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Abstract: Short-circuit blowing is a crucial technical approach for ensuring the rapid surfacing of
submersibles. In order to investigate the law, L18(37) orthogonal experiments based on a proportional
short-circuit blowing model test bench were conducted. Subsequently, a Back Propagation Neural
Network (BPNN) and Pearson correlation analysis were employed to train the experimental data; fur-
ther examination of the correlation between individual factors and blowing served as an enhancement
to the orthogonal experiments. It has been proved that both multi-factor combinations and personal
factors, including blowing duration, sea tank back pressure, gas blowing pressure from the cylinder
group, and sea valve flowing area, exert significant influence with Pearson correlation coefficients of
0.6535, 0.8105, 0.5569, and 0.5373, respectively. Notably, the F-ratio for blowing duration exceeds the
critical value of 3.24. The statistical evaluation metrics for the BPNN ranged from 10−1 to 10−12, with
relative errors below 3%, and achieving a prediction accuracy rate of 100%. Based on these findings, a
robust predictive methodology for submersible short-circuit blowing has been established along with
recommendations for engineering design and operational strategies that highlight its advantages as
well as its initial condition settings.

Keywords: submersible; proportional short-circuit blowing model; orthogonal experiments; Back
Propagation Neural Network; Pearson correlation method

1. Introduction

In the past few years, the navigational safety of submersibles has garnered increasing
and widespread attention. High-pressure blowing is a critical method for ensuring sub-
mersible surfacing. Among these applications, the two most prevalent scenarios are rudder
jamming during high-speed navigation and emergency procedures in response to flooding
compartments [1]. Short-circuit blowing specifically refers to an effective technique for
expelling ballast water directly from tanks using compressed gas sourced from a cylinder
group, bypassing the gas distribution mechanism. Its efficiency is influenced by various
operational factors, including gas pressure and other relevant parameters [2]. Currently,
primary methods for studying short-circuit blowing encompass mathematical modeling,
numerical calculations, and experiments conducted on actual vessels or dedicated test
benches.

In the domain of mathematical modeling and numerical simulations, Computational
Fluid Dynamics (CFD) techniques are employed to investigate the formation and evolution
of the gas–liquid two-phase interface within ballast tanks during short-circuit blowing,
providing a comprehensive analysis of discharge rate variations [1]. Several studies in
this area have examined individual operational factors, including the flow area of the sea
valve [3], outboard back pressure, high-pressure cylinder group gas pressure, cylinder
volume [4], and supply pipelines for both gas and water [5]. Utilizing the Laval nozzle the-
ory, an emergency surfacing motion model for submersibles that incorporates short-circuit
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blowing was developed. Additionally, a water ingress restriction line within the safety
boundary diagram for underwater maneuverability was derived [6]. While these studies
offer valuable insights, they lack specific experimental validations and generalizability; due
to their omission of comprehensive operational factors, they did not fully encapsulate the
physics principles underlying short-circuit blowing.

In the realm of real-ship or bench experiments, an emergency short-circuit blowing
test was conducted on a Spanish S-80 submarine, achieving an instantaneous blowing
gas pressure of up to 25 (MPa), equivalent to an outboard back pressure at a depth of
2500 m, which poses significant safety risks [7]. Additionally, small-scale emergency gas
jet blowing-off bench experiments were performed to simulate the blowing and drainage
performance at a depth of 100 m, yielding relative errors in the drainage percentages of 5%
and 10%, respectively [8,9]. Experiments utilized a small-scale short-circuit blowing test
bench to evaluate the physics principles underlying the Laval nozzle theory and resulted in
a relative error of 8% concerning the flow rate from the high-pressure gas cylinder group,
an outcome closely linked to the ballast tank drainage percentage [10–12]. While data from
the real-ship experiments were highly credible, they entailed considerable risk. Conversely,
although the small-scale bench experiments can validate theoretical models, their results
were constrained by the scale effect and thus lacked substantial guidance for actual ship
manipulation or engineering designs. Nevertheless, proportional short-circuit blowing
model experiments serve as a method for investigating the performance characteristics
of short-circuit blowing in real ships. These test benches simulated gas cylinder deflation
and various ballast tank drainage processes to analyze how factors, such as gas cylinder
group volume and pressure, and sea valve flow area, influence blowing efficiency. The
resulting relative error for peak gas pressure within the ballast tank remained below 15%
when the high-pressure conditions did not exceed 15 (MPa) [2,13,14]. However, compared
with actual ship short-circuit blowing, this approach does not encompass the full range
of operational conditions and overlooks several critical manipulation factors, including
outboard back pressure, along with pipeline length and inner diameter, as well as blowing
duration.

The above research is summarized in Table 1 below.

Table 1. Recent research on short-circuit blowing or related fields.

Researching Field Methodology Disadvantage

Mathematical
modeling

Short-circuit blowing within the framework of Laval nozzle theory [6]. Lacking specific
experimental evaluations
and universality because

of ignoring entire
manipulation factors.

Modeling the evolution of gas–liquid two-phase interface during
blowing [1].

Simulation accounting for the flowing area of sea valves in blowing
processes [3].

Simulation incorporating outboard back pressure, high-pressure cylinder
group gas pressure, and cylinder volume in blowing scenarios [4].
Simulation considering both gas and water supply pipelines [5].

Real-ship or bench
experiments

Emergency short-circuit blowing tests were conducted on a Spanish S-80
submarine [7]. Too risky.

Experiments performed at a depth of 100 (m) [8,9].
Restriction of scale effect.Small-scale experiments utilizing a short-circuit blowing test bench [10,11].

Proportional model tests for short-circuit blowing analysis [2].
Incomplete working
conditions, ignoring

certain factors.

