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Abstract: Noise reduction is a critical step in seismic data processing. A novel strong noise reduction
network is proposed in this study. The network enhances the U-Net architecture with an improved
inception module and coordinate attention (CA) mechanism, suppressing noise and enhancing
signal clarity. These enhancements improve the network’s capability to distinguish between signal
and noise in the time–frequency domain. We trained and tested our model on the STEAD dataset,
which eliminated noise across various frequency bands, improved the signal-to-noise ratio (SNR) of
seismic records, and reduced the waveform distortion significantly. Comparative analyses against
U-Net, DeepDenoiser, and DnRDB models, using signals with SNRs ranging from −14 dB to 0 dB,
demonstrated our model’s superior performance. At the same time, we demonstrated that the
Inception Conv Block has a significant impact on the denoising ability of the network. Furthermore,
validation using the “Di Ting” dataset and real noisy signals confirmed the model’s generalizability.
These results show that the proposed model significantly outperforms the comparative methods
in terms of the SNR, correlation coefficient (r), and root mean square error (RMSE), delivering
higher-quality seismograms. The enhanced phase-picking accuracy underscores the potential of our
approach to advance in geophysics applications.
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1. Introduction

The quest for accurate seismic data is fundamental to the field of geophysics, under-
pinning a broad spectrum of applications from mineral exploration to the understanding of
the Earth’s tectonic activity [1,2]. However, seismic records are often plagued by noise that
obscures signals of interest, thereby complicating subsequent analyses. These noises, includ-
ing geological activities, human interference, and equipment failures, significantly degrade
the quality of seismic data and the accuracy of interpretations [3]. Consequently, the noise
reduction of seismic records is essential for the subsequent analysis and processing.

Traditional seismic data denoising methods predominantly utilize mathematical mod-
els and signal processing techniques, such as wavelet threshold denoising [4–9], Fourier
transform [10–12], and empirical mode decomposition (EMD) [13–18]. Wavelet threshold
denoising achieves denoising by processing noisy signals in the wavelet domain. Fourier
transform improves the signal clarity and quality by filtering noise in the frequency domain.
EMD can effectively handle nonlinear and non-stationary signals without the need for
preset basis functions, and it can adaptively decompose different frequency components,
making signal analysis more flexible and accurate. Despite their utility, these methods
often yield suboptimal results and are time-consuming when applied to complex seismic
data [19]. They are also susceptible to the subjective selection of feature functions and
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threshold parameters, particularly when noise overwhelms the signal, resulting in a low
SNR [20].

The advent of deep learning technology, with convolutional neural networks leading
advancements in image and speech denoising, has demonstrated the power of feature
learning and nonlinear mapping capabilities [21–27]. Although deep learning techniques
require a large amount of data for models to be trained, they have significant advantages
over traditional methods because the models are able to autonomously learn and differenti-
ate the features of complex seismic signals and noise without the need for the process of
human extraction of features [28–35]. Consequently, an increasing number of researchers
are employing deep learning for seismic data denoising [36,37]. In 2018, Jin et al. addressed
seismic data denoising using deep residual networks to learn intricate data and noise fea-
tures, achieving more effective denoising [38]. Zhu et al.’s DeepDenoiser in 2019 employed
an encoder–decoder structure to learn a set of sparse features, effectively separating signal
from noise [39]. However, the model’s encoder down-sampling, achieved through convo-
lution, faced challenges in extracting sufficient seismic signal features. In 2021, Gao et al.
introduced a seismic signal denoising model (DnRDB) that incorporated a residual dense
block (RDB), deepening the model’s structure with multiple RDB modules to extract more
relevant feature information [20]. Novoselov et al.’s SEDENOSS method in 2022 utilized a
two-path recurrent neural network for effective seismic signal separation and denoising,
thereby enhancing the signal quality and accuracy [40]. In 2023, Cai et al. merged atrous
convolution with RDB within the U-Net framework, creating the ARDU network, which
improved the feature extraction capabilities without increasing the network parameters,
reduced the waveform distortion, and preserved the effective signals [41]. Nonetheless,
when noise and signal are in the same frequency band [42] or when excessive noise results
in a signal-to-noise ratio below 0 dB, the denoising performance of these models is unsatis-
factory. This is attributed to the excessively low signal-to-noise ratio and the overwhelming
interference of noise, which hamper the model’s signal feature extraction.

