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Abstract: Breast cancer is among the most prevalent cancers in the female population globally.
Therefore, screening campaigns as well as approaches to identify patients at risk are particularly
important for the early detection of suspect lesions. This study aims to propose a workflow for the
automatic classification of patients based on one of the most relevant risk factors in breast cancer,
which is represented by breast density. The proposed classification methodology takes advantage
of the features automatically extracted from mammographic images, as digital mammography
represents the major screening tool in women. Textural features were extracted from the breast
parenchyma through a radiomics approach, and they were used to train different machine learning
algorithms and neural network models to classify the breast density according to the standard Breast
Imaging Reporting and Data System (BI-RADS) guidelines. Both binary and multiclass tasks have
been carried out and compared in terms of performance metrics. Preliminary results show interesting
classification accuracy (93.55% for the binary task and 82.14% for the multiclass task), which are
promising compared to the current literature. As the proposed workflow relies on straightforward
and computationally efficient algorithms, it could serve as a basis for a fast-track protocol for the
screening of mammograms to reduce the radiologists’ workload.

Keywords: breast density; digital mammography; artificial intelligence; machine learning; neural
networks

1. Introduction

Breast cancer is among the most widespread tumor types in most industrialized
countries [1]. However, in recent years, there has been a sharp decline in mortality thanks
to the development of diagnostic techniques to diagnose cancer in the early stage, thus
ensuring a positive prognosis for the patient.

Full-Field Digital Mammography (FFDM) is the current clinical gold standard in breast
cancer screening; indeed, it is widely recognized that proper adherence to mammographic
screening protocols in the female population can support the early detection and diagnosis
of breast diseases. The United States Preventive Services Task Force recommends that
women who are 50 to 74 years old and are at average risk for breast cancer get a mammo-
gram every two years, while women aged 40–49 should talk to their healthcare provider
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about when to start and how often to get a mammogram [2–5]. Besides age, there are other
different variables correlated with breast cancer risk (e.g., reproductive factors, hormones,
diet, metabolism, and breast density) that need to be taken into account for implementing
targeted and personalized screening programs.

Among these factors, breast density, which represents the amount of fibrous and
glandular tissue in the breast, plays a fundamental role, as women with denser breast
tissues can be exposed to a higher risk of developing breast cancer [6,7]. However, it has
been shown that the sensitivity of digital mammography is affected by the density of the
breast tissue, with values ranging from 86 to 89% in largely fatty breasts and from 62 to 68%
in extremely dense breasts. For this reason, the visual inspection of mammograms, despite
processing to improve the quality of mammographic images [8–10], does not allow accurate
discrimination between dense tissues and tumor lesions, which present similar properties
since most tumors absorb X-rays similarly, to an extent, to fibroglandular tissues, as both
appear white (dense) on mammograms [11–13]. Breast density represents the amount of
fibroglandular tissue compared to fatty tissue and, on a mammography report, is assigned
on a qualitative basis, through a visual evaluation, by the radiologists. The classification
is based on the international standard BI-RADS (Breast Imaging—Reporting and Data
System), based on which it is possible to identify four density classes [14]: (i) class A,
predominantly fibro-adipose tissue; (ii) class B, scattered areas of fibroglandular tissue;
(iii) class C, heterogeneously dense tissue; and (iv) class D, extremely dense tissue.

To overcome the inter- and intra-observer variability to which visual evaluations are
subject, in recent years, many methods of automatic detection on bio-images have been
developed, through the extraction of radiomic features [15] combined with artificial intelli-
gence (AI) techniques, for different clinical purposes [16–22]. In this study, the extracted
features will represent the textural characteristics of the breast parenchyma [23–25]. Ra-
diomics for the study of breast parenchyma is widely investigated in the literature not only
to evaluate risk factors such as breast density but also for the early diagnosis of different
types of breast cancer [26–28]. Furthermore, the analysis is extended to different imaging
modalities [29], from magnetic resonance (MR) imaging [30] to computed tomography
(CT) [17,31] to ultrasound (US) [32] and digital tomosynthesis [33], but to date, the gold
standard for the early diagnosis of breast cancer is considered digital mammography. The
possibility of correlating the extracted features with breast density is then investigated.
The first preliminary step, in Medio-Lateral-Oblique (MLO) images, is to segment the
breast parenchyma with respect to the background but above all to the pectoral muscle,
which can be interpreted as fibroglandular tissue, if not correctly segmented, leading to an
overestimation of the breast density. Extending the results previously presented by the
authors [23], this study is primarily intended to evaluate automatic segmentation methods
to remove pectoral muscle from MLO mammographic images among those present in the
scientific literature. Next, it is meant to test the capability of machine learning and neural
networks in classifying breast density based on textural features extracted from only breast
parenchyma. Therefore, the main novelties and advances compared to the previous work
are (i) the evaluation of automatic segmentation methods to remove pectoral muscle from
mediolateral oblique (MLO) mammographic images; (ii) the introduction of a multiclass
classification based on BI-RADS guidelines; and (iii) the test of the capability of machine
learning and neural networks in classifying breast density on imbalanced dataset.

