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Abstract: A mobile manipulator is capable of traversing a vast area while performing manipulation
tasks in confined spaces. However, the high degree of freedom presents a challenge for path planning.
In this paper, a hybrid sampling-based path planning method is proposed for mobile manipulators
performing pick and place tasks in confined spaces. This method employs a random sampling
approach, yet differs from the traditional RRT method. Firstly, a sampling-based configuration
generation method for mobile manipulators is proposed, with the objective of generating a valid,
collision-free configuration with the end-effector at the desired pose. A path for the end-effector
corresponding to the goal configuration is then planned using the RRT method. Secondly, an area-
restricted approach that samples in the vicinity of the previous configuration is introduced to generate
the next valid configuration. Subsequently, a cost computation rule is devised to identify the optimal
subsequent configuration utilizing the trajectory of the end-effector as a guiding principle. Finally,
the obtained path is smoothed. Simulations demonstrate that the proposed hybrid sample-based
method is an effective solution to the path planning problem for mobile manipulators performing
pick and place tasks in narrow spaces.

Keywords: mobile manipulator; motion planning; collision avoidance; sampling-based method

1. Introduction

A mobile manipulator (MM) is defined as a mobile base with one (or more) tradi-
tional robotic arm, thereby combining the advantages of both mobile robots and fixed-base
manipulators [1]. A mobile manipulator’s ability to traverse a vast area while retaining dex-
terous manipulation capabilities renders it a versatile tool for a multitude of applications,
including rescue operations [2], object transportation [3], fruit harvesting [4], large-scale
complex component machining [5], flexible manufacturing [6], and healthcare [7] in dif-
ferent scenarios. A mobile manipulator is frequently a kinematically redundant system,
with more than nine degrees of freedom (DOFs). The redundancy of mobile manipulators
increases their flexibility when operating in complex environments [8]. However, this also
makes the path planning process complex and challenging due to the infinite solutions to
the inverse kinematic problem. Consequently, the efficient planning of a safe and reachable
path for a mobile manipulator is a topic worthy of further research.

Two principal categories of algorithms for robot path planning are search-based and
sample-based algorithms. Search-based algorithms, also known as graph search algorithms,
such as A* [9], require the creation of a graphical representation of the environment. This
is followed by the search for the shortest-distance path or other lowest-cost path from
the start to the goal. Some researchers have proposed methods to improve the efficiency
of these algorithms [10]. However, the difficulty and complexity of creating graphical
representations preclude the applicability of these algorithms to mobile manipulators with
high DOFs.

Sampling-based algorithms, such as rapidly exploring random trees (RRT) [11], em-
ploy a random sampling process to select points and then connect these samples to generate
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a tree. These methods can be employed in high-dimensional spaces and complex envi-
ronments. One limitation of these methods is that they cannot guarantee optimal paths
and are sensitive to sampling strategies [12]. Furthermore, the efficiency of the algorithm
can be significantly impaired in confined or constrained environments. As a result, a
number of RRT-based variants have been developed with the aim of enhancing efficiency,
including RRT-connect [13], RRT* [14], informed RRT* [15], and EB-RRT [16]. Currently,
Artificial Intelligence (AI), a tool for obstacle detection and optimization, has increased the
performance of traditional algorithms [17].

When sampling-based algorithms are employed for mobile manipulators, such as
those described in [18], the algorithms’ dimensionality will be similarly high due to the high
DOFs, and the search space will be exceedingly large, resulting in low sampling efficiency.
Furthermore, the overall algorithm will be highly complex and time-consuming due to
the necessity of complex collision detection for each sample. A novel sampling-based
planning algorithm designed for mobile manipulators named XXL was proposed where
workspace information is used as a guide through the high-dimensional planning space [19].
However, XXL also has a high computational overhead. One potential solution to this
issue is to enhance the sampling strategy [20]. An alternative approach is to initially plan
the trajectory in the workspace and subsequently utilize inverse kinematics and dynamic
constraints to generate the configuration of the mobile manipulator at each waypoint
along the path. The path of the end-effector is initially planned using a sampling-based
algorithm. Subsequently, existing trajectory tracking methods can be employed for the
mobile manipulator to follow the planned path [21,22]. These methods are more suitable for
open environments, but it is challenging to obtain a valid solution that meets all constraints
and does not collide with the environment in a confined space. Furthermore, the differing
kinematic characteristics of the mobile base and the manipulator present an additional
challenge in determining the optimal base position and the pose of the manipulator [23,24].