This paper aims to investigate the influence of various manipulation factors on blow-
ing, with the contributions delineated as follows:

• First, in Section 2, seven detailed influencing factors across three levels of high-pressure
short-circuit blowing are identified, and a corresponding proportional model test
bench is constructed, as well as L18(37) orthogonal experiments;
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• Second, in Section 3, extreme variance and standard variance analyses yield correlation
coefficients for blowing duration (0.6535), sea tank back pressure (0.8105), gas blowing
pressure from the cylinder group (0.5569), and sea valve flowing area (0.5373). Notably,
the F-ratio for blowing duration exceeds the critical value of 3.24;

• Third, in Section 4.1, the orthogonal experimental data are trained using a BPNN,
resulting in statistical indicators ranging between 10−1 and 10−12, with relative predic-
tion errors below 3% and an accuracy rate of 100%;

• Fourth, in Section 4.2, Pearson correlation analysis based on orthogonal experimental
data is performed to explore the correlation coefficient between individual factors and
blowing performance, proving significant insights that complement our findings from
the orthogonal experiments.

2. Proportional Short-Circuit Blowing Model Test Bench and Orthogonal
Experiment Design

A proportional short-circuit blowing model test bench was constructed based on
real ship parameters to investigate the various manipulation factors affected at different
blowing levels through orthogonal experiments.

2.1. Detailed Setup of Model Test Bench

The test bench comprised a gas cylinder group, an air compressor, a high-pressure gas
cylinder group, and a gas distribution mechanism, along with both the sea tank and ballast
tank. Notably, the ballast water tank and sea tank were positioned between sea valves of
varying diameters. The air compressor inflated the gas cylinder group while simultaneously
pressurizing the sea tank’s top to create back pressure. Upon the initiation of blowing, gas
from the cylinder group flew into the ballast tank via the gas supply pipeline, displacing
water into the sea tank through the sea valve. A diagram of the proportional short-circuit
blowing test bench for submersibles is presented in Figure 1, with its main parameters
detailed in Table 2.

Table 2. The main parameters of the experimental bench.

Index Apparatus Main Parameters Remark

1 Air compressor Maximum air inflation pressure:
20.0 (MPa)

2 Gas cylinder group
Maximum air working pressure:

35 (MPa)
Volume: 750 (L)

Gas source for blowing and back
pressure in the sea tank

3 Ballast tank Volume: 1.2 (m3)
Pressure handling capacity: 7 (MPa)

4 Sea tank Volume: 13 (m3)
Pressure handling capacity: 5 (MPa)

The back pressure exceeds the maximum
working depth of the actual ship.

5 Gas supply pipeline Three length specifications available:
10 (m), 20 (m), and 30 (m)

The inlet is equipped with three
replaceable pipe sections with internal
diameters of 6 (mm), 8 (mm), and 10

(mm), each measuring 0.3 (m) in length.

6 Sea pipeline Internal diameters available:
125 (mm), 150 (mm), and 200 (mm)

Connection between the ballast tank
outlet and seawater tank inlet.
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Figure 1. Proportional short-circuit blowing test bench of submersible. 1—high-pressure (Hp) air 
cylinder, 2—Hp air compressor, 3—control air cylinder, 4—stop valve, 5—safety valve, 6—muffler, Figure 1. Proportional short-circuit blowing test bench of submersible. 1—high-pressure (Hp) air

cylinder, 2—Hp air compressor, 3—control air cylinder, 4—stop valve, 5—safety valve, 6—muffler,
7—pressure gauge, 8—relief valve, 9—electric control valve, 10—thermometer, 11—air flow meter,
12—sea valve, 13—content gauge, 14—ballast tank, 15—sea tank. (a) Principle of the test bench.
(b) Overall layout of test bench. (c) Valve mechanism of test bench.
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2.2. Orthogonal Experiment Design

Compared with the test bench referenced in [2], the manipulation factors for this setup
included the volume and pressure of the gas cylinder group, the length of the gas supply
pipeline, the inner diameter of the sea valve, the blowing duration, the inner diameter of
the gas supply pipeline, and the back pressure from the sea tank. Each factor was assessed
at three different levels. According to the permutation and combination principle, a total of
37 = 2187 experiments could be conducted, which represents a substantial number.

The orthogonal experimental method served as an efficient, rapid, and cost-effective
evaluation method that was particularly well-suited for multiple factors with various levels.
By judiciously selecting orthogonal experiments, it was possible to achieve more accurate
and reliable results while minimizing the trial numbers [15]. In this bench, the orthogonal
experiment table L18(37) was constructed. Here, the level number was 3, while the factor
number was 7, resulting in a total of 18 experiments, as detailed in Table 3. The ballast
tank drainage percentage was chosen as a measure for evaluating blowing effectiveness.
The seven manipulation factors are denoted by A to G with their respective three levels
represented numerically as follows:

• First, A signifies the gas cylinder group volume with three levels: 1–250 (L), 2–500 (L),
and 3–750 (L);

• Second, B denotes the gas supply pipeline length across three levels: 1–10 (m), 2–20 (m),
and 3–30 (m);

• Third, C refers to the sea valve as the inner diameter at three levels: 1–125 (mm),
2–150 (mm), and 3–200 (mm);

• Fourth, D indicates the blowing duration with three options: 1–5 (s), 2–10 (s), and
3–15 (s);

• Fifth, E represents the inner diameter measurements for the gas supply pipeline and
the three levels 1–6 (mm), 2–8 (mm), and 3–10 (mm);

• Sixth, F corresponds to the blowing pressure from the gas cylinder group across the
pressures 1–10 (MPa), 2–15 (MPa), and 3–20 (MPa);

• Lastly, G pertains to the back pressure within the sea tank measured at 1–0.2 (MPa),
2–0.5 (MPa), and 3–1.0 (MPa).

Table 3. Orthogonal experiments.