2. Materials and Methods

The methodological workflow followed in this study is shown in Figure 1.
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Figure 1. Operational workflow.

2.1. Dataset

The dataset includes images from 161 women patients, whose characteristics are
summarized in Table 1, who underwent bilateral, two-view (both cranio-caudal, CC, and
MLO) FFDM under the standard protocol, using Giotto Class (IMS GIOTTO S.p.A., Sasso
Marconi, Bologna, Italy). The patients considered underwent screening mammography
examinations at “Luigi Vanvitelli” University Hospital.

Table 1. Study population.

Number of women 161

Age (mean ± SD) 56.2 ± 9.0

Age at first menstrual period (mean ± SD) 12.0 ± 1.5

Women in menopause 116

Age menopause ( mean ± SD) 49.8 ± 5.0

BMI (mean ± SD) 25.0 kg/mm2 ± 4.0

For the extraction of the quantitative features, only the “FOR PROCESSING” images
were taken into consideration, i.e., raw images, as the intensities detected are proportional
to the attenuation of the X-rays on the breast tissue, thus being more suitable for quantitative
analysis and eliminating any bias due to post-processing software. Four images for each
patient were obtained. Image processing and training and testing of the AI algorithms
were performed via a laptop with Intel Core i5-9300H CPU 2.40 GHz and 8 GB RAM and
NVIDIA GeForce GTX 1650 Graphic Card.

2.2. Segmentation

To segment the breast, the interface of the air–tissue and the breast–pectoral muscle
had to be identified. For segmentation, there are various strategies (from thresholding to
more sophisticated algorithms). Accurate segmentation is an important preliminary step
to extract quantitative features from the breast parenchyma and be sure of not having an
overestimation of the density due to an inaccurate segmentation of the pectoral muscle,
which, by an automatic classification algorithm, would be classified as fibroglandular
tissue. In this study, it was therefore decided to validate two software tools for automatic
segmentation of the breast [34]: OpenBreast (https://github.com/spertuz/openbreast,
accessed on 15 September 2024) [35] and Libra (https://www.med.upenn.edu/sbia/libra.
html, accessed on 15 September 2024) [36]. The objective of the two software is different: in
the first case, a risk score is produced, and in the second case, only a density assessment.
Therefore, only the first part relating to breast segmentation alone was considered in this
study. Manual segmentation by expert radiologists represents the ground truth. The

https://github.com/spertuz/openbreast
https://www.med.upenn.edu/sbia/libra.html
https://www.med.upenn.edu/sbia/libra.html
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most accurate segmentation method was evaluated on the basis of the calculation of the
parameters Dice index and Cohen’s kappa.

2.3. Textural Features

Having established the best segmentation software among those previously described,
we moved on to the extraction of the textural features. When attributing features to an image,
it is essential to examine its pixel-by-pixel structure and consider the interactions among
different pixels as observed through the lens of grayscale intensity. Each region of a given
image can be depicted by both external and internal features, representing the characteristics
of edges and the constituent pixels of the region, respectively. In the case of FFDM images,
the primary objective is to extract information related to pixel intensity. Texture analysis,
lacking a formal definition, relies on intuitive descriptions for features such as smoothness,
coarseness, and regularity. All these properties were related to the intensity of the pixels
present within a certain region or of the entire image, highlighting areas of non-uniformity.
Therefore, the estimation and classification of different textures were performed thanks to
the texture analysis, which consists of the extraction of textural features. Texture analysis
has been applied in the analysis of digital images in many fields, enjoying particular success
in the field of radiomics [15]. The literature offers a large number of features that can be
extracted from an entire image or by appropriate ROIs. “Texture detection” means a process
that separates, finding edges, and areas with different textures on the image; the number
of features taken into consideration affects how accurately the distinction is made between
pixels, and therefore, with it, existing diversities can be recognized in different breasts. As
already mentioned, the extraction methods for texture analysis can be divided into two types:

• Statistical/stochastic approach;
• Structural approach.