In conclusion, this paper introduces a model tailored for denoising seismic signals
with extremely low signal-to-noise ratios. Building upon the U-Net [43], we have inte-
grated an inception module and an attention mechanism, which collectively enhance the
network’s feature extraction in the time–frequency domain and its ability to differentiate
between signals and noise. To assess our model’s denoising efficacy, we utilized the STEAD
dataset [44] for training and testing. The experimental outcomes confirm that our model
can effectively eliminate diverse noise types and maintain the denoising performance even
with signal-to-noise ratios below 0 dB. When compared to the U-Net, DeepDenoiser, and
DnRDB networks, our model demonstrates superior denoising effects on seismic signals
with very low signal-to-noise ratios and significantly improves the accuracy of the initial
phase pickup in denoised signals. Lastly, the “Di Ting” dataset [45] was employed to
validate our model’s generalization capability.

Our main contributions are summarized as follows.
(1) An improved U-Net model is proposed for denoising noisy signals with low

signal-to-noise ratios. This model effectively suppresses various types of noise, achieving
successful denoising for seismic signals with signal-to-noise ratios below 0 dB. The denoised
results significantly enhance the accuracy of the pickup of the phase arrival.

(2) Considering that seismic signals and noise may coexist across different frequency
channels or within specific frequency bands, the CA mechanism is introduced during
feature extraction. This mechanism directs the network’s attention to key channels or
frequency bands, enabling better differentiation between localized signal features and noise
features. Consequently, the model more effectively removes noise that shares the same
frequency band as the signal.

(3) To mitigate the information loss during down-sampling, we incorporate an incep-
tion module in the down-sampling stage. This module enables the network to capture
features of different sizes from the seismic signal during feature extraction, ensuring the
diversity of the features extracted by the network.
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2. Methodology

Time–frequency domain representation is a way that concurrently analyzes signals
in terms of both time and frequency, offering insights into signal variations across these
dimensions. Consequently, converting seismic signals from the time domain to the time–
frequency domain is advantageous for models to harness frequency information in learning
the distinct features of seismic signals and noise. In this study, we employ the short-time
Fourier transform (STFT) [46] for this conversion to the time–frequency domain, which is
particularly suitable for analyzing non-stationary signals. The STFT divides the signal into
shorter time periods and applies the Fourier transform (FT) to these time periods to obtain
the time–frequency representation of the signal. This allows us to observe the spectral
characteristics of the signal at different time periods. The mathematical expression for the
STFT is as follows:

X(t, f) =
∫ ∞

−∞
x(τ)w(t − τ)e−j2πfτdτ (1)

where X(t, f) is the result of the STFT, x(τ) is the input discrete signal, w(t − τ) is the
window function, and f is the frequency.

In the time–frequency domain, the noisy seismic signal Y(t, f) consists of the summa-
tion of the clean seismic signal S(t, f) and the noise N(t, f), expressed by the subsequent
equation. This representation facilitates the separation and analysis of the signal and noise
components within the seismic data.

Y(t, f) = S(t, f) + N(t, f) (2)

The objective of denoising is to maximize the removal of noise N(t, f) so that the
predicted clean seismic signal Ŝ(t, f) closely approximates S(t, f). The equation to obtain
Ŝ(t, f) is as follows:

Ŝ(t, f) = M̂S(t, f)Y(t, f) (3)

where M̂S(t, f) represents the time–frequency domain mask of the predicted signal. The
network takes the real and imaginary components of the time–frequency coefficients of the
noise-containing seismic signals as inputs and outputs the masks of the signal and noise in
the time–frequency domain. These predicted time–frequency masks can more accurately
estimate the distribution of seismic signals and noise across the frequency spectrum, thereby
enhancing the network’s ability to discern between signal and noise, resulting in more
effective denoising. This study adopts a magnitude–time–frequency mask, influenced by
those commonly employed in speech noise reduction algorithms [47,48]. The formulas for
the signal’s mask MS(t, f) and the noise’s mask MN(t, f) are as follows:

MS(t, f) =
1

1 + |N(t,f)|
|S(t,f)|

(4)

MN(t, f) =
|N(t,f)|
|S(t,f)|

1 + |N(t,f)|
|S(t,f)|

(5)

The size of each mask is the same as the input time–frequency domain seismic signal
Y(t, f), where MS(t, f) represents the proportion of the clean seismic signal S(t, f) in the
noise-containing seismic signal Y(t, f) in the range of 0–1 [49].

