A Strong Noise Reduction Network for Seismic Records
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Dataset
3.2. Evaluation Index
3.3. Model Training
3.4. Denoising Analysis of Different Types of Noise
3.5. Comparative Experiments and Analysis
3.6. Generalization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, G.; Yang, W.; Liu, Y.; Wang, H.; Huang, X. Salt Structure Elastic Full Waveform Inversion Based on the Multiscale Signed Envelope. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4508912. [Google Scholar] [CrossRef]
- Chen, G.; Yang, W.; Wang, H.; Zhou, H.; Huang, X. Elastic Full Waveform Inversion Based on Full-Band Seismic Data Reconstructed by Dual Deconvolution. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8028205. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, H.; Li, Y.; Ma, H. A patch based denoising method using deep convolutional neural network for seismic image. IEEE Access 2019, 7, 156883–156894. [Google Scholar] [CrossRef]
- Cao, S.; Chen, X. The second-generation wavelet transform and its application in denoising of seismic data. Appl. Geophys. 2005, 2, 70–74. [Google Scholar] [CrossRef]
- Gaci, S. The use of wavelet-based denoising techniques to enhance the first-arrival picking on seismic traces. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4558–4563. [Google Scholar] [CrossRef]
- Liu, W.; Cao, S.; Chen, Y. Seismic Time–Frequency Analysis via Empirical Wavelet Transform. IEEE Geosci. Remote Sens. Lett. 2016, 13, 28–32. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Langston, C.A. Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding. Bull. Seismol. Soc. Am. 2016, 106, 1380–1393. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Langston, C.A.; Horton, S.P. Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform. Geophysics 2016, 81, V341–V355. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Langston, C.A. Automatic noise-removal/signal-removal based on general cross-validation thresholding in synchrosqueezed domain and its application on earthquake data. Geophysics 2017, 82, V211–V227. [Google Scholar] [CrossRef]
- Sacchi, M.D.; Ulrych, T.J.; Walker, C.J. Interpolation and extrapolation using a high-resolution discrete Fourier transform. IEEE Trans. Signal Process. 1998, 46, 31–38. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Langston, C.A. Adaptive noise estimation and suppression for improving microseismic event detection. J. Appl. Geophys. 2016, 132, 116–124. [Google Scholar] [CrossRef]
- Zhai, M.Y. Seismic data denoising based on the fractional Fourier transformation. J. Appl. Geophys. 2014, 109, 62–70. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Lin, H.; Ma, H. An Amplitude-Preserved TimeFrequency Peak Filtering Based on Empirical Mode Decomposition for Seismic Random Noise Reduction. IEEE Geosci. Remote Sens. Lett. 2014, 11, 896–900. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, J. Random noise attenuation by f-x empirical mode decomposition predictive filtering. Geophysics 2014, 79, V81V91. [Google Scholar] [CrossRef]
- Bekara, M.; Van der Baan, M. Random and coherent noise attenuation by empirical mode decomposition. In Seg Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2008; pp. 2591–2595. [Google Scholar]
- Chen, W.; Xie, J.; Zu, S.; Gan, S.; Chen, Y. Multiple-Reflection Noise Attenuation Using Adaptive Randomized-Order Empirical Mode Decomposition. IEEE Geosci. Remote Sens. Lett. 2017, 14, 18–22. [Google Scholar] [CrossRef]
- Han, J.; Van der Baan, M. Microseismic and seismic denoising via ensemble empirical mode decomposition and adaptive thresholding. Geophysics 2015, 80, KS69–KS80. [Google Scholar] [CrossRef]