Index of Experiment
The Impacted Factors

A B C D E F G

1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2
3 1 3 3 3 3 3 3
4 2 1 1 2 2 3 3
5 2 2 2 3 3 1 1
6 2 3 3 1 1 2 2
7 3 1 2 1 3 2 3
8 3 2 3 2 1 3 1
9 3 3 1 3 2 1 2
10 1 1 3 3 2 2 1
11 1 2 1 1 3 3 2
12 1 3 2 2 1 1 3
13 2 1 2 3 1 3 2
14 2 2 3 1 2 1 3
15 2 3 1 2 3 2 1
16 3 1 3 2 3 1 2
17 3 2 1 3 1 2 3
18 3 3 2 1 2 3 1
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3. Orthogonal Experimental Data Analysis

Following the acquisition of results from the L18(37) orthogonal experiments, two
statistical analysis techniques were utilized for further investigation. Extreme variance
analysis was employed to quantify the contribution of each manipulation factor to the
experimental outcomes, while variance analysis was conducted to measure the sensitivity
of each manipulation factor concerning those outcomes [16,17].

3.1. Analysis of Extreme Variance

The analysis of extreme variance, encompassing all factors at each level, examines
the difference between the maximum and minimum values derived from the orthogonal
experimental results. This methodology evaluates the influence of various factors across
all levels and identifies the optimal combination of multiple factors, thereby aiding in the
formulation of an effective blowing strategy along with relevant data support [16].

Initially, it is crucial to compute the sum of the experimental results for each factor Kx
across all levels, as demonstrated below:

Kx =
3

∑
y=1

Lxy (1)

In Equation (1), let x denote the factor defined as A–G, while y represents the level,
classified within the range of 1–3.

Consequently, the ratio Kx to the total number of levels is calculated as kx, as demon-
strated below:

kx = Kx/3 (2)

To deduct the mean of all orthogonal experiment results T from kx leads to the offset:

Tx= kx−T (3)

In Equation (3), Tx denotes the average of the total results obtained from the orthogonal
experiments while signifying the offset between kx and T.

For any given factor x, the extreme variance is determined by calculating the difference
between its maximum and minimum value Tx, as illustrated below:

Rx= maxTx−minTx (4)

In Equation (4), Rx denotes the extreme variance related to any factor x.
After determining the extreme variance Rx for each factor, it becomes feasible to rank

these factors according to their effect on the experimental results. A higher value signifies a
more pronounced effect. Furthermore, optimal combinations of all factors across various
levels can also be obtained. The data comprising 18 groups of the extreme variance data
from orthogonal experiments are summarized in Table 4.

In Table 4, the optimal combination of various factors has a significant impact on the
drainage percentage of the ballast tank, as follows:

• Firstly, factor D3 contributed 39.16%. A duration of 15 (s) corresponded to the max-
imum blowing, ensuring that gas was introduced into the ballast tank to its fullest
capacity;

• Secondly, factor G1 accounted for 33.35%. A back pressure of 0.2 (MPa) represented
the minimum threshold required to optimize the blowing efficiency [18];

• Thirdly, factor F3 contributed 10.94%, with the maximum blowing pressure from the
cylinder group set at 20 (MPa), which further enhanced blowing effectiveness [3];

• Fourthly, factor C3 contributed 9.02%. A flowing area of 200 (mm), corresponding
to the sea valve’s aperture, could maximize the water discharge volume per unit
time [19];
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• Fifthly, factor B1 constituted 6.42%, with a gas supply pipeline length limited to just
10 (m); this ensured sufficient gas mass flowed into the ballast tank within each time
interval [17];

• Sixthly, factor A2 contributed 4.99%, where a volume of 500 (L) established an optimal
balance between gas and water interactions in the ballast tank and facilitated adequate
high-pressure gas for an improved blowing effect [3];

• Lastly, factor E3 accounted for a contribution of 3.62%, wherein the inner diameter of
the gas supply pipe measuring 10 (mm) ensured maximum gas mass flow into the
ballast tank during each period.

Although the extreme variance analysis highlights contributions from these multi-
factors toward drainage performance, it did not effectively establish correlations between
the individual factors and the data.

Table 4. Table of extreme variance data.

Parameters A B C D E F G

K1 213.56% 263.62% 197.98% 105.98% 226.47% 189.25% 329.18%
K2 243.51% 225.09% 224.78% 227.95% 213.33% 230.70% 216.61%
K3 217.80% 260.53% 252.11% 340.94% 235.07% 254.92% 129.08%
k1 35.59% 43.94% 33.00% 17.66% 37.74% 31.54% 54.86%
k2 40.58% 37.52% 37.46% 37.99% 35.56% 38.45% 36.10%
k3 36.30% 43.42% 42.02% 56.82% 39.18% 42.49% 21.51%
T1 −1.90% 6.44% −4.50% −19.83% 0.25% −5.95% 17.37%
T2 3.09% 0.02% −0.03% 0.50% −1.94% 0.96% −1.39%
T3 −1.19% 5.93% 4.53% 19.33% 1.69% 4.99% −15.98%
Rx 4.99% 6.42% 9.02% 39.16% 3.62% 10.94% 33.35%

Priority D > G > F > C > B > A > E
Optimal level A2 B1 C3 D3 E3 F3 G1

3.2. Analysis of Variance

An analysis of extreme variance provides the advantage of lower computational
demands. However, it is unable to directly measure the changes resulting from different
factor levels and experimental errors [19]. In contrast, an analysis of variance (ANOVA)
employs mean square calculations for both variance and freedom degrees to partition the
total sum of squares derived from experimental results into components attributable to
factor and error deviation. This methodology constructs an F-ratio that can be compared
to a critical value, thereby offering an intuitive insight into how various factors influence
experimental results [20,21].

Firstly, the total sum of squares represents deviations across all experimental results,
i.e., the variance, and this is computed by aggregating the squared difference between kx
and T, as demonstrated below:

Stotal =
G

∑
x=A

(kx−T)2 (5)

In Equation (5), the factor x ranges from A to G, with Stotal representing the total
square sum of deviations across all the experimental results.