The first, as the name suggests, treats textures as statistical phenomena, i.e., the
formation of a texture on the image is described by statistical properties such as pixel
intensity and location. The level of intensity at a certain point of the image is strongly
dependent on the intensities of nearby points, unless the image is not made up only of
random noise [37]. Statistics based on co-occurrence matrices and histograms [38,39] are the
simplest examples of the statistical measurements of textural features. The second category,
which is based on a structural approach, introduces the concept of texel, which is considered
the fundamental unit of the map textures. This means that with this second approach,
more stress is placed on the structure, the spatial dimension of a texture, considering
textures as vectors of texels that make up the texture space, just as we consider the image to
consist of vectors of pixels. In any case, each texture contains both structural and statistical
characteristics; therefore, in this study, both approaches were considered in parallel [40].
The features to be extracted from the breast, chosen based on the literature by the most
recent studies [41], can be summarized as follows:

• 1–112 features of Haralick;
• 113–157 features of law;
• 158–185 features run length;
• 186–215 features of wavelet;
• 216–227 features of the histogram;
• 228 fractal dimension;
• 229 local binary pattern.

Then, a total of 229 statistical and morphological features describing the texture of the
region of interest were extracted.

2.4. Pre-Processing Dataset and Features Selection

Different data visualization tools were used to study the datasets. In particular, it was
found that the features are located in different ranges. Therefore, to be treated equally, it was
necessary to report them all in the same range. Then, the normalization of the dataset was



Appl. Sci. 2024, 14, 10315 5 of 15

performed. Before selecting the features, the correlation of the features was evaluated using
a correlation matrix, and through the visualization of the boxplots in relation to the feature
density categories, the most discriminating features were also highlighted. There was,
therefore, a first reduction in the dataset. In particular, it was noted that the characteristics
of wavelets are not very discriminating, while Haralick characteristics turn out to be
strongly correlated with each other. There was, therefore, an initial reduction to 187 total
features. Feature selection is an indispensable step for selecting only non-redundant and
discriminating features.

To eliminate redundant features, this study employed a filter feature selection. Wrapper
feature selection treats the task of choosing an appropriate set of features as a search
problem, exploring different combinations of features. On the other hand, filter feature
selection utilizes statistical measures to assign a specific score to each feature. In the
first scenario, the features are categorized based on their scores, and in accordance with
the classification, they are either selected or excluded from the dataset. In the second
scenario, a prediction model evaluates each combination using various techniques. In this
study, a correlation-based filter method for feature selection is chosen because, being not
dependent on any machine learning algorithm implemented and given the unbalance of
the dataset in multiclass classification, it appears as the best choice for eliminating the
non-discriminative features.

2.5. Machine Learning Algorithms and Neural Networks

For classification, different machine learning models were tested: Support Vector
Machine (SVM) [42], Decision Tree [43] using the recursive partition (rpart) function [44],
neural network (Nnet) [45], linear discriminant analysis (LDA) [46], and random forest
(RF) [47]. To tune the hyperparameters of the defined models, a grid-search method [48]
was used to test all possible combinations of the specific hyperparameters for each model.
All the ML analysis were performed in R. Finally, neural networks were used for the
multiclass classification problem, to evaluate its performance, even on a small dataset. The
network used in this work presents a relu activation function of the layers, an optimization
function rmsprop, and the evaluation is based on accuracy. The division into testing and
training was made using 80% of the data for training and 20% for testing. The training of
the models was performed using a batch size equal to 1 (having a reduced dataset available
is not necessary to further divide the training set) and the insertion of a callback that allows
to store the model that has layer weights such that the maximum accuracy is reached. An
empirical evaluation was made on the number of epochs.

2.6. Dataset Imbalance

The classes (A, B, C, D) of the dataset are distributed as follows among the 161 patients:
16 class A; 78 class B; 34 class C; and 33 class D.