After obtaining the predicted clean signal Ŝ(t, f) in the time–frequency domain, the
predicted seismic signal Ŝ(t) in the time domain can be obtained by performing a short-time
Fourier inversion [46] on it with the following equation:

Ŝ(t) = STFT−1
{

Ŝ(t, f)
}

(6)

In this paper, we integrate an inception module and CA module into the U-Net, with
the network structure depicted in Figure 1a. We use a convolutional layer with a 3 × 3 size
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convolutional kernel with a step size of 2 and padding of 1 to supplant the maximum
pooling layer for down-sampling, thereby mitigating the loss of high-frequency seismic
information typically incurred during pooling. The reason for using a convolutional kernel
of 3 × 3 is that it has better feature extraction capabilities and can extract finer-grained
features [50]. The inception module introduced in this paper facilitates the encoder’s
ability to efficiently learn and represent the intricate features of the input data, enabling
the network to capture features of different scales within the seismic signal during feature
extraction. The configuration of the inception module is illustrated in Figure 1b. The CA
mechanism [51] introduced in this paper is shown in Figure 1c. Seismic signals and noise
may coexist across various frequency channels or within specific frequency bands. The CA
mechanism directs the network to focus its attention on these pivotal frequency channels
or bands, consequently amplifying the network’s capacity to perceive seismic signals. With
the integration of the CA mechanism, the network achieves a more refined distinction
between seismic signals and noise and assigns higher weights to seismic signals, retaining
the details and structure of the seismic signals more effectively throughout the denoising
process and elevating the denoising performance.
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Figure 1. The detailed structure diagram of the proposed network. (a) The structure of our network.
The inputs are the real and imaginary parts of the noise data after the STFT, and the outputs are
the masks corresponding to the signal and noise. The different colored squares represent different
modules in the network and the numbers represent the size of the feature map after the output of
each layer of modules. (b) The inception module used in our network. (c) The CA module used in
our network.
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3. Results and Discussion
3.1. Dataset

The data for this study were sourced from the STEAD dataset, with a sampling rate of
100 Hz and a length of 60 s. The STEAD dataset contains over two million three-channel
waveform recordings covering seismic activity and environmental noise on a global scale.
We randomly selected 25,000 instances of high signal-to-noise ratio seismic signals and
various types of noise signals from them. These selected signals and noise were normalized
by subtracting the mean and dividing by the standard deviation. Subsequently, the noise
was randomly scaled within a predefined range and combined with the seismic signals to
generate 25,000 low SNR seismic signals, all with SNRs below 0 dB. These noisy signals
were then randomly allocated to a training set, validation set, and test set in an 8:1:1 ratio.
Figure 2 illustrates a set of clean signals (Figure 2a), noise (Figure 2b), and noisy signals
(Figure 2d). Additionally, it presents the denoised signal (Figure 2e) and the noise (Figure 2f)
output by the model. Each subfigure’s left image depicts the time domain plot of the
respective signals, while the right image shows the spectrograms produced by applying a
short-time Fourier transform to the signals. Figure 2c shows the masks for the clean signal
and the noise.
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3.2. Evaluation Index

In this paper, we employ three metrics to assess the denoising performance: signal-to-
noise ratio (SNR), correlation coefficient (r), and root mean square error (RMSE) [41]. The
definitions of these metrics are as follows.

