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Duranay, Z.B.; Gürocak, Z. Evaluation

of the Changes in the Strength of Clay

Reinforced with Basalt Fiber Using

Artificial Neural Network Model.

Appl. Sci. 2024, 14, 10362. https://

doi.org/10.3390/app142210362

Academic Editors: Mien Jao and Mian

C. Wang

Received: 17 October 2024

Revised: 6 November 2024

Accepted: 8 November 2024

Published: 11 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Evaluation of the Changes in the Strength of Clay Reinforced
with Basalt Fiber Using Artificial Neural Network Model
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Abstract: In this research, the impact of basalt fiber reinforcement on the unconfined compressive
strength of clay soils was experimentally analyzed, and the collected data were utilized in an artificial
neural network (ANN) to predict the unconfined compressive strength based on the basalt fiber
reinforcement ratio and length. For this purpose, two different lengths of basalt fiber (6 mm and
12 mm) were added to unreinforced bentonite clay at ratios of 0%, 1%, 2%, 3%, 4%, and 5%, and
unconfined compressive tests were performed on the prepared reinforced clay samples to determine
the unconfined compressive strength (qu) values. The evaluation of the obtained experimental
results was carried out by creating ANN models. To validate the prediction capabilities of the
ANN, a comparative analysis was performed using linear regression, support vector machines, and
Gaussian process regression models. Ultimately, a five-fold cross-validation technique was employed
to objectively evaluate the overall performance of the model. The evaluations revealed that the ANN
model predictions using data obtained from experimental studies showed the highest accuracy and
were in close agreement with the experimental results.

Keywords: artificial neural network; basalt fiber; clay; reinforcement; unconfined compressive strength

1. Introduction

Clayey soils are frequently encountered problematic soils in geotechnical studies. In
engineering work on such soils, many challenges arise due to their low strength, high
compressibility, and settlement. Soil improvement and reinforcement are among the best
alternatives in areas where such soils are present. One of the most effective methods used
for many years is additive stabilization, which involves various additives such as fly ash,
volcanic ash, volcanic tuff, silica fume, and lime. Due to the increasing costs and demand,
and to prevent environmental pollution, researchers have sought materials with superior
properties that are more environmentally friendly and easily accessible as raw materials, as
technology has developed. Consequently, in recent years, various fibers such as carbon,
polymer, basalt, and glass have been studied for this purpose, and research on the use of
fibers in soil reinforcement applications has accelerated [1–9]. Among these fibers, basalt
fiber is particularly noteworthy. This is because basalt fiber is derived from basalt rock,
which forms as a result of the cooling of lava erupted from volcanic activity and is widely
distributed in nature, available in large quantities, and naturally occurring. Additionally,
its lack of harm to the environment, humans, and living beings, as well as its sustainability
and high strength, are among its key features. However, due to their recent emergence,
studies on the use of basalt fibers in soil reinforcement applications are still insufficient.
In studies conducted on this subject, various geotechnical properties of soils have been
examined by using basalt fibers in different proportions and lengths in different types of
soils [10–13].

The use of fiber materials in soil reinforcement processes is typically aimed at strength-
ening the physical properties of the soil matrix and improving soil behavior. In this context,
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the concept of “cylinder confinement” emerges as an innovative technique in geotechnical
applications such as soil support systems, foundations, and slope stabilization, where
cylindrical structures within the soil matrix are utilized to enhance strength and stability.
Fiber-reinforced soil and cylinder confinement are complementary methods in civil engi-
neering applications. While fiber reinforcements increase the resilience of the soil matrix,
the use of cylindrical structures further amplifies the effects of these reinforcements. This
combination improves soil behavior, enhancing the safety and durability of structures.
Studies on this topic [14–18] indicate that cylinder confinement creates a structure around
soil fibers, maintaining them in a specific arrangement. This structure facilitates the effec-
tive functioning of the fibers and their interaction with the soil, while the cylindrical form
protects the soil fibers against external impacts and increases load-bearing capacity. Addi-
tionally, cylinder confinement enables the better distribution of soil fibers under external
loads, thereby reducing the risk of cracking or deformation.

The qu of soils can be determined in laboratories using the unconfined compressive
test. However, these tests can often be time-consuming. In experimental studies, the fiber
proportions, fiber lengths, and the amount of water used in preparing the mixtures are
mostly selected randomly, and optimal values are obtained after performing numerous
tests. Since these optimal values may vary in different types of soils, new experimental
studies need to be conducted each time. This situation increases both the cost and labor,
and, most importantly, it is very time-consuming.