A dataset thus constituted is said to be unbalanced, as the patients are not equally
distributed in the classes to which they belong, and this significantly influences the overall
accuracy of the machine learning algorithms to be applied to the data. Therefore, the
possibility of generating a more balanced dataset was investigated. The most intuitive
solution was to transform into a binary classification problem by associating classes A
and B as “non-dense breasts” and classes C and D as “dense-breasts” as performed in
previous works [23,24,49]. Subsequently, a multiclass classification was carried out, and
oversampling methods were applied to overcome the problem of the unbalanced dataset.
ROSE techniques (Random Over-Sampling Example), through the ovun.sample function
of the ROSE library in R, and SMOTE (Synthetic Minority Over-sampling TEchnique),
through the SMOTE function of the DMwR library in R, were used.
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2.7. Performance Metrics

The overall performance of the multiclass classification was evaluated in terms of
accuracy, with its 95% confidence interval (CI) and Cohen’s kappa. The classification
evaluation performance for the individual four-density classes was evaluated in terms of
sensitivity and specificity. In particular, sensitivity is the portion of true positives correctly
classified, specificity is the portion of true negatives correctly classified, accuracy is the
parameter that summarizes how well the classification went, evaluating the proportion
of correct predictions (both positive and negative) on the total number of cases examined
while the Cohen’s kappa coefficient is calculated by comparing the observed agreement
(true positives and true negatives) between the model inferences and the ground truths with
the randomly expected classifications based on the marginal frequencies of each class. The
latter is a particularly robust metric particularly when there is a significant class imbalance
as in the present case.

3. Results
3.1. Segmentation Results

An overlay of the ground truth mask with the masks respectively extracted with
Openbreast and Libra software is shown in Figure 2. The areas in green are those which,
despite being breasts (based on the ground truth), are considered pectoral muscle by the
software; vice versa, the areas in pink are those which, despite being pectoral muscle (based
on the ground truth), are considered breast by the software. Consequently, the green areas
represent false negatives, and the pink areas represent false positives. A better visualization
of the segmentation can be made by showing, as in Figure 3, only the segmentation edges
not on the masks but on the original breast images. Cohen’s kappa and Dice indices were
calculated for a quantitative evaluation. Thus distinguishing the case MLO and CC, it is
possible to show in Figures 4 and 5 the histogram of occurrence of the Dice indices. From
the histograms, it can already be seen that in the CC configuration, the Dice indices are
more or less the same for both software, while instead of the MLO configuration, two
different situations are envisaged: the histogram of the indices of comparison between
ground truth and Openbreast appears more dispersed and has index values smaller on
average than the histogram of the indices extracted from the comparison between the
ground truth and Libra. This observation is even clearer if we consider the boxplots in
Figure 6. It can therefore be concluded that the similarity index with the ground truth is
better for the segmentations performed with the Libra software, certifying the average
value of the Dice index at 0.98. A further evaluation is made based on Cohen’s kappa. By
comparing the two software tools in question, i.e., Libra and Openbreast, the histogram
of the occurrences of Cohen’s kappa is evaluated to see the index of similarity between
the two. In Figure 7, it can be seen that the degree of agreement in the CC configuration is
approximately k = 1, i.e., the two software create masks that are practically identical. This
occurs, as CC images do not suffer segmentation of the pectoral muscle. The MLO images
instead have a more dispersed kappa value but still show an excellent degree of agreement.
Of more interest is the comparison that is made respectively between the software tools and
the ground truth. The histograms Figures 8 and 9 show indices of agreement with kappa
high for both comparisons. Finally, we can show the boxplots in Figure 10, based on which
we can conclude that the highest k, i.e., the highest level of agreement between the truth
and classification, is that of the segmentations obtained using the Libra software. Then, the
masks obtained with the Libra software were used for the extraction of textural features.
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Figure 2. Overlay of the ground truth mask with the masks respectively extracted with Openbreast
and Libra software.

Figure 3. Segmentation edges on the original breast images.
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Figure 4. Dice indices distribution histogram for mid-lateral oblique (MLO) and cranio-caudal (CC)
configuration breast images using Libra software.

Figure 5. Dice indices distribution histogram for mid-lateral oblique (MLO) and cranio-caudal (CC)
configuration breast images using OpenBreast software.

Figure 6. Box plots of Dice indices for CC and MLO images.
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Figure 7. Cohen’s kappa distribution histogram for mid-lateral oblique (MLO) and cranio-caudal
(CC) configuration breast images in the comparison between Libra and OpenBreast.