To avoid the above problems, the mobile base and the manipulator are planned
separately using suitable methods. For example, the RRT-connect method can be used for
both the mobile base and the manipulator [25], but planning is performed separately. It
is also possible to use different methods, e.g., the mobile base is planned using a search-
based method and the manipulator is planned using a sampling-based method [26,27].
These methods improve the efficiency of path planning, but they do not consider the
motion coupling between the mobile base and the manipulator, and so they cannot adapt
to confined and complex environments nor can they fully exploit the flexibility provided
by the redundant degrees of freedom of the mobile manipulator. Therefore, the idea of
adaptive dimensionality has been proposed, i.e., planning in high dimensions only when
a feasible path cannot be searched in a low dimension [28]; Hierarchical and Adaptive
Mobile Manipulator Planner (HAMP) [29] and Optimized Hierarchical Mobile Manipulator
Planner (OHMP) [30] have been proposed based on this idea. These methods reduce the
computational burden in a high-dimensional space, but still need to plan in high dimensions
and suffer from a long, time-consuming search for a feasible path. In addition, similar
to the idea of adaptive dimensionality, changing the robot pose only when necessary
during the robot’s movement is another feasible idea [31,32]; however, such methods
focus on improving the ability of the mobile manipulator to move over a wide range and
pass through some obstacles, but still do not solve the planning challenge of performing
manipulation tasks in confined spaces.

In this paper, we propose a hybrid sampling-based method for the motion planning
of pick and place tasks for mobile manipulators. We note that some studies [33,34] have
proposed planning methods for mobile manipulator manipulation tasks, but these methods
are applicable to open spaces where collision avoidance is not a very difficult problem. Our
approach is dedicated to the problem of collision-free path planning in confined spaces.
The proposed approach refers to tunnel-like path planning and mixes different random
sampling-based methods. Currently, operations in confined spaces such as pipelines are
carried out using complex devices [35]. Mobile manipulators have the potential to be
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applied to operations in relatively short pipelines using the proposed planning method.
The main contributions of our work are as follows: (1) A sampling-based configuration
generation method is proposed to rapidly generate a collision-free configuration for a
mobile manipulator, including the mobile base pose and manipulator joint states, that
satisfies the target configuration of the end-effector. (2) A sampling strategy that samples
in the neighborhood of the last configuration of the mobile manipulator is introduced,
which avoids the inefficiency of sampling in a large space and increases the probability
of obtaining a collision-free sample. (3) An informed guiding approach is introduced to
determine the best pose among the samples.

The remainder of this paper is organized as follows: Section 2 presents the kinematic
model of a mobile manipulator and defines the general problem. Section 3 introduces
normal sampling-based algorithms for mobile manipulators, followed by an analysis of
their shortcomings when applied in confined spaces. Section 4 introduces our hybrid
sampling-based method, which includes sampling-based configuration generation, the
sampling strategy, and the informed guiding approach. Section 5 presents the simulation
results and conducts a comparative analysis of the different algorithms. Finally, Section 6
concludes the paper by summarizing the findings and providing future perspectives.

2. Modeling and Problem Formulation
2.1. Modeling of Mobile Manipulator

A typical single-arm mobile manipulator consists of a mobile base and a multi-joint
manipulator with an end-effector. The mobile manipulator in this paper is shown in
Figure 1. The mobile base is an ordinary mobile robot, which is differentially driven with
two drive wheels. It can rotate or move forward in a plane. The manipulator has seven
DOFs and has a gripper as an end-effector.
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The kinematic model of the mobile base can be represented by three parameters: the
position of the center and the heading angle of the mobile base. The kinematic model of
the manipulator can be developed using the classical modified Denavit–Hartenberg (D-H)
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coordinate system. The overall kinematics of the mobile manipulator can be derived by
transforming the manipulator coordinate to the mobile base coordinate. The transformation
matrix from the end-effector to the world frame is

WTE (qmm) = WTMB
MBTM

MTE, (1)

where qmm is the configuration of the mobile manipulator, WTMB is the transformation
matrix from the mobile base to the world frame, MBTM is the transformation matrix from
the manipulator to the mobile base, and MTE is the transformation matrix from the end-
effector to the manipulator.