For each factor x, its deviations can be calculated according to the following formula,
which is defined by the square sum of differences between kx at all levels, specifically kxy
and T, as follows:

Sx= 3 ·
3

∑
y=1

(
kxy−T

)2 (6)

In Equation (6), y corresponds to the values 1, 2, and 3.
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On calculating all the factor variances, the sum of the squared error deviations is
expressed as follows:

Serror= Stotal −
G

∑
x=A

Sx (7)

In Equation (7), the factor x is taken from A to G.
Upon calculating the variance of each factor and error, the total degree of freedom is

further calculated as follows:
ftotal= m · n − 1 (8)

In Equation (8), m is the number of levels of each factor, which is taken as 3, and n is
the number of orthogonal experiments, which is taken as 18.

For each factor, the corresponding degree of freedom belongs to the levels minus one
and is calculated as follows:

fx= m − 1 (9)

The degree of freedom for the error can be determined by subtracting the total of all
factor degrees from ftotal as freedom, as shown below:

ferror= ftotal −
G

∑
x=A

fx (10)

In Equation (10), the factor x ranges from A to G.
The mean square is further calculated by dividing the factor variance Sx and error

variance Serror by their respective degrees of freedom, which is determined as follows:

Sx = Sx/fx, Serror = Serror/ferror (11)

The F-ratio of each factor is further calculated, which reflects the extent to which
different factor levels contribute to the experimental results at a certain confidence level,
removing the interference of errors. Taking factor x as an example, its F-ratio is calculated
as follows:

Fx = Sx/Serror (12)

The F-ratio at a confidence level of α = 0.05 was designated as the critical value. If
Fx exceeded this critical value, the factor was deemed to have a significant effect on the
experimental results; otherwise, it was considered to have an insignificant effect. Table 5
was generated by calculating all data groups along with the corresponding F critical value.

Table 5. Table of variance data.

Parameters A B C D E F G

K1 213.56% 263.62% 197.98% 105.98% 226.47% 189.25% 329.18%
K2 243.51% 225.09% 224.78% 227.95% 213.33% 230.70% 216.61%
K3 217.80% 260.53% 252.11% 340.94% 235.07% 254.92% 129.08%
k1 35.59% 43.94% 33.00% 17.66% 37.74% 31.54% 54.86%
k2 40.58% 37.52% 37.46% 37.99% 35.56% 38.45% 36.10%
k3 36.30% 43.42% 42.02% 56.82% 39.18% 42.49% 21.51%
T1 −1.90% 6.44% −4.50% −19.83% 0.25% −5.95% 17.37%
T2 3.09% 0.02% −0.03% 0.50% −1.94% 0.96% −1.39%
T3 −1.19% 5.93% 4.53% 19.33% 1.69% 4.99% −15.98%
Sx 0.11% 1.25% 0.61% 11.80% 0.00% 1.06% 9.05%
fx 2 2 2 2 2 2 2
Sx 0.05% 0.62% 0.30% 5.90% 0.00% 0.53% 4.53%

F-ratio 0.03 0.35 0.17 3.27 0.00 0.29 2.51
Critical value,

α = 0.05 3.24 3.24 3.24 3.24 3.24 3.24 3.24

Effect insignificant insignificant insignificant significant insignificant insignificant insignificant
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It can be concluded that the blowing duration at a value of 3.27 and sea tank back
pressure at a value of 2.51, as well as the gas blowing pressure of the cylinder group at
0.29, exert significant influences on the blowing effect, thereby reaffirming the conclusion
drawn in Section 3.1 that the optimal blowing performance is achieved when the highest
gas pressure and minimal back pressure flows into the ballast tank over an extended time
period [18,22].

While variance analysis could illustrate each factor’s sensitivity to the experimental
results, further clarification of the specific correlation between the individual factors and
results remains necessary.

4. BP Neural Network and Pearson Correlation Analysis

To thoroughly explore the short-circuit blowing phenomenon, it is essential to adopt
a suitable methodology. One of the most widely applied artificial neural networks, the
BPNN, represents a classic AI approach and has been extensively applied in predicting
gas–liquid or two-phase flowing in ship design [19,23–26]. However, its application to
short-circuit blowing remains unexplored. Thanks to its remarkable adaptability for non-
linear mapping, fault-tolerance, and capabilities of statistical correlation analysis, a BPNN
combined with Pearson correlation analysis serves as an effective predictive tool for orthog-
onal experiments [20,27]. This study intends to leverage L18(37)orthogonal experiments
using a BPNN and Pearson correlation analysis to uncover patterns and further investigate
the relationship between individual manipulation factors and blowing results.

4.1. Model Setting
4.1.1. Principles of Mathematics

The BPNN features a multi-layered architecture, as illustrated in Figure 2, comprising
input/output and hidden layers [19]. In this structure, computations are iteratively per-
formed through forward propagation from the input layer to the output layer, while the
weights and biases are adjusted via backward propagation until the loss function reaches
its minimum value.
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In Figure 2, the details are outlined as follows:

• First, L represent the number of neurons in the hidden layer and N denote the number
of neurons in the input layer, with M signifying the number of neurons in the output
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layer. The index i for the input layer ranges from 1 to N, while index j spans from 1 to
L in the hidden layer;

• Second, the input layer consists of parameters such as the cylinder group volume
and gas pressure, gas pipeline length and inner diameter, sea valve inner diameter,
blowing duration, sea tank back pressure, ballast water tank level considerations,
temperature variations, and the gas volume within the ballast tank; thus, N is set at 10,
with X1 to XN representing these corresponding inputs;

• Third, Hj(t) denotes the output from each neuron in the jth hidden layer with specific
weights assigned between this hidden layer and other layers. The computation for
Hj(t) is expressed below:

Hj(t)= f

(
N

∑
i=1

ωij · xi(t)+αj

)
(13)

In Equation (13), ωij represents the connection weight between the ith neuron in the
input layer and the jth neuron in the hidden layer, while αj denotes the bias associated
with the jth hidden-layer neuron. The term xi(t) refers to the input of the ith neuron
layer at time t. Additionally, αj denotes the bias of the hidden-layer neuron as jth, and
f(x) signifies a nonlinear activation function for the hidden layer that facilitates mapping
learning capabilities, with common examples including sigmoid, Gaussian, and ReLU
functions. Generally, the hyperbolic tangent sigmoid activation function is selected for its
S-shaped curve and is expressed as follows:

f(x) =
1

1 + e−x (14)