(1) The SNR represents the ratio of clean signal to noise in decibels (dB). A higher SNR
indicates a reduced noise component. The corresponding formula is delineated as follows:

SNR = 10log10

(
σs

σn

)
(7)

where σs denotes the energy of the clean signal and σn denotes the energy of the noise.
(2) The r represents the correlation coefficient that measures the degree of similarity be-

tween the denoised and the reference signals. A value approaching one indicates a stronger
correlation, suggesting that the denoised seismic signal closely resembles the waveform of
the reference seismic signal. The corresponding formula is delineated as follows:

r(X, Y) =
Cov(X, Y)√
Var[X]Var[Y]

(8)

where X denotes the reference signal and Y denotes the denoised seismic signal predicted
by the model. Conv(X, Y) denotes the covariance of the reference signal and the denoised
signal, Var[X] denotes the variance of the reference signal, and Var[Y] denotes the variance
of the denoised signal.

(3) The RMSE represents the root mean square error at each sample point between
the reference signal and the denoised signal predicted by the model. A lower RMSE value
indicates the higher resemblance of the denoised seismic signal to the reference signal. The
extent of the waveform distortion after signal denoising is characterized by the deviation
of each sampling point. The corresponding formula is delineated as follows:

RMSE =

√
∑n

i=1
∣∣X′(i)− X(i)

∣∣
n

(9)

where X′(i) denotes the denoised seismic signal output by the model prediction, X(i) de-
notes the reference seismic signal, and n is the number of signal sampling points.

3.3. Model Training

In this experiment, the network was constructed utilizing the PyTorch (1.12.1) frame-
work. The model underwent training, validation, and testing on an NVIDIA GEFORCE
RTX3090 (Nvidia, Santa Clara, CA, USA). The training process was conducted with a learn-
ing rate of 0.0001 and a batch size of 32. Parameter optimization was achieved through the
Adam optimization algorithm [52]. The mean square loss function (MSELoss) served as the
training loss function, for which the formula is as follows. The model completed 100 epochs
of training, resulting in the acquisition of the training and validation loss function descent
curves, as depicted in Figure 3.

MSELOSS =
1
n

n

∑
i=1

(
yi1 − yi2)

2 (10)



Appl. Sci. 2024, 14, 10262 7 of 15
Appl. Sci. 2024, 14, 10262 7 of 15 
 

 
Figure 3. Training and validation loss during the training process. 

3.4. Denoising Analysis of Different Types of Noise 
The denoising test was conducted using our model on noisy seismic signals contam-

inated with low-frequency noise, high-frequency noise, mixed-band noise, and spike 
noise to ascertain the model’s efficacy in noise abatement across various frequency bands. 
The outcomes are depicted in Figures 4–7. Figure 4 illustrates the impact of low-frequency 
noise, which induces significant fluctuations in the seismic signal. This noise is heavily 
superimposed on the seismic signal band, resulting in poor differentiation and complicat-
ing the denoising process. Our model successfully suppresses these fluctuations, enhanc-
ing the SNR from −9.46 dB to 12.85 dB, increasing the correlation coefficient by 96%, and 
reducing the RMSE by 80.19%. Figure 5 illustrates the impact of high-frequency noise, 
which has a higher frequency and minimal overlap with the seismic signal band. This 
noise detrimentally affects the event detection accuracy. Our model successfully removes 
it, improving the SNR from −6.87 dB to 21.13 dB, raising the correlation coefficient by 
110%, and lowering the RMSE by 80.9%. Figure 6 illustrates the impact of mixed-fre-
quency noise, which comprises multiple frequency components that severely overlap with 
the seismic signal band, posing noise reduction challenges. After the denoising process, 
the SNR is improved from −8.65 dB to 10.25 dB, the correlation coefficient is enhanced by 
66.66%, and the RMSE is decreased by 69.71%. Figure 7 illustrates the impact of spike 
noise, which impacts the seismic phase and arrival time extraction. Following denoising, 
the SNR is boosted from −8.5 dB to 14.5 dB, the correlation coefficient is increased by 
108.5%, and the RMSE is reduced by 70.66%. In summary, our model effectively eliminates 
various noise types, augments the SNR, preserves the effective signal, and minimizes the 
waveform distortion. 

Figure 3. Training and validation loss during the training process.