- Roth, H.R.; Yao, J.; Lu, L.; Stieger, J.; Burns, J.E.; Summers, R.M. Detection of Sclerotic Spine Metastases via Random Aggregation of Deep Convolutional Neural Network Classifications. arXiv 2015, arXiv:1407.5976. [Google Scholar]
- Feng, J.; Li, X.; Liu, X.; Chen, C. Multigranularity Feature Fusion Convolutional Neural Network for Seismic Data Denoising. IEEE Trans. Geosci. Remote Sens. 2022, 6, 05907911. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, S.; Cai, J.; Hong, L.; Zheng, J. Research on deep convolutional neural network time-frequency domain seismic signal denoising combined with residual dense blocks. Front. Earth Sci. 2021, 9, 681869. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Mehta, S.; Rastegari, M.; Caspi, A.; Shapiro, L.; Hajishirzi, H. ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation. In Proceedings of the European Conference on Computer Vision, Cham, Switzerland, 8–14 September 2018; pp. 561–580. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. Proceedings of The Thirty-First AAAI Conference on Artificial Intelligence (AAAI), Phoenix, AZ, USA, 12–17 February 2016; pp. 4–16. [Google Scholar]
- Huang, G.; Liu, Z.; Geoff, P.; Der Maaten, V.; Kilian, W. Convolutional Networks with Dense Connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 8704–8716. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Shen, L.; Samuel, A.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 7132–7141. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 3431–3440. [Google Scholar]
- DeVries, P.M.; Viégas, F.; Wattenberg, M.; Meade, B.J. Deep learning of aftershock patterns following large earthquakes. Nature 2018, 560, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Perol, T.; Gharbi, M.; Denolle, M. Convolutional neural network for earthquake detection and location. Sci. Adv. 2018, 4, e1700578. [Google Scholar] [CrossRef]
- Mousavi, M.; Zhu, W.; Sheng, Y.; Beroza, G.C. CRED: A Deep Residual Network of Convolutional and Recurrent Units for Earthquake Signal Detection. Sci. Rep. 2018, 9, 10267. [Google Scholar] [CrossRef]
- Ross, Z.E.; Meier, M.; Hauksson, E. P Wave Arrival Picking and First-Motion Polarity Determination with Deep Learning. J. Geophys. Res. Solid. Earth 2018, 123, 5120–5129. [Google Scholar] [CrossRef]
- Ross, Z.E.; Meier, M.; Hauksson, E.; Heaton, T.H. Generalized Seismic Phase Detection with Deep Learning. Bull. Seismol. Soc. Am. 2018, 108, 2894–2901. [Google Scholar] [CrossRef]
- Ross, Z.E.; Yue, Y.; Meier, M.; Hauksson, E.; Heaton, T.H. PhaseLink: A Deep Learning Approach to Seismic Phase Association. J. Geophys. Res. Solid Earth 2019, 124, 856–869. [Google Scholar] [CrossRef]
- Zheng, J.; Jiren, L.; Peng, S.; Jiang, T. An automatic microseismic or acoustic emission arrival identification scheme with deep recurrent neural networks. Geophys. J. Int. 2018, 212, 1389–1397. [Google Scholar] [CrossRef]
- Zhu, W.; Beroza, G.C. PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method. Geophys. J. Int. 2018, 216, 261–273. [Google Scholar] [CrossRef]
- Yu, S.; Ma, J.; Wang, W. Deep Learning Tutorial for Denoising. Geophysics 2018, 84, V333–V350. [Google Scholar] [CrossRef]
- Dong, X.; Zhong, T.; Li, Y. A deep-learning-based denoising method for multiarea surface seismic data. IEEE Geosci. Remote Sens. Lett. 2020, 18, 925–929. [Google Scholar] [CrossRef]
- Jin, Y.; Wu, X.; Chen, J.; Han, Z.; Hu, W. Seismic data denoising by deep-residual networks. In SEG Technical Program. Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2018; pp. 4593–4597. [Google Scholar]