To ensure the effective training of a BPNN, it is essential to appropriately configure
the training algorithm. The Levenberg–Marquard method, noted for its rapid convergence
rate, is frequently employed [28];

• Fourth, the drainage percentage of the ballast tank is selected as the output result
sampled by the output layer; thus, M is assigned a value of 1. The output from the
BPNN, denoted as YBP(t), can be calculated using the following equation:

YBP(t) =
L

∑
j=1

[
ωj · Hj(t)+b

]
(15)

In Equation (15), ωj represents the weight connecting the jth neuron in the hidden
layer to the output-layer neuron, while b denotes the bias of the output layer. The value of
L is specified as follows:

L =
√

N + M+a (16)

In Equation (16), the parameter a is constrained between 1 and 10, which must be
validated until the mean square error of the neural network falls below the target training
goal [20];

• Fifth, function L (ω, b, X, Y) is defined to quantify the loss between YBP(t) and the
actual value Y:

L(ω, b, X, Y) =
1
2
· (Y − YBP)

2 (17)

In Equation (17), Y represents the actual value produced by the BPNN, while YBP
denotes the predicted value generated by the BPNN. Through backpropagation, the weights
and biases of the various layers are updated via chain iterations as below:
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ω

(k)
ij = ω

(k)
ij − α

∂L(ω,b,X,Y)

∂ω
(k)
ij

b(k)
ij = b(k)

ij − α
∂L(ω,b,X,Y)

∂b(k)ij

(18)

In Equation (18), k represents the number of layers, which is equal to 2, encompassing
both the hidden layer and output layer.

4.1.2. Evaluation Indicators

The evaluation metrics employed include the precision percentage (PP%) and relative
error percentage (δ), and several standard statistical indicators, such as the sum of square
error (ESSE), mean absolute error (EMAE), mean absolute percentage error (EMAP), mean
square error (EMSE), and root mean square error (ERMSE) [28]:

PP% =
S
∑

i=1
1(Xi−0.05 · Xi< Yi< Xi+0.05 · Xi)/S

δ =
|Xi−Yi|
|Xi|

· 100%

ESSE =
S
∑

i=1
(Xi−Yi)

2

EMAE =
S
∑

i=1
|(Xi−Yi)|/S

EMAP =
S
∑

i=1
|(Xi−Yi)/Xi|/S

EMSE =
S
∑

i=1
(Xi−Yi)

2/S

ERMSE =

√
S
∑

i=1
(Xi−Yi)

2/S

(19)

In Equation (19), S denotes the number of datasets; Xi represents the actual value, with
its average as Xi; and Yi indicates the prediction value, and its average is Yi. Below is a
concise description of each indicator:

• The precision percentage (PP%) employs an indicator function that equals 1 if the
condition in parentheses is met; otherwise, it is 0;

• The relative error (δ) measures the percentage ratio of the absolute difference between
Xi and Yi for the absolute value of Xi;

• The square sum of errors (ESSE) computes the total errors between Yi and Xi. While
easy to calculate, it can be affected by outliers, distorting the overall error distribution;

• The mean absolute error (EMAE) calculates the average absolute differences between
Yi and Xi. It remains stable against outliers but may miss some distribution details;

• The mean absolute percentage error (EMAP) evaluates the prediction error percentage
between Yi and Xi. Like EMAE, it is unaffected by anomalies but can become unstable
when the actual values are zero;

• The mean square error (EMSE) reflects the average derived from ESSE. Although more
robust than other metrics, it remains sensitive to outliers that might overshadow
smaller errors;

• The root mean square error (ERMSE), being the square root of EMSE, enables the mea-
surement of prediction errors across different dimensions on a common scale. Similar
to EMSE, ERMSE also shows sensitivity toward larger discrepancies.

4.1.3. Proposed Algorithm

This paper introduces a BPNN algorithm comprising five components, with the
procedures detailed in Figure 3.
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• First, the orthogonal experimental data were collected and divided into training and
testing sets. Subsequently, normalization was performed to accurately capture the
inherent characteristics of the data while eliminating scale restrictions [29];
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• Second, the number of input and output nodes was determined based on the criteria
outlined in Section 4.1.1, with the activation functions of both the input and output
layers set to tansy and purlin by default;

• Third, the Levenberg–Marquard algorithm was selected for training, establishing a
neural network with parameters including 1000 training epochs, a 0.01 learning rate,
and a 10−5 minimal training goal error;

• Fourth, the number of hidden layers was chosen according to Equation (13), utilizing
the specified training in the prepared neural network to calculate the mean square
error. If this value falls below the specified training goal error, then the corresponding
number of hidden layer nodes is confirmed as optimal;

• Fifth, confirming the BPNN model is achieved by incorporating all the relevant data
and information above before commencing predictions.

4.2. Computation Analysis
4.2.1. Evaluation of Working Conditions

The training set comprised 10 input parameters: blowing duration (s), gas pressure in
the cylinder group (MPa), volume of the cylinder group (L), liquid level within the ballast
tank (cm), length of the gas supply pipeline (m), inner diameter of the gas supply pipeline
(mm), inner diameter of the sea valve (mm), gas pressure inside the ballast tank (MPa),
temperature within the ballast tank (MPa), and back pressure from the sea tank (MPa).
Additionally, there was one output variable: the drainage percentage from the ballast tank,
which is dimensionless. The predicted values derived from this training set were compared
to the actual measurements, as illustrated in Figures 4–21, while the dashed line shows the
boundary between the training set and test set, with the training set on the left and the test
set on the right:
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In Figures 4–21, different line symbols were used to identify the prediction values and
actual values, in which the black solid line represents the prediction values, while the red
dots represent the actual values. It can be inferred that the BPNN can predict the test set
data well after training, and the prediction and actual values are consistent.

According to the specific evaluation indicators in 4.1.2, a comparative study was
carried out, and the indicators were analyzed, as shown in Table 6 below:
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Table 6. Evaluation indicators of 18working conditions.