3.4. Denoising Analysis of Different Types of Noise

The denoising test was conducted using our model on noisy seismic signals contami-
nated with low-frequency noise, high-frequency noise, mixed-band noise, and spike noise
to ascertain the model’s efficacy in noise abatement across various frequency bands. The
outcomes are depicted in Figures 4–7. Figure 4 illustrates the impact of low-frequency
noise, which induces significant fluctuations in the seismic signal. This noise is heavily
superimposed on the seismic signal band, resulting in poor differentiation and complicating
the denoising process. Our model successfully suppresses these fluctuations, enhancing
the SNR from −9.46 dB to 12.85 dB, increasing the correlation coefficient by 96%, and
reducing the RMSE by 80.19%. Figure 5 illustrates the impact of high-frequency noise,
which has a higher frequency and minimal overlap with the seismic signal band. This
noise detrimentally affects the event detection accuracy. Our model successfully removes
it, improving the SNR from −6.87 dB to 21.13 dB, raising the correlation coefficient by
110%, and lowering the RMSE by 80.9%. Figure 6 illustrates the impact of mixed-frequency
noise, which comprises multiple frequency components that severely overlap with the
seismic signal band, posing noise reduction challenges. After the denoising process, the
SNR is improved from −8.65 dB to 10.25 dB, the correlation coefficient is enhanced by
66.66%, and the RMSE is decreased by 69.71%. Figure 7 illustrates the impact of spike
noise, which impacts the seismic phase and arrival time extraction. Following denoising,
the SNR is boosted from −8.5 dB to 14.5 dB, the correlation coefficient is increased by
108.5%, and the RMSE is reduced by 70.66%. In summary, our model effectively eliminates
various noise types, augments the SNR, preserves the effective signal, and minimizes the
waveform distortion.
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Figure 7. Denoising performance of spike noise: (I,III,V) are the original signal, the noise signal,
and the denoised signal in the time domain; and (II,IV,VI) are the time–frequency domain data
of (I,III,V).

3.5. Comparative Experiments and Analysis

To demonstrate the denoising efficacy of our model, we conducted comparisons
with the U-Net, DeepDenoiser, and DnRDB networks. The experimental outcomes were
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assessed using the SNR, correlation coefficient, RMSE and arrival error. All the methods
utilized data from an identical test set, with the SNR ranging from −14 dB to 0 dB. The
results, depicted in Figure 8, reveal that our model consistently achieves higher SNRs and
correlation coefficients, alongside lower RMSEs and arrival errors across various noise
levels, when contrasted with the U-Net, DeepDenoiser, and DnRDB models. This suggests a
superior denoising performance with minimal waveform distortion by our model. Relative
to the average SNR, as shown in Table 1, our model exhibits an improvement in the SNR
by 1.74 dB, 1.18 dB, and 3.66 dB over the U-Net, DeepDenoiser, and DnRDB models,
respectively. Additionally, the average correlation coefficients are enhanced by 0.0050,
0.0044, and 0.0166, while the RMSE values are reduced by 0.0491, 0.0365, and 0.1263,
correspondingly. By adding the Inception module to the U-Net, the SNR and r of the
denoised signal can be improved more and the RMSE can be reduced more, which proves
that adding the Inception module proposed in this paper to the network can improve the
ability of the network to distinguish between the signal and the noise and strengthen the
denoising performance of the network.
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Table 1. Denoising results of the different networks.

Model Improvement of SNR Improvement of r Reduction of RMSE

U-Net 16.94 0.3096 1.1881
DeepDenoiser 17.49 0.3102 1.2007

DnRDB 15.01 0.2980 1.1109
U-Net + Inception 18.39 0.3140 1.2267

Our model 18.67 0.3146 1.2372

Figure 9 illustrates the waveforms after noise reduction using various models when
the SNR of the added noise signal is −10 dB. It can be seen that although U-Net, DnRDB,
and DeepDenoiser have removed most of the noise, some of the noise has not been removed
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before the signal P-wave arrives at the time point, which means the P-wave first arrivals
pickup of the denoised signals has errors. Our model denoises the signal best and can
effectively remove the noise before the signal P-wave arrives, which means the P-wave first
arrivals of the signal denoised by our model have errors. Our model has the best denoising
effect, which can effectively remove the noise before the arrival of the P-wave of the signal,
which makes the P-wave first arrivals of the denoised signal from our model more accurate,
which is helpful for the subsequent seismic positioning.
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3.6. Generalization

