, real-time impedance measurement necessitates a certain
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duration; during this time, both the amplitude and phase of the signal do not exhibit
abrupt changes when out of tune but instead undergo gradual variations. Consequently,
only those impedance measurements taken after stabilization of amplitude and phase
yield accurate results. At this juncture, the controller within the tuning control unit will
issue corresponding enable control instructions to the logic gate unit. Upon receiving
these enable instructions, the logic gate unit is primarily governed by code word sequence
signals and subsequently outputs tuning control signals to the switching device. Fol-
lowing initial impedance measurement, which identifies necessary enabling for specific
logic gates, subsequent controls are predominantly managed by code word sequence sig-
nals; thus, ensuring that at this stage, the signal remains consistently in resonance with a
stable envelope.
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Figure 11. Time domain waveforms of the voltage signals at both ends of the Ra under different
tuning modes when the communication rate is 200 bps. (a) Fixed tuning; (b) when the SYNT-RTID
synchronous control strategy is used.
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Figure 13. Time domain waveforms of the voltage signals at both ends of the Ra under different
tuning modes when the communication rate is 1000 bps. (a) Fixed tuning; (b) when the SYNT-RTID
synchronous control strategy is used.

The blue curve in Figures 11b, 12b and 13b illustrates the control signal CTR out-
put by the tuning control unit. As depicted, the impedance measurement times are ap-
proximately 2 ms, 2 ms, and 1.5 ms, all of which are less than two code word widths;
consequently, this strategy enables rapid system tuning within these constraints. During
the actual message transmission process, the code word sequence is inherently random,
and its overall duration extends beyond just a few milliseconds. The likelihood of en-
countering at least two consecutive ‘0’ code words is significantly high; therefore, any
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energy loss attributable to impedance measurement time in practical applications can be
considered negligible.

5. Conclusions

This paper conducts a comprehensive analysis of inductor accuracy, establishing the
appropriate precision requirements under specified conditions. Additionally, the method-
ology presented herein can be employed to ascertain the necessary inductor accuracy for
practical applications. Furthermore, we propose a synchronous tuning control strategy for
VLF communication based on real-time impedance detection, ensuring that the antenna
feed system resonates with MSK signals in real time. As communication rates increase,
the improvement effect of synchronous tuning on the voltage signal waveform of the
equivalent radiation resistor of the VLF antenna will be more obvious. Consequently, this
VLF communication synchronous tuning control system and its associated strategy can
effectively expand the bandwidth of the antenna feed system and enhance communication
rates within VLF transmission systems.
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