Index Evaluation Indicators Data Remarks

Working
condition 1

Sum of Square Errors, ESSE 1.8906·10−12 Fit between predicted and actual values

Mean Absolute Error, EMAE 4.4939·10−7 Average absolute difference between predicted
and actual values

Mean Absolute Percentage Error, EMAP 0.00055853 Error across datasets with varying magnitudes

Mean Square Error, EMSE 2.7008·10−13 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 5.1969·10−7 The square root of the mean square differences
between predicted and actual values

Working
condition 2

Sum of Square Errors, ESSE 0.00012022 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.001514 Average absolute difference between predicted
and actual values

Mean Absolute Percentage Error, EMAP 0.0036052 Error across datasets with varying magnitudes

Mean Square Error, EMSE 2.4043·10−6 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.0015506 The square root of the mean square differences
between predicted and actual values

Working
condition 3

Sum of Square Errors, ESSE 0.00016132 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0011673 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.0029131 Error across datasets with varying magnitudes

Mean Square Error, EMSE 1.9436·10−6 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.0013941 The square root of the mean square differences
between predicted and actual values

Working
condition 4

Sum of Square Errors, ESSE 0.0061557 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0096929 Average absolute difference between the
predicted values and actual values

Mean Absolute Percentage Error, EMAP 0.023948 Error across datasets with varying magnitudes

Mean Square Error, EMSE 0.00012311 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.011096 The square root of the mean square differences
between predicted and actual values

Working
condition 5

Sum of Square Errors, ESSE 0.001105 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0046973 Average absolute difference between the
predicted values and actual values

Mean Absolute Percentage Error, EMAP 0.0059697 Error across datasets with varying magnitudes

Mean Square Error, EMSE 2.21·10−5 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.004701 The square root of the mean square differences
between predicted and actual values

Working
condition 6

Sum of Square Errors, ESSE 0.0064002 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0080078 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.028729 Error across datasets with varying magnitudes

Mean Square Error, EMSE 9.1432·10−5 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.009562 The square root of the mean square differences
between predicted and actual values
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Table 6. Cont.

Index Evaluation Indicators Data Remarks

Working
condition 7

Sum of Square Errors, ESSE 5.5945·10−5 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.00081209 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.004057 Error across datasets with varying magnitudes

Mean Square Error, EMSE 1.1189·10−6 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.0010578 The square root of the mean square differences
between predicted and actual values

Working
condition 8

Sum of Square Errors, ESSE 0.00635 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0095017 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.011281 Error across datasets with varying magnitudes

Mean Square Error, EMSE 0.00010583 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.010288 The square root of the mean square differences
between predicted and actual values

Working
condition 9

Sum of Square Errors, ESSE 0.00030943 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0024449 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.0061119 Error across datasets with varying magnitudes

Mean Square Error, EMSE 6.1887·10−6 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.0024877 The square root of the mean square differences
between predicted and actual values

Working
condition

10

Sum of Square Errors, ESSE 7.5391·10−5 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0011243 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.0028055 Error across datasets with varying magnitudes

Mean Square Error, EMSE 1.5078·10−6 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.0012279 The square root of the mean square differences
between predicted and actual values

Working
condition

11

Sum of Square Errors, ESSE 8.0629·10−5 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0016049 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.0064002 Error across datasets with varying magnitudes

Mean Square Error, EMSE 5.0393·10−6 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.0022448 The square root of the mean square differences
between predicted and actual values

Working
condition

12

Sum of Square Errors, ESSE 0.00011633 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0011062 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.0066337 Error across datasets with varying magnitudes

Mean Square Error, EMSE 1.2245·10−6 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.0011066 The square root of the mean square differences
between predicted and actual values
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Table 6. Cont.

Index Evaluation Indicators Data Remarks

Working
condition

13

Sum of Square Errors, ESSE 0.00021467 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0012303 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.0015655 Error across datasets with varying magnitudes

Mean Square Error, EMSE 2.9009·10−6 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.0017032 The square root of the mean square differences
between predicted and actual values

Working
condition

14

Sum of Square Errors, ESSE 0.00014928 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0011504 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.010992 Error across datasets with varying magnitudes

Mean Square Error, EMSE 1.3951·10−6 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.0011812 The square root of the mean square differences
between predicted and actual values

Working
condition

15

Sum of Square Errors, ESSE 0.00017113 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0015861 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.0023651 Error across datasets with varying magnitudes

Mean Square Error, EMSE 2.5542·10−6 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.0015982 The square root of the mean square differences
between predicted and actual values

Working
condition

16

Sum of Square Errors, ESSE 0.00094847 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0072352 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.017463 Error across datasets with varying magnitudes

Mean Square Error, EMSE 5.2693·10−5 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.007259 The square root of the mean square differences
between predicted and actual values

Working
condition

17

Sum of Square Errors, ESSE 0.00049875 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.002734 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.0077481 Error across datasets with varying magnitudes

Mean Square Error, EMSE 9.975·10−6 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.0031583 The square root of the mean square differences
between predicted and actual values

Working
condition

18

Sum of Square Errors, ESSE 0.0043433 Fit between predicted and actual values

Mean Absolute Error, EMAE 0.0063359 Average absolute difference between the
predicted and actual values

Mean Absolute Percentage Error, EMAP 0.012839 Error across datasets with varying magnitudes

Mean Square Error, EMSE 5.6407·10−5 Mean square error of prediction discrepancies

Root Mean Square Error, ERMSE 0.0075104 The square root of the mean square differences
between predicted and actual values

As detailed in the table above, the metrics ESSE, EMAE, EMAP, EMSE, and ERMSE for the
orthogonal experimental working conditions 1–18 demonstrate the fidelity of the BPNN
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predictions. Among these 18 working conditions, the maximum values recorded were as
follows: ESSE was 0.011281, EMAE was 0.0096929, EMAP was 0.028729, EMSE was 0.011281,
and ERMSE was 0.011096. All remained within a threshold of 0.03, thereby proving that the
BPNN could deliver high-quality prediction results [26].