Furthermore, the test equipment may experience wear and tear due to repeated use
in these experimental studies. To overcome these challenges, intelligent systems can be
implemented to reduce time delays, minimize material waste, and lessen equipment wear,
thereby enhancing both the efficiency and sustainability of the evaluation procedure.

To achieve this objective, various intelligent methods are employed for evaluating
compressive strength performance, including artificial neural networks (ANNs), fuzzy
logic, genetic algorithms, and particle swarm optimization [19–23].

In their study, Ndepete et al. [21] aimed to determine the mechanical properties of
basalt-fiber-reinforced silty soils and to identify the optimal ratio and size of basalt fibers
on soil properties. To obtain more reliable results, they characterized soil behavior using
machine learning models. The results showed that fiber length and confining pressure
had a significant effect on the prediction of maximum deviator stress. In the study by Sert
et al. [23], mixtures were prepared with 6, 12, and 24 mm long basalt fiber reinforcements in
proportions of 1%, 2%, and 3% with five different water contents for clay soils. Additionally,
the dataset, consisting of input variables such as water content, fiber length, and fiber ratio,
and output variables such as stress and deformation, was modeled using different machine
learning algorithms. The results from the machine learning algorithms revealed that the
best fit was obtained with Support Vector and Decision Tree Regression.

In the study by Garg et al. [19], the aim was to develop a functional relationship
between fiber content, soil density, and soil moisture and the mechanical factor of fiber-
reinforced soil for four different fibers (coconut, jute, water hyacinth, and polypropylene).
For this purpose, an integrated methodology involving laboratory tests and the Extreme
Learning Machine (ELM) technique was used to develop models. Models were developed
using ELM to predict the compressive strength of soils reinforced with different types of
fibers. The predictive accuracy of the ELM models appeared to be reasonably sufficient
for estimating the compressive strength of fiber-reinforced soils. In the study by Tiwari
and Satyam [20], the effects of pond ash and polypropylene fiber on soil strength were
investigated. Experimental data were processed using an ANN to develop prediction
models for mechanical and durability parameters. The results of the ANN modeling
excellently predicted the mechanical properties, with the correlation coefficient reaching
up to 0.96. In the study conducted by Sungur et al. [22], the shear strength of clay soil
reinforced with glass fiber was predicted using ANFIS (Adaptive Neuro-Fuzzy Inference
System). For this purpose, experimental samples with different water contents (13%, 15%,
and 17%) and different glass fiber ratios (0%, 1%, 1.5%, and 2%) were prepared. The
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examination of statistical parameters showed that the ANFIS model provided the best
results in predicting shear strength when the data were split into 80% for training and 20%
for testing.

Alisha et al. [24] focused on using ANNs to model soil characteristics, enhancing the
prediction accuracy of engineering properties such as soil moisture content and compressive
strength, thus reducing the need for extensive experimental testing. A different study
explored the use of machine learning models such as ANN for predicting the mechanical
properties of concrete [25]. It highlighted the benefits of using ANN in comparison to
traditional methods for faster and more accurate predictions of compressive strength.

In this study, the effects of basalt fiber reinforcement on the qu of clay soils were
experimentally investigated, and the obtained data were used in an ANN to estimate the
qu value according to the basalt fiber reinforcement ratio and length.

Following a comprehensive experimental investigation, qu results were derived from
the data collected during the experiments. The primary objective of this research is to
enable the estimation of qu for mixtures reinforced with basalt fibers of varying lengths
and proportions without the need for additional experimental work, and to determine the
optimal basalt fiber reinforcement ratio and length.

By using ANNs, researchers can significantly reduce the time typically required for
experimental procedures, thus eliminating the delays associated with waiting several days
for the determination of compressive strength. This is particularly beneficial in scenar-
ios where rapid assessments are crucial, such as in construction, geology, and materials
engineering, where timely decision-making can impact project timelines and costs. For
these reasons, ANNs are preferred in many disciplines such as structural engineering, civil
engineering, and geological engineering [26–31].

Although artificial neural networks have been successfully applied in many disciplines
such as structural and civil engineering, studies on the use of fibers in soil reinforcement
applications are more recent.

In this study, the effect of basalt fiber reinforcement on the unconfined compressive
strength of clay soils will be evaluated using an ANN. The study proposes the use of ANNs
to evaluate compressive strength, which aims to reduce material waste and save time,
instead of conducting numerous experimental tests.