2.2. Problem Statements

The path planning problem for a mobile manipulator in this paper can be defined
as finding a collision-free path that starts from the initial configuration and reaches the
goal configuration where the end-effector reaches the target position and satisfies the
requirements of the pose of the end-effector, as shown in Figure 2.
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The configuration of the mobile base can be represented by a vector
qmb = [x, y, φ], where x and y are the position of the mobile base and φ is the heading
angle of the mobile base. The configuration of the manipulator can be represented
by another vector qm = [θ1, θ2, θ3, θ4, θ5, θ6, θ7], where θ i is the ith joint angle of the
manipulator. The configuration of the mobile manipulator is qmm = [qmb, qm]. The path
for the mobile manipulator can be expressed as follows:

Πmm =
[
qmm

s , qmm
1 , · · · , qmm

n , qmm
g

]
. (2)

Πmm is an ordered set of mobile manipulator configurations. qmm
s is the starting

configuration of the mobile manipulator for path planning. qmm
i (1 ≤ i ≤ n) is a waypoint in

the path. qmm
g is the goal configuration of the mobile manipulator for path planning. Unlike
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the start configuration, the goal configuration of the mobile manipulator is not directly
given. In pick and place tasks, the position and rotation constraints of the end-effector are
often given as known conditions. The constraints of the end-effector can be represented
as Xgoal = [R, T], where R is the rotation constraint and T is the position constraint. So,
qmm

g that can satisfy the constraint Xgoal and not collide with the environment should be
calculated first in path planning for a mobile manipulator.

When qmm
s and qmm

g are known, a path Πmm between them can be searched and
smoothed for the mobile manipulator. Some sampling-based methods could solve this
problem, but they are not suitable for pick and place tasks in a confined space.

3. Related Work and Shortcomings
3.1. Sampling-Based Path Planning for Mobile Manipulators

When sampling-based path planning methods are used for mobile manipulators, there
are three different ways and they are mainly based on the RRT algorithm.

3.1.1. Using Traditional RRT Algorithms

Since RRT-based algorithms can be used in high-dimensional spaces, this is the sim-
plest and most direct idea. The mobile manipulator is considered a whole system with high
DOFs and the difference between the mobile base and the manipulator is neglected.

3.1.2. Using End-Effector Path and Inverse Kinematics

An available path for the end-effector is first planned using the RRT-based algorithm.
Then, the inverse kinematics of the mobile manipulator are used to find the position
and heading angle of the mobile base and each joint position of the manipulator at each
waypoint of the end-effector path. This idea is often used in conventional robot arms.

3.1.3. Separate Planning

Another common idea is to plan the mobile base and the manipulator separately, and
there are actually two different approaches. One approach is to plan the paths for the
mobile base and the manipulator from the start configuration to the goal configuration
using the RRT algorithm and then combine them together. The other approach is to plan the
path of the mobile base first, adjust the configuration of the manipulator to avoid collision
during the movement of the mobile base, and after the mobile base reaches the target
position, plan the path for the manipulator that reaches the goal configuration.

3.2. Shortcomings

However, these methods have different shortcomings.

3.2.1. Time Consuming

The efficiency of sampling is directly related to the size and dimension of the sampling
space. For the RRT algorithm, the processing time complexity of processing is O(n logn),
the time complexity of the query is O(n), and the space complexity is O(n) [36]. In a large
sampling space with high dimensions, the algorithm would sample many more times
and spend much more time searching for the available path. For mobile manipulators
performing pick and place tasks in confined spaces, the main problem is that the probabil-
ity of obtaining collision-free sampled configurations by random sampling is extremely
low. Consequently, the number of samples required increases significantly, resulting in a
significant reduction in efficiency (as shown in Figure 3a).
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In (c), the manipulator collides with the environment while the mobile base reaches the target
configuration. In (d), after the mobile base arrives at the target configuration, the collision-free path
for the manipulator cannot be found due to the confined space.