4.2.2. Relative Error and Prediction Accuracy Analysis

Referring to Equation (17), the relative error (δ) and the prediction accuracy (PP%) of
the ballast tank drainage percentage under the orthogonal experimental conditions were
analyzed. Using 3% as the threshold [19], the prediction accuracy for all 18 conditions was
evaluated through enumeration, as presented in Table 7:

Table 7. Maximal relative errors and precision accuracy of 18 working conditions.

Index Maximal Value of δ Prediction Accuracy PP%

Working condition 1 0.00% 100%

Working condition 2 0.57% 100%

Working condition 3 0.17% 100%

Working condition 4 0.14% 100%

Working condition 5 0.77% 100%

Working condition 6 0.18% 100%

Working condition 7 0.26% 100%

Working condition 8 0.63% 100%

Working condition 9 0.06% 100%

Working condition 10 0.28% 100%

Working condition 11 1.57% 100%

Working condition 12 0.17% 100%

Working condition 13 0.41% 100%

Working condition 14 0.04% 100%

Working condition 15 0.05% 100%

Working condition 16 0.30% 100%

Working condition 17 0.50% 100%

Working condition 18 0.85% 100%

The histograms of relative error for the 18 orthogonal experimental conditions above
are shown in Figures 22–39, where the horizontal axis represents the sample number, and
the vertical axis denotes the relative error.
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4.2.3. Correlation Analysis of Individual Influencing Factors

The Pearson correlation calculation method quantitatively reflects the positive or
negative correlations between individual factors and experimental data, serving as an
effective counterpart to extreme variance analysis. Pearson’s linear correlation coefficient
(R) was computed as follows:

R =
S

∑
i=1

(
Xi − Xi

)
·
(
Yi − Yi

)
/

√√√√ S

∑
i=1

(
Xi − Xi

)2 ·
S

∑
i=1

(
Yi − Yi

)2 (20)

In Equation (20), Pearson’s linear correlation coefficient R showed a value ranging from
−1 to 1, where the interval of 0–1 could be subdivided as follows: 0.0–0.2 was considered
very weak or no correlation, 0.2–0.4 indicated a weak correlation, 0.4–0.6 represented a
moderate correlation, 0.6–0.8 signified a strong correlation, and 0.8–1.0 denoted a very
strong correlation. This classification was similarly applied to the −1–0 interval.

The correlation between the individual factors and the ballast tank drainage percentage
was verified for the 18 orthogonal experimental conditions [30]. The parameters selected
for generating Pearson’s correlation analysis heat map included blowing duration (s), the
cylinder group with gas pressure (MPa) and volume (L), the ballast tank liquid level (cm),
gas supply pipeline with length (m) and inner diameter (mm), the sea valve inner diameter
(mm), the ballast tank with gas pressure (MPa) and temperature (MPa), the sea tank back
pressure (MPa), and the ballast tank drainage percentage (dimensionless), as illustrated in
Figure 40.
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The logical relationship between each factor and the blowing process provided
supplementary insights to the conclusions drawn from the orthogonal experiments in
Sections 3.1 and 3.2:

• First, the blowing duration exhibited a correlation coefficient of 0.6535, indicating a
strong positive correlation. Theoretically, a longer gas supply duration resulted in a
greater amount of water being expelled [31];

• Second, the sea tank back pressure had a value of 0.8105, reflecting an extremely strong
positive correlation. This suggests that the ballast tank drainage was closely related to
the outboard back pressure through a complex relationship. Specifically, the variations
in back pressure influenced the pressure changes during blowing within the ballast
tank [12,32]. Additionally, back pressure affected the dynamic balance between gas
and water, as well as the corresponding blowing efficiency [2,31]. Finally, it impacted
energy consumption and system efficiency during blowing operations [12,32];

• Third, the volume of the gas cylinder group was associated with a correlation coeffi-
cient of 0.3587, indicating a weak positive correlation. According to the aerodynamic
computation theories, there exists a direct relationship between gas consumption and
ballast tank drainage [32];

• Fourth, the gas pressure within the cylinder group registered at 0.5569, indicating
a moderately strong positive correlation and suggesting that higher gas pressure
significantly affected blowing effectiveness [13];

• Fifth, the inner diameter of the gas supply pipeline showed a value of 0.02499, and
this represents a very weak positive correlation. Theoretically speaking, a larger inner
diameter would have increased the gas supply efficiency over time, which would
facilitate the quicker establishment of gas cushions at the top of the ballast tank, thereby
improving the overall blowing performance [12]. However, due to size constraints on
the flow dynamics caused by only having pipe diameters available at 6 (mm), 8 (mm),
and 10 (mm), with lengths limited to just 0.3 (m);

• Sixth, the length of the gas supply pipeline was −0.3741, indicating a medium-strength
negative correlation. This finding confirms that shorter pipeline lengths yielded better
blowing effects under constant conditions and further validates the advantage of
short-circuit blowing over conventional methods [12];

• Seventh, the internal diameter of the sea valve was measured to be 0.5373, demon-
strating a moderately positive correlation. It indicates that increasing the sea valve
flowing area enhanced the drainage rates per unit of time while improving the blowing
efficiency [13].

4.2.4. Comparison Analysis with Existing Results

Referring to Table 1, existing results from short-circuit experiments in refs. [2,10,11],
as well as those related to gas jet blowing in refs. [8,9], were analyzed and compared with
this study, as presented in Table 8:

• In ref. [2], Table 8 indicates that the relative errors of peak pressure in ballast tanks,
directly associated with the drainage percentage, ranged from 0.53% to 39.17%, signifi-
cantly exceeding the results shown in Table 7 of Section 4.2.2;

• In refs. [10,11], the small-scale short-circuit experimental test bench focused on the flow
rate of high-pressure gas cylinder groups closely linked to the ballast tank drainage
percentage. Their relative error was found to be 8%, considerably larger than the
maximum relative error reported in Table 7 of Section 4.2.2;

• In refs. [8,9], using a gas jet blowing-off method similar to short-circuit blowing re-
sulted in a relative error for the drainage percentage below 5% and individually below
10%. However, these values still exceeded those presented in Table 7 of Section 4.2.2;

• From this comparative analysis, it could be inferred that the BPNN method demon-
strates significantly higher prediction accuracy than traditional numerical modeling;
furthermore, no statistical correlation studies were identified between the manipula-
tion factors and the blowing process in Sections 3.1, 3.2 and 4.2.3.
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Table 8. Comparison of existing results and this study.