Figure 8. Cohen’s kappa distribution histogram for mid-lateral oblique (MLO) and cranio-caudal
(CC) configuration breast images in the comparison between Libra and Ground Truth.

Figure 9. Cohen’s kappa distribution histogram for mid-lateral oblique (MLO) and cranio-caudal
(CC) configuration breast images in the comparison between OpenBreast and Ground Truth.
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Figure 10. Box plots of Cohen’s Kappa indices for CC and MLO images.

3.2. Machine Learning

The results of the classification using ML algorithms relating are shown below. In
particular, to solve the unbalanced dataset problem, we tested two different methods and
we show the results in each of them. The transformation into a binary classification problem
has already been addressed in previous work with satisfactory results [23,24].

Oversampling Techniques

One of the proposed solutions to solve the imbalance problem is to apply oversampling
techniques such as ROSE or SMOTE on the datasets. For the feature selection, the redundant
features were initially removed with the use of the correlation matrix. As with the other
selection techniques, some features fail to discriminate on an unbalanced dataset since
they are based on the use of a classifier. Therefore, the features selected are the 35 features
obtained by applying the filter features selection methods. SMOTE was applied on a dataset
consisting of the largest class, that is, B, and the least numerous class, that is, A, generating
an oversampling of class A and an undersampling of class B in order to obtain a number
of elements per class, comparable with classes C and D. The results of the classification
by applying SMOTE can be observed in Table 2, for the overall accuracy, and in Table 3,
for the accuracy relating to the individual classes. As can be seen from these results, the
portion of TPP and TNP for the class that was less numerous in the starting dataset (class A)
has higher values, while class B exhibits a lower value, which means that it improves the
accuracy of class A, at the expense of class B; moreover, classes C and D do not seem to
show improvements related to the fact that the dataset is balanced. As a result, the overall
accuracy is not improved.

Once ROSE is applied, all classes are oversampled to match the number of elements
of the largest class, which is B. The results of the classification by applying ROSE can be
observed in Table 2 for the overall accuracy, and in Table 3 for the accuracy relating to the
individual classes. In this case, it can be seen that although class A was increased in the
number of samples, as well as classes C and D, this does not allow the algorithms to acquire
new information; therefore, the results in accuracy remain low both on the single class and
overall. In conclusion, by applying the ROSE and SMOTE techniques, it can be seen that
ROSE does not solve the problem of low accuracy on less numerous classes, while SMOTE
increases the accuracy of class A without significantly raising the overall accuracy, whose
highest value obtained is equal to 63.33%, with the linear discriminant analysis model.

Finally, the binarization described in [23,24] turns out to be the best solution to solve the
unbalancing problem, and this allows reaching a maximum of 93.55% accuracy, obtained
with a Support Vector Machine model, substantially improving accuracy compared to
multiclass classification on the original dataset.
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Table 2. Overall classification evaluation metrics among four density classes applying SMOTE and
ROSE oversampling.

Algorithm Accuracy (95% CI) Kappa

SMOTE

SVM 0.43 (0.25–0.62) 0.27

Rpart tree 0.33 (0.17–0.53) 0.11

Nnet 0.50 (0.31–0.69) 0.32

LDA 0.63 (0.44–0.80) 0.49

RF 0.50 (0.31–0.69) 0.33

ROSE

SVM 0.37 (0.20–0.56) 0.13

Rpart tree 0.50 (0.31–0.69) 0.23

Nnet 0.57 (0.37–0.54) 0.36

LDA 0.47 (0.28–0.66) 0.29

RF 0.53 (0.34–0.72) 0.25

Table 3. Classification evaluation metrics relating individual four density classes applying SMOTE
and ROSE oversampling.