3.2.2. Complex Inverse Kinematics

Planning a path for the end-effector first and using inverse kinematics to compute the
configuration of the robot corresponding to each waypoint in the path is a common method
for the path planning problem of traditional robotic arms. Since the mobile manipulator
is a hyper-redundant system with two parts that have different kinematic characteristics,
using inverse kinematics and dynamic constraints to compute a configuration is much
more difficult than that of robotic arms. Confined spaces make it even worse. Considering
that neither the mobile base nor the manipulator should collide with the environment, the
process of obtaining a suitable mobile manipulator can become very complex. Furthermore,
there may be some waypoints in the end-effector path for which there is no feasible collision-
free configuration, which may cause the entire end-effector path to fail and lead to a failure
of the mobile manipulator path planning (as shown in Figure 3b).

3.2.3. Neglecting the Manipulating Flexibility

Separate planning for the mobile base and the manipulator from the starting configu-
ration to the goal configuration has a fatal flaw. The combined path can cause collisions
between the robot and the environment since the other part is not considered in planning
for the mobile base or the manipulator (refer to Figure 3c). This method is only suitable for
open spaces without any obstacles. In contrast, a better approach is to allow the mobile base
to reach the target configuration and then adjust the manipulator configuration so that the
end-effector reaches the target pose. However, this approach does not take into account the
coupled motion of the mobile base and the manipulator, and it ignores the manipulation
flexibility provided by the redundant DOFs of the mobile manipulator. This method may
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work well in some scenarios, but in some confined spaces, the manipulator may not be able
to find an available collision-free path to make the end-effector reach the target pose, while
the mobile base may have already reached the target configuration (refer to Figure 3d).
In other words, in some scenarios, simultaneous movement of the mobile base and the
manipulator is required to bring the end-effector to the goal pose while avoiding collision
with the environment.

4. Approach

The overall process of the proposed approach is shown in Algorithm 1 Hybrid
Sampling-based Path Planning (HSPP). First, a valid collision-free configuration consisting
of both the mobile base and the manipulator that makes the end-effector at the target
position satisfy the rotation constraints. A Sampling-based Configuration Generation (SCG)
method is proposed to quickly generate the configuration and will be described in detail
later. A smoothed path for the end-effector is then generated as a reference path for the
mobile manipulator. Next, starting from the target configuration for the mobile manipu-
lator, iterative sampling is performed in the neighborhood of the last waypoint and the
configuration for the mobile manipulator that is closest to the reference path is obtained.
The path for the mobile manipulator is generated iteratively. Finally, post-processing is
performed to cut and smooth the whole generated path. The sampling strategy and the
configuration selection principle will be described in detail later.
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In pick and place tasks, only the position and rotation constraints of the end-effector
are given, the corresponding configuration for the mobile manipulator should be calculated
first before path planning. In the traditional RRT-based algorithm, the configuration of the
mobile base and the grasping pose of the end-effector are first selected according to some
principles, and then the configuration of the mobile manipulator is calculated using inverse
kinematics. This method is useful in open spaces without massive obstacles [33], but in
confined spaces, it is not a simple task. The main problem is that it is difficult to determine
a suitable configuration of the mobile base and a suitable configuration of the end-effector.
The concept of inverse reachability map seems to be useful here, but an inverse reachability
map is not suitable for narrow spaces [37,38]. In order to ensure that the corresponding
configuration is available and collision-free in the scenario, it is necessary to establish the
inverse reachability map for the specific scenario. Therefore, we propose a method similar
to the creation of an inverse reachability map to directly find a feasible mobile manipulator
configuration corresponding to an end-effector pose.
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In confined spaces, it is difficult to establish a rule for determining the configuration of
the mobile base, since it is almost impossible to know whether a corresponding collision-free
configuration of the manipulator exists. Therefore, we adopt a sampling-based approach to
find a feasible collision-free configuration of the manipulator by trying different mobile
base configurations and end-effector configurations. The procedure is shown in Algorithm
2.
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First, a valid end-effector configuration Xee is sampled based on the given end-effector
position and rotation constraints. The configuration Xee can be represented by a position
matrix T and a rotation matrix R. Usually the position matrix is fully given, but the rotation
matrix is partially given with some constraints. The orientation of the end-effector affects
the mobile manipulator configuration and is related to the ability to find collision-free
mobile manipulator configurations. For example, the end-effector is constrained to be
parallel to the ground, but the direction is not required. In this case, the direction of the end-
effector, or the rotation matrix R, could be sampled in order to generate a valid collision-free
configuration for the manipulator. Algorithm 2 SAMPLEEECONFIG() is used to generate
the end-effector configuration, and ISEECONFIGVALID() is used to check whether the
configuration satisfies the constraints of Xgoal.