Index of Literature Relative Error Research Objects

Ref. [2] 0.53–39.17% Peak pressure of ballast tank, which was directly related to drainage percentage

Refs. [10,11] 8% The flowing rate of the high-pressure gas cylinder group, which was closely
related to the drainage percentage

Ref. [8] <5% Drainage percentage by gas jet blowing-off, which is a similar method to
short-circuit blowing

Ref. [9] <10% Drainage percentage by gas jet blowing-off, which is a similar method to
short-circuit blowing

This study 0.00–1.57% Drainage percentage of ballast tank during short-circuit blowing

5. Conclusions

In this paper, a model test bench designed for submersible high-pressure gas propor-
tional short-circuit blowing was employed to perform L18 (37) orthogonal experiments
encompassing multiple factors at various levels. Furthermore, the training and prediction
results derived from the 18 orthogonal experiments were subjected to analysis using a
BPNN and Pearson correlation. The key conclusions are summarized below:

• First, an extreme variance method was utilized to analyze the data from the orthogonal
experiments, identifying the optimal combination of several factors: blowing duration
(accounting for 39.16%), back pressure (accounting for 33.35%), gas blowing group
pressure (accounting for 10.94%), and sea valve flow area (9.02%). Among these
variables, blowing duration proved to be the most sensitive factor, with an F-ratio of
3.27;

• Second, a BPNN was implemented for both training and prediction based on the
orthogonal experimental data. The findings indicate that the BPNN’s robust nonlinear
fitting capability effectively predicted high-pressure gas short-circuit blowing. The
statistical evaluation metrics ranged from 10−1 to 10−12, the relative errors remained
within a threshold of 3%, and the prediction accuracy achieved up to 100%. This
validates the BPNN as a credible AI-based predictive approach for submersible short-
circuit blowing;

• Third, Pearson correlation analysis was conducted on the BPNN’s training set data
to explore the relationship between the individual factors and outcomes. The results
reveal positive correlations among the following: blowing duration (with a correlation
coefficient of 0.6535), sea tank back pressure (0.8105), gas cylinder group pressure (with
a correlation coefficient of 0.5569), and internal diameter of the sea valve (0.5373). In
contrast, a negative correlation (-0.3741) with the gas supply pipeline length indicates
the better efficiency of short-circuit blowing compared to conventional methods.

Building on the previously discussed conclusions, a series of recommendations for
engineering design and operational practices related to submersible high-pressure gas
short-circuit blowing are presented below:

• First, concerning blowing techniques, short-circuit blowing exhibits superior efficiency
compared to conventional methods due to its reduced length of gas supply pipelines;

• Second, in terms of engineering design, several manipulation factors, including the
increased volume and pressure of the cylinder group, as well as the enlarged flow area
of the sea valve, have a positive impact on blowing performance. Additionally, it is
crucial to establish appropriate specifications for the gas supply pipeline, including its
inner diameter and length;

• Third, concerning operations, it is of vital importance to ensure that the optimal
duration of blowing corresponds to the variations in the outboard back pressure
during the operation process.

In summary, this study introduces a robust predictive methodology for submersible
short-circuit blowing, providing valuable recommendations for engineering design and
operational protocols. This encompasses the advantages of the short-circuit blowing
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technique, the optimal working condition configurations, and operational strategies. These
findings may also offer effective solutions for similar scenarios involving submersibles
or submarines, including submersible hovering maneuvers and medium-pressure gas
discharges.

With the rapid advancements in the IoT and Virtual Reality (VR) technologies, future
investigations could establish a digital twin model of the submersible short-circuit blowing
process to assess more extreme operational conditions or perform a feature analysis of
real vessels within virtual environments, thereby revealing further principles governing
submersible safety.
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Nomenclature

Orthogonal experiment
Kx The sum of the experimental results of either factor
kx The ratio of the sum of the experimental results of either factor to total number of levels
T The average of the results of all orthogonal experiments
Tx The offset between kx and T
Rx The extreme variance
Stotal The total square sum of the deviations of all the experimental results, i.e., the variance
Sx The square sum of individual factor x’s deviations, i.e., the variance
Serror The sum of squared error deviations
ftotal The total degree of freedom
m The number of levels of each factor
n The number of orthogonal experiments
fx The degree of freedom of each factor
ferror The error degree of freedom
Sx The mean square of Sx
Serror The mean square of Serror
Fx The F-ratio of individual factor x
BPNN and Pearson correlation analysis
L The number of neurons in the hidden layer
N The number of neurons in the input layer
M The number of neurons in the output layer
a Constant taken to be between 1 and 10
ωj The weight of the the j-th hidden neuron
b The bias term of the output neuron
YBP(t) Output of the BPNN
Hj(t) The output of the j-th hidden neuron
ωij The connection weight between the i-th input neuron and the j-th hidden neuron
xi(t) The input from the i-th neuron at time t
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αj The bias term for the j-th hidden neuron
f(x) The activation function of the hidden layer
α The rake ratio of activation function
PP% Predictive accuracy
δ Relative Error Percentage
ESSE Sum of Squared Errors
EMAE Mean Absolute Error
EMAP Mean absolute Percentage Error
EMSE Mean Square Error
ERMSE Root Mean Squared Error
R Pearson’ linear correlation coefficient
S The number of data
Xi the actual value
Xi the average of the actual values
Yi the predicted value
Yi the average of the actual values
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