- Zhu, W.; Mousavi, S.M.; Beroza, G.C. Seismic signal denoising and decomposition using deep neural networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9476–9488. [Google Scholar] [CrossRef]
- Novoselov, A.; Balazs, P.; Bokelmann, G. SEDENOSS: SEparating and DENOising Seismic Signals with Dual-Path Recurrent Neural Network Architecture. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023183. [Google Scholar] [CrossRef]
- Cai, J.; Wang, L.; Zheng, J.; Duan, Z.; Li, L.; Chen, N. Denoising method for seismic co-band noise based on a U-Net network combined with a residual dense block. Appl. Sci. 2023, 13, 1324. [Google Scholar] [CrossRef]
- Gao, H. Study of Seismic Data Residual Statics and AI Denoising. Ph D. Thesis, University of Science and Technology of China, Hefei, China, 2018. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Mousavi, S.M.; Sheng, Y.; Zhu, W.; Beroza, G.C. STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI. IEEE Access 2019, 7, 179464–179476. [Google Scholar] [CrossRef]
- Zhao, M.; Xiao, Z.; Chen, S.; Fang, L. DiTing: A large-scale Chinese seismic benchmark dataset for artificial intelligence in seismology. Earthq. Sci. 2023, 36, 84–94. [Google Scholar] [CrossRef]
- Griffin, D.; Lim, J. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 1984, 32, 236–243. [Google Scholar] [CrossRef]
- Huang, P.S.; Kim, M.; Hasegawa-Johnson, M.; Smaragdis, P. Deep learning for monaural speech separation. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 1562–1566. [Google Scholar]
- Xu, Y.; Du, J.; Dai, L.R.; Lee, C.H. An experimental study on speech enhancement based on deep neural networks. IEEE Signal Process. Lett. 2013, 21, 65–68. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, I.M. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994, 81, 425–455. [Google Scholar] [CrossRef]
- Karen, S.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Allen, R.V. Automatic earthquake recognition and timing from single traces. Bull. Eismol. Soc. Am. 1978, 68, 1521–1532. [Google Scholar] [CrossRef]
Model | Improvement of SNR | Improvement of r | Reduction of RMSE |
---|---|---|---|
U-Net | 16.94 | 0.3096 | 1.1881 |
DeepDenoiser | 17.49 | 0.3102 | 1.2007 |
DnRDB | 15.01 | 0.2980 | 1.1109 |
U-Net + Inception | 18.39 | 0.3140 | 1.2267 |
Our model | 18.67 | 0.3146 | 1.2372 |
Model | Improvement of SNR | Improvement of r | Reduction of RMSE |
---|---|---|---|
DeepDenoiser | 10.36 | 0.0884 | 1.0484 |
DnRDB | 11.45 | 0.2104 | 1.0243 |
Our model | 14.08 | 0.2376 | 1.1830 |
Model | Accuracy (%) | Missed Rate (%) |
---|---|---|
Not denoised | 63.42 | 1.82 |
U-Net | 62.16 | 0 |
DeepDenoiser | 62.65 | 0 |
DnRDB | 62.52 | 0 |
Our model | 70.17 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, T.; Jiang, X.; Rong, W.; Xu, L.; Tuo, X.; Peng, G. A Strong Noise Reduction Network for Seismic Records. Appl. Sci. 2024, 14, 10262. https://doi.org/10.3390/app142210262
Shen T, Jiang X, Rong W, Xu L, Tuo X, Peng G. A Strong Noise Reduction Network for Seismic Records. Applied Sciences. 2024; 14(22):10262. https://doi.org/10.3390/app142210262
Chicago/Turabian StyleShen, Tong, Xuan Jiang, Wenzheng Rong, Lei Xu, Xianguo Tuo, and Guili Peng. 2024. "A Strong Noise Reduction Network for Seismic Records" Applied Sciences 14, no. 22: 10262. https://doi.org/10.3390/app142210262
APA StyleShen, T., Jiang, X., Rong, W., Xu, L., Tuo, X., & Peng, G. (2024). A Strong Noise Reduction Network for Seismic Records. Applied Sciences, 14(22), 10262. https://doi.org/10.3390/app142210262