The configuration of the mobile base qmb
g should then be sampled, as shown in Al-

gorithm 2 SAMPLEMBCONFIG(). A simple way to perform this is to sample the mobile
base configuration within a circle centered on the end-effector position and radiused from
the workspace radius of the manipulator. In practice, however, the mobile base positions
that allow the acquisition of viable mobile manipulator configurations are not uniformly
distributed within the circle. As shown in Figure 4, the images on the left illustrate the
distribution of mobile base positions that can be obtained for a valid mobile manipulator
configuration when the height of the end-effector is 0.3 m. Correspondingly, the images
on the right illustrate the distribution of mobile base positions that can be obtained for a
valid mobile manipulator configuration when the height of the end-effector is 0.9 m. The
results were obtained from one thousand random sampling experiments. It can be seen
that there are regions where feasible mobile base locations are more densely populated,
and sampling in these regions has a higher probability of obtaining feasible mobile base
locations. These areas are circular in shape and can be represented by their linear distance
from the end-effector. Since moving the mobile base too far or too close to the end-effector
reduces the manipulating flexibility of the manipulator, we can define a small area where
50% of the feasible mobile base positions are located, which is called the High Manipulating
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Flexibility Area (HMFA) in this paper. As shown in Figure 4, the areas are the rings between
R1 and R2. The R1 and R2 of the HMFA corresponding to each height of the end-effector can
be derived from the results of the sampling experiment, which indicates the distributions of
the valid mobile base positions corresponding to different end-effector heights (as shown
in Figure 5).
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When sampling the mobile base positions, sampling in the HMFA corresponding to
the end-effector height should have a higher priority than sampling in the other areas. This
strategy increases the probability of sampling a feasible mobile base position and reduces
the number of sampling repetitions, thus increasing the efficiency of sampling.

The sampled configuration of the mobile base should be checked for collision with
the environment using ISMBCONFIGVALID() in Algorithm 2. After sampling the con-
figurations of the end-effector and the mobile base, the configuration of the manipulator
could be calculated with CALMANIPCONFIG(). In this paper, we use the Kinematics and
Dynamics Library (KDL) [39] to solve the inverse kinematics problem.

The SCG process is repeated until a valid configuration, checked by ISMMCONFIG-
VALID(), is generated for the mobile manipulator.
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4.2. Iterative Sampling in the Neighborhood

It is extremely difficult, if not impossible, to obtain a feasible path in a complex high-
dimensional space relying only on random sampling. Therefore, we proposed a method
that iteratively generates a feasible path by continuously sampling in the neighborhood,
starting from the searched collision-free goal configuration of the mobile manipulator. In
order to improve efficiency, we use a collision-free path of the end-effector as a reference to
guide the iterative generation.

As shown in Algorithm 3, CALEESTARTANDGOAL() first calculates the start and
goal positions of the end-effector, and then a traditional RRT algorithm [14] is used to
generate a path, as shown in Figure 6a. A cutting method that is the same as in [33] is
used here, which is PRUNE() in Algorithm 3, to optimize the path generated by the RRT,
and the result is shown in Figure 6b. Sometimes, there are different paths, such as shown
in Figure 6c, and so it is necessary to check whether the path is suitable with the goal
configuration of the mobile manipulator. If the configuration of the mobile manipulator is
as shown in Figure 6d, it is better to use the path in Figure 6b as the reference path rather
than the path in Figure 6c. This is checked with CALCOSTPATH() in Algorithm 3. Here, we
propose a keypoint-based approach to represent the proximity of the mobile manipulator
configuration to the end-effector path.
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As shown in Figure 7a, we select four keypoints for the mobile manipulator. It can be
seen that the distance between any two adjacent keypoints is constant, regardless of the
rotation of any joint. Thus, the distance between these keypoints and the path can indicate
the degree of fit of the mobile manipulator configuration to the end-effector path. Here, we
use the sum of the shortest distances between each keypoint Ki and the path Πee as the cost,
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as shown in Figure 7b. If the cost is less than the set threshold, the mobile manipulator
configuration is considered to match the end-effector path. The cost can be expressed as