To validate the generalizability of our model, we applied the trained model to the
“Di Ting” artificial intelligence seismology training dataset, which was furnished by the
National Earthquake Science Data Center, with a sampling rate of 50 Hz and a length
of 9000 sample points. For compatibility with our model’s input length, we designated
waveforms from the initial 6000 points as signal samples and the subsequent 3000 points as
noise samples. Following these procedures, we yielded 1500 data points with an SNR below
0 dB. After normalization, we utilized DeepDenoiser, DnRDB, and our model for denoising.
Table 2 presents the denoising outcomes for each model, including the SNR and correlation
coefficient improvement of the signal before and after denoising and the RMSE reduction.
As indicated in Table 2, our model outperforms DeepDenoiser and DnRDB, elevating the
SNR by 3.72 dB and 2.63 dB, respectively, augmenting the average correlation coefficients
by 0.1492 and 0.0272, and diminishing the RMSE by 0.1346 and 0.1587, respectively. These
results underscore our network’s significant advancements over other methods and its
robust denoising proficiency, thereby corroborating its exceptional generalizability.

In addition, to verify the denoising performance of the models on real noise-containing
signals, we selected 771 signals with SNRs below 5 dB from the STEAD dataset. However,
since the corresponding clean signals for these noise-containing signals are unknown, we
could not evaluate the denoising effect using the SNR, correlation coefficient (r), or RMSE.
Because our goal is to improve the subsequent P-wave picking accuracy, we assessed
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the denoising performance by comparing the P-wave picking accuracy before and after
denoising, as shown in Table 3. Here, the STA/LTA algorithm is used for P-wave picking.
The results show that the P-wave picking accuracy of the denoised signals obtained by
U-Net, DeepDenoiser, and DnRDB did not improve, probably because these models remove
the P-wave first-arrival information, as shown in Figure 10. The P-wave picking accuracy
of the signal after the denoising of our model is improved by 6.75%, and there is no
missed picking. This experiment demonstrates that our model effectively denoises real
noise-containing signals and enhances the P-wave picking accuracy after denoising.
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Table 2. Generalization experiment.

Model Improvement of SNR Improvement of r Reduction of RMSE

DeepDenoiser 10.36 0.0884 1.0484
DnRDB 11.45 0.2104 1.0243

Our model 14.08 0.2376 1.1830

Table 3. Real signal denoising experiment.

Model Accuracy (%) Missed Rate (%)

Not denoised 63.42 1.82
U-Net 62.16 0

DeepDenoiser 62.65 0
DnRDB 62.52 0

Our model 70.17 0

4. Conclusions

This paper addresses the suboptimal denoising performance of seismic signal process-
ing techniques on seismic signals with very low SNRs by introducing a novel denoising
model. Our model significantly enhances the feature extraction and the ability to dis-
tinguish between signal and noise through the integration of Inception modules and a
coordinate attention (CA) mechanism within the U-Net architecture. Training and testing
using the STEAD dataset have demonstrated the model’s superior denoising capabilities
across various seismic noise conditions. Compared to conventional methods and other deep
learning models, our model achieves a notable increase in the mean SNR and correlation
coefficient, while also reducing the RMSE.

Furthermore, the application of our model to real seismic data has effectively improved
the precision of identifying the first arrival of seismic phases. Additional testing on the
“Di Ting” dataset further confirms the model’s robust generalization capabilities. This
research not only advances the adaptability and accuracy of earthquake early warning
systems but also enhances their practical value in complex real-world settings. We believe
that these outcomes will have a profound impact on the field of seismology and provide
new directions for the development of future seismic signal processing technologies. In
the future, we will continue to deeply analyze the characteristics of various types of
noise in seismic data so that our model can remove other types of noise and improve its
generalization ability.
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