2. Materials and Methods
2.1. Experimental Analysis

In this study, experimental data previously determined by [12,13] were used to predict
the qu of high-plasticity bentonite clay reinforced with basalt fiber. In the conducted studies,
the qu values of both unreinforced and BF-reinforced samples were determined through
unconfined compressive tests.

In the study conducted by Aslan Topçuoğlu and Gürocak [12], 6 mm long BF was used
in various proportions (1%, 2%, 3%, 4%, and 5%) in bentonite clay. The qu of unreinforced
bentonite clay was determined to be 206.93 kPa through unconfined compressive testing.
It was found that the strength values of the bentonite samples reinforced with different
proportions of BF ranged between 200.03 and 237.48 kPa. The findings of the study revealed
that the highest strength was achieved with a 4% basalt fiber content in bentonite clay
reinforced with 6 mm basalt fibers, and increasing the fiber ratio beyond this point led to a
reduction in strength.

In another study conducted by Aslan Topçuoğlu and Gürocak [13], 12 mm long
BF was used as a reinforcement material in various proportions (1%, 2%, 3%, 4%, and
5%). According to the unconfined compressive test results, the average qu values of
basalt-fiber-reinforced samples ranged between 202.74 and 267.66 kPa. The study’s results
demonstrated that the peak strength was achieved with a 4% basalt fiber content when
12 mm long basalt fibers were used to reinforce bentonite clay. However, a decrease in
strength was observed in the sample containing 5% basalt fiber.
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In both studies, the basalt fiber lengths varied, while the BF reinforcement ratios
remained the same. Each mixture with 6 mm and 12 mm long fiber reinforcement in
bentonite clay was compacted at the optimum water content of unreinforced bentonite, and
cylindrical samples were prepared. The mixture ratios used in the experimental studies
and the average qu values are presented in Table 1.

Table 1. Mixture ratios used in the experimental studies and unconfined compressive test results [12,13].

Fiber Length
(mm)

Sample
Name B (%) BF (%) Average qu

(kPa)

6

B 100 0 206.93
B + %1BF 99 1 210.24
B + %2BF 98 2 220.44
B + %3BF 97 3 226.50
B + %4BF 96 4 237.48
B + %5BF 95 5 200.03

12

B 100 0 206.93
B + 1% BF 99 1 223.64
B + 2% BF 98 2 229.00
B + 3% BF 97 3 247.42
B + 4% BF 96 4 267.66
B + 5% BF 95 5 202.74

B: bentonite clay; BF: basalt fiber.

In the first phase of the experimental studies, BF was separated with the help of a
compressor and added to bentonite clay dried in an oven at 105 ◦C for 24 h, and then
mixed. Subsequently, distilled water was added to these prepared mixtures by spraying at
the optimum water content, and they were mixed both manually and with a mixer until a
homogeneous mixture was obtained. This was carried out to prevent fiber clumping and
aggregation. The mixing time was set to 10 min to ensure a homogeneous mixture. In these
prepared mixtures, Proctor tests were performed using a fully automatic soil compactor to
compact the samples. Then, cylindrical samples with a height twice their diameter were
taken from the Proctor mold, and unconfined compressive tests were performed. As a
result of the experimental studies, a total of 60 different qu values were obtained, and the
average qu values were determined for each mixture.

2.2. Artificial Neural Network

Artificial intelligence (AI) is a scientific discipline aimed at improving computers’
ability to carry out tasks such as learning, resolving complex challenges, and making
informed choices by emulating human cognitive processes [32]. AI is applied across
numerous sectors, including healthcare, the military, and engineering.

There are various AI algorithms, each designed with specific technical characteristics
and intended uses [33]. Frequently utilized AI models encompass ANN, LR, SVM, and
Gaussian Process Regression (GPR) approaches. GPR is a probabilistic, non-parametric
approach that provides flexible predictions with uncertainty estimations, particularly useful
in smaller datasets. SVMs are powerful for classification and regression tasks, maximizing
the margin between classes for clearer separability, especially in high-dimensional spaces.
Simple and interpretable, LR models linear relationships between input and output, best
suited for problems where a linear approximation is sufficient.

In this study, data obtained from the experimental research were utilized with different
AI algorithms, ultimately proceeding with an ANN that yielded the most favorable results.