costpath(qmm) = ∑ distance(Ki, Πee). (3)
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After determining the reference path, we propose an iterative sampling-based method
to generate the mobile manipulator path, which samples in the neighborhood of the last
configuration, causing the mobile manipulator to move along the reference path (as shown
in Algorithm 4). Given qmm

now as an initial value, SAMPLEQ() in Algorithm 4 is used to
sample a configuration qmm

sample so that each element qsample
i of qmm

sample satisfies

qsample
i ∈

.
U(qnow

i , δi), (4)

.
U( qnow

i , δi) = {x| 0 ⟨ | x − qnow
i | < δi} , (5)

where δi is the stepsize of ith element in the configuration, and qnow
i is the element of qmm

now.
Choosing the appropriate stepsize ensures that if both the initial value configuration and the
sampled configuration are collision-free, then the motion between the two configurations
can also be considered collision-free.

Since both the mobile base and the manipulator are sampled during the iterative
sampling process, the generated motions are simultaneous, which facilitates the manip-
ulation flexibility of the mobile manipulator. Here, we first sample a certain number of
collision-free configurations as alternatives, and then select an optimal configuration to
add to the path of the mobile manipulator. When selecting the optimal configuration, there
are two main issues to consider: how well the configuration fits the reference path of the
end-effector, and whether it is moving towards the target.

As shown in Figure 7c, the reference path actually represents a collision-free tunnel,
and trying to move the manipulator along the tunnel (as shown in Figure 7d) is more likely
to find a feasible collision-free path, thus avoiding the time wasted caused by random
sampling. Thus, the cost used to evaluate the configuration consists of two parts, costpath,
which represents the degree of fit to the reference path, and costtarget, which represents the
movement towards the target. The first part, costpath, was defined in Equation (3). The
second part can be expressed as

costtarget(qmm) = ∑
∣∣qi − qt

i
∣∣, (6)
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where qi is the ith element of the configuration qmm and qt
i is the ith element of the target

configuration qmm
t . Since the environment in which qmm

g is located is more complex, the
iterative sampling is started at qmm

g , and so qmm
s is the target qmm

t .
The importance of these two components varies at different stages; when the mobile

manipulator is close to qmm
g , costpath is more important because the environment is complex.

When the mobile manipulator is close to qmm
t , there is no need to stay close to the path, and

costtarget is more important. Therefore, a linear combination of costpath and costtarget is used
to represent the cost

cost(qmm) = k1 ∗ costpath(qmm) + k2 ∗ costtarget(qmm), (7)

where k1 and k2 are coefficients associated with the value of the remaining length of
Πee. After each successful sample, the last element of Πee is deleted to make the mobile
manipulator to move to the target configuration.

Finally, simple post-processing of the path is performed to obtain a smoothed path for
the mobile manipulator.
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5. Simulations and Discussion
5.1. Case Description

In this section, we conduct simulations on the proposed methods for different scenarios
and cases. All methods are implemented in C++ and all experiments are run on an Intel i5
9400F at 2.9 GHz with 16 GB of RAM. All simulation experiments are conducted with a
Robot Operating System (ROS) [40]. We consider the complex 3D scenario (scenario C1)
shown in Figure 8a and the tunnel-like 3D scenario (scenario C2) shown in Figure 8b. In
scenario 1, we consider four different cases with two different starting configurations, (0, 0,
0, 0, 0, 0, 0, 0, 0) and (0.6, 0, 0, 0, 0, 3.14, 0, 0, 0), and two different goal points: (1.28, 0, 0.65)
and (1.28, 0, 0.75) (denoted as S1, S2, G1, and G2, respectively). In scenario 2, we consider
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two different cases, they have two starting configurations that are the same as scenario C1,
and they have the same goal point (1.31, −0.1, 0.65) (denoted as G3).
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For the above cases, we apply different algorithms for the simulation, including the
traditional RRT using end-effector path and inverse kinematics, separate planning for the
mobile base and the manipulator and combining the paths, separate planning but planning
for the manipulator when the mobile base is at the target position, the proposed hybrid
sampling-based path planning, and its variant that only use costtarget as cost when sampling
in the neighborhood (denoted as RRT, IK, SP-1, SP-2, HSPP-pt, and HSPP-t). Since the RRT,
IK, SP-1, and SP-2 methods also require the goal configuration of the mobile manipulator
as a known condition to generate a path, we first test the performance of the proposed
Sampling-based Configuration Generation (SCG) method and use it to generate the goal
configuration for all methods.