Algorithm
Sensitivity Specificity

A B C D A B C D

SMOTE

SVM 1.00 0.27 0.50 0.50 0.85 0.93 0.67 0.83

Rpart 0.33 0.20 0.50 0.50 0.85 0.73 0.70 0.79

Nnet 0.67 0.40 0.67 0.50 0.92 0.87 0.79 0.75

LDA 1.00 0.53 0.67 0.67 0.96 0.93 0.75 0.87

RF 1.00 0.33 0.67 0.50 0.89 0.87 0.75 0.83

ROSE

SVM 0.33 0.50 0.33 0.33 0.85 0.73 0.75 0.79

Rpart 0.00 0.67 0.33 0.50 1.00 0.67 0.79 0.79

Nnet 0.33 0.67 0.50 0.50 0.92 0.80 0.83 0.83

LDA 0.67 0.33 0.83 0.33 0.85 0.87 0.67 0.92

RF 0.00 0.73 0.33 0.50 0.96 0.53 0.92 0.83

3.3. Neural Networks

Since machine learning does not provide good results in multiclass classification, it
was thought to apply a neural network to the extracted features. First of all, the comparison
between two structures was evaluated: a simple structure composed of only two dense
layers and a more complex structure composed of many dense layers. For a network of
only two dense layers and 500 nodes, the overfitting was reached after about 50 epochs and
reached a maximum accuracy around epoch 30. Instead, for a network of six dense layers,
after 60 epochs, the overfitting was not yet reached, but the epoch that performed best was
around iteration 55. Based on the results obtained, it makes no sense to prefer a network
with many layers; therefore, we tried to reduce the number of nodes of a structure made of
only two layers. In particular, for a number of nodes equal to 250 for a single-layer network,
it can be seen that after epoch 50, the overfitting on the data started testing, and that before
this iteration, the maximum accuracy level was reached. A comparison of the overall
accuracies of two methods with the same number of layers but a different number of nodes
is shown in Table 4. The values of specificity, sensitivity, and accuracy of the two methods
for the different classes is shown in detail in Table 5. Based on the results obtained, it can
be concluded that better accuracy is achieved for a model with only two layers with 500
and 4 nodes respectively.



Appl. Sci. 2024, 14, 10315 12 of 15

Table 4. Overall accuracies of two dense layers networks with different numbers of nodes.

Overall Statistics Accuracy (95% CI) Kappa

2 layers/500 nodes 0.82 (0.63–0.93) 0.71

2 layers/250 nodes 0.71 (0.51–0.97) 0.50

Table 5. Evaluations metrics of the two methods for the different classes.

Statistics Class Specificity Sensitivity Balanced Accuracy

500 nodes

A 0.33 1.00 0.67

B 0.93 0.84 0.89

C 0.50 0.96 0.73

D 1.00 0.91 0.95

250 nodes

A 0.33 0.96 0.65

B 0.93 0.61 0.77

C 0.25 1.00 0.62

D 0.67 0.91 0.79

4. Discussion and Conclusions

The automatic classification of patients based on breast density can represent an
important result for carrying out targeted screening programs based on early diagnosis.
The study aimed to evaluate the possibility of classifying the breast density on a small
dataset of patients, who were undergoing mammography screening programs, thanks
to the extraction of textural features from images. The classification of breast density
through CAD systems based on textural features extracted from the image has already
been investigated in the recent scientific literature. Kriti and Virmani [50] made a binary
classification based on textural features obtained through Laws’ texture energy, applying
principal component analysis (PCA) to reduce the dimensionality of feature vectors and
KNN and NN classifiers, obtaining a maximum accuracy of 95%. The NN classifier
was also used by Carneiro et al. [51], using textural features based on histograms and
Haralick texture descriptors. In this case, a maximum accuracy of 92.9% was obtained
when considering only Haralick texture descriptors, which reached 98.95% when histogram
features were also considered. A multiclass classification was also made in [52], which
resorted to a fuzzy classification based on textural features extracted through the co-
occurrence matrix, reaching an accuracy of 84.2%. In all these cases, the dataset imbalance
problem was not addressed.

Our results showed an agreement with the radiologist’s report depending on the
cases: for a binary classification aimed only at the distinction between dense and non-dense
breasts, the highest accuracy of 93.55% was obtained with an SVM method, with k = 0.8675,
and percentage of true positives and negative equal to TPP = 94.44% and TNP = 92.31%.

For multiclass classification, the best accuracy in terms of OCA (Overall Classifier
Accuracy) was equal to 82.14%, with k = 0.7089, obtained with a two-layer neural network.
This value is considered encouraging compared with the results obtained from the ap-
plication of machine learning methods for multiclass classification because we followed
a deep learning approach. In this case, the maximum accuracy achieved was equal to
60%, with k = 0.3583, a value that has not shown improvements with the application of
oversampling techniques, which improved the estimate on the minus class significantly,
reaching a maximum overall accuracy of 63.33% with k = 0.4931. The application of neural
networks provided the most encouraging results for acting on unbalanced datasets for
multiclass classification, despite the low number of patients.
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