5.2. Results and Discussion

First, we execute 1000 runs for each goal point to get the performance of the proposed
Sampling-based Configuration Generation (SCG) method. We regard a single generation
with a total number of attempts greater than 1000 and time consumed more than 1 s as a
failure. The result is shown in Table 1, the success rate and time consumed in all cases are
acceptable, which indicates that the method is effective.

Table 1. Results of the SCG method.

Case Success Rate Mean # of
Samples

Mean Time
Consumed [s]

Median # of
Samples

C1G1 98.6% 159.64 0.48 115
C1G2 99.8% 128.99 0.14 93
C2G3 100% 92.25 0.31 63

Except for cases and success rates, failed generations are not included.

We then perform 100 runs for each algorithm in each case. NumOfAlter in Algorithm
4 is 100, and the threshold for determining the appropriate end-effector path is 0.1. The
stepsize of the mobile base is 0.01, and the stepsize of the manipulator is 0.1. For the whole
path planning process, a single path planning taking more than 120 s is regarded as a failure.
Table 2 shows the success rates of the different algorithms in different cases. In all cases, the
proposed HSPP-pt method exhibits the best success rates. In contrast, RRT, IK, SP-1, and
SP-2 fail to find a path in the given time in any case. For the RRT and IK methods, the main
cause of failure is that they require a large amount of time, while for the SP-1 and SP-2
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methods, the main cause of failure is that they cannot find a collision-free path near the
target configuration. For the HSPP method, different case difficulties do not significantly
affect the success rate, whereas for the HSPP-t method, which only uses costtarget, different
settings affect its success rate due to the fact that it may fall into a local optimum solution
at a particular configuration.

Table 2. Comparison of success rates.

Case RRT IK SP-1 SP-2 HSPP-t HSPP-pt

C1S1G1 0% 0% 0% 0% 80% 97%
C1S1G2 0% 0% 0% 0% 73% 98%
C1S2G1 0% 0% 0% 0% 79% 96%
C1S2G2 0% 0% 0% 0% 72% 94%
C2S1G3 0% 0% 0% 0% 81% 99%
C2S2G3 0% 0% 0% 0% 80% 98%

Table 3 compares the average completion times of different algorithms. HSPP-t
achieves faster search speeds in scenario C1, while HSPP-pt performs better in scenario C2.
It can also be seen that, similar to the case of success rates, the time consumption of the
HSPP-pt method is less affected by the different case settings and consumes a more even
amount of time across cases, whereas the time consumption of the HSPP-t method is more
affected. The time consumed by each part of the algorithm is illustrated in Figure 9. The
SCG part consumes very little time and is negligible in relation to the total time consumed.
The time consumed by the sampling in neighborhood for HSPP-t is much more than that of
HSPP-pt, which means that costtarget improves the performance of the process. Although
the HSPP-pt method increases the time consumed by adding a reference path planning
part, it is comparable to the total time consumed by the HSPP-t method, and the HSPP-pt
method has better stability and higher success rate. In addition, the HSPP-pt method can
further reduce the time consumed by optimizing the reference path planning.

Table 3. Comparison of average time consumption.

Case RRT IK SP-1 SP-2 HSPP-t HSPP-pt

C1S1G1 N/A N/A N/A N/A 7.66 ± 4.61 11.93 ± 5.46
C1S1G2 N/A N/A N/A N/A 8.25 ± 5.20 12.54 ± 6.89
C1S2G1 N/A N/A N/A N/A 7.48 ± 4.47 13.42 ± 7.51
C1S2G2 N/A N/A N/A N/A 8.88 ± 6.19 11.58 ± 6.23
C2S1G3 N/A N/A N/A N/A 20.70 ± 12.43 13.56 ± 5.98
C2S2G3 N/A N/A N/A N/A 21.11 ± 13.08 14.71 ± 9.04

Except for cases and success rates, failed generations are not included.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 17 
 

different settings affect its success rate due to the fact that it may fall into a local optimum 
solution at a particular configuration. 

Table 2. Comparison of success rates. 

Case RRT IK SP-1 SP-2 HSPP-t HSPP-pt 
C1S1G1 0% 0% 0% 0% 80% 97% 
C1S1G2 0% 0% 0% 0% 73% 98% 
C1S2G1 0% 0% 0% 0% 79% 96% 
C1S2G2 0% 0% 0% 0% 72% 94% 
C2S1G3 0% 0% 0% 0% 81% 99% 
C2S2G3 0% 0% 0% 0% 80% 98% 

Table 3 compares the average completion times of different algorithms. HSPP-t 
achieves faster search speeds in scenario C1, while HSPP-pt performs better in scenario 
C2. It can also be seen that, similar to the case of success rates, the time consumption of 
the HSPP-pt method is less affected by the different case settings and consumes a more 
even amount of time across cases, whereas the time consumption of the HSPP-t method 
is more affected. The time consumed by each part of the algorithm is illustrated in Figure 
9. The SCG part consumes very little time and is negligible in relation to the total time 
consumed. The time consumed by the sampling in neighborhood for HSPP-t is much more 
than that of HSPP-pt, which means that costtarget improves the performance of the process. 
Although the HSPP-pt method increases the time consumed by adding a reference path 
planning part, it is comparable to the total time consumed by the HSPP-t method, and the 
HSPP-pt method has better stability and higher success rate. In addition, the HSPP-pt 
method can further reduce the time consumed by optimizing the reference path planning. 

Table 3. Comparison of average time consumption. 

Case RRT IK SP-1 SP-2 HSPP-t HSPP-pt 
C1S1G1 N/A N/A N/A N/A 7.66 ± 4.61 11.93 ± 5.46 
C1S1G2 N/A N/A N/A N/A 8.25 ± 5.20 12.54 ± 6.89 
C1S2G1 N/A N/A N/A N/A 7.48 ± 4.47 13.42 ± 7.51 
C1S2G2 N/A N/A N/A N/A 8.88 ± 6.19 11.58 ± 6.23 
C2S1G3 N/A N/A N/A N/A 20.70 ± 12.43 13.56 ± 5.98 
C2S2G3 N/A N/A N/A N/A 21.11 ± 13.08 14.71 ± 9.04 

Except for cases and success rates, failed generations are not included. 

 
Figure 9. Comparison of time consumption in all cases. 

In Figure 10, the comparison of the generated path length is shown. For HSPP-pt, the 
generated path length is basically positively correlated with the distance from the start 

Figure 9. Comparison of time consumption in all cases.



Appl. Sci. 2024, 14, 10313 15 of 17

In Figure 10, the comparison of the generated path length is shown. For HSPP-pt,
the generated path length is basically positively correlated with the distance from the
start configuration to the goal configuration, while for HSPP-t, in complex cases (C1S2G1,
C1S2G2, and C2S2G3), the path length is increased due to the fact that the more complex
the action, the greater the likelihood of it being caught in the local oscillations, which could
increase the path length or even lead to a planning failure.
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6. Conclusions and Future Work

This paper proposes HSPP-pt, a hybrid sampling-based algorithm for efficiently
finding a collision-free path for mobile manipulators performing pick and place tasks in
confined spaces. Traditional methods are not applicable to such scenarios for various
reasons. HSPP-pt incorporates an SCG method for computing a collision-free mobile
manipulator target configuration based on the end-effector position and rotation constraints.
Also, HSPP introduces end-effector paths as reference paths and proposes a path generation
method based on sampling in the neighborhood. Although there might be a possibility that
the method will fall into a local minima when sampling in the neighborhood, it avoids the
complexity of random sampling in high-dimensional spaces and strikes a balance between
planning efficiency and the success rate.

For future work, we plan to improve the planning methodology of the reference path
to further reduce the time consumption, to establish a coordination mechanism to fully
exploit the advantages of HSPP-pt and HSPP-t in different scenarios, and, finally, to further
optimize the generated paths to improve the path quality. Furthermore, this method is
currently only applicable to known static environments. However, there is potential for
this method to be extended to dynamic obstacle avoidance with the utilization of rapid
environmental perception and modelling.
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