The ANN is an intelligent technique that mimics biological neural networks and
operates similarly to them [30]. The ANN method processes input data and generates
optimal decisions based on predefined conditions. It is particularly effective for addressing
nonlinear problems, offering practical, straightforward, and rapid solutions [34]. Due to
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these attributes, ANNs are gaining popularity across various engineering fields, including
geotechnical engineering [29–31,35–37].

This growing use of the ANN approach shows its adaptability and effectiveness in
solving complex problems, making it a valuable tool for engineers. Its ability to learn
from data and adjust to different situations improves its performance, indicating that its
importance in engineering will likely increase as technology progresses.

The framework of the ANN comprises input, output, and hidden layers. The hidden
layers serve as intermediaries, facilitating the connection between the input and the output
layers. Data entered into the input layer undergo processing by the neurons in the hidden
layer before being relayed to the output layer, thereby highlighting the critical role of
the hidden layer in information transfer. In more intricate network configurations, the
number of hidden layers may be expanded to augment the learning capacity. However,
this enhancement can also lead to greater complexity and longer execution times for the
network [32]. Thus, the optimal number of hidden layers is contingent upon the network’s
overall design. In this investigation, a single hidden layer was found to be adequate for
attaining the desired outcomes, given the characteristics of the network.

A segment of the input data is employed to develop samples for the purposes of
training, testing, and validation. These samples undergo training using diverse tech-
niques, allowing the ANN to produce outputs corresponding to specific inputs under
defined conditions.

The experimental data obtained are organized in the lookup tables for utilization
within the ANN system. The variables of clay ratio, basalt fiber ratio, and basalt fiber length
serve as inputs, while the ANN produces an output. Accordingly, the corresponding qu
value is calculated using the ANN method based on the provided input values. The ANN
system employs 3 inputs, 20 hidden neurons, and 1 output, as illustrated in Figure 1.
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3. Results and Discussion

This investigation utilized 60 experimental data points for each of the three input vari-
ables. Among these data points, 42 samples (70%) were designated for training purposes,
9 (15%) were reserved for validation, and the final 9 (15%) were assigned for testing. The
Levenberg–Marquardt method was selected as the training method for ANN.

The framework of the ANN system designed to evaluate the qu performance is de-
picted in Figure 2.
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Figure 3 illustrates the Simulink block diagram representing the ANN results for the
provided sample input values.
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Figure 3. ANN outputs corresponding to sample input values.

The efficacy of the ANN is measured using different metrics. The regression (R) values
represent the extent of concordance between the actual data and the outputs generated
by the model. An R value close to 1 indicates excellent performance. Given that the
outputs from the ANN closely correspond with the experimental findings, the R values
are consistently observed to be near 1. Another metric, Mean Squared Error (MSE), is
the average of the squared differences between the predicted and actual values. MSE
numerically represents the model’s error level; lower MSE values indicate a more successful
predictive performance. While R serves as a measure of accuracy, MSE is used to evaluate
the error rate of the model.

Figure 4 illustrates the R values for the training, validation, test, and overall datasets.
Upon analyzing the ANN results alongside the experimental data, it becomes evident
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that the ANN predictions exhibit a strong correlation with the experimental outcomes.
Specifically, R values of 0.95, 0.95, 0.97, and 0.95 were recorded for the training, validation,
test, and overall datasets, respectively.
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To assess the effectiveness of the ANN model, experimental input values and their
corresponding output values generated by the ANN were documented and summarized in
Table 2 for comparative analysis. A thorough examination of Table 2 reveals that the ANN
outputs closely align with the experimental findings. Consistent with the experimental
results, the maximum compressive strength was observed with the incorporation of 4%
basalt fiber for both 6 mm and 12 mm basalt fiber lengths, as highlighted in bold in Table 2.

Table 2. Comparison of experimental and ANN outputs.

Sa
m

pl
e Inputs

Experimental
Output

ANN
OutputBasalt Fiber

Length Clay Ratio Basalt Fiber
Ratio

1 6 100 0 206.93 208.20
2 6 99 1 210.24 213.60
3 6 98 2 220.44 219.60
4 6 97 3 226.50 226.50
5 6 96 4 237.48 237.10
6 6 95 5 200.03 200.00
7 12 100 0 206.93 206.50
8 12 99 1 223.64 225.60
9 12 98 2 229.00 230.50
10 12 97 3 247.42 250.00
11 12 96 4 267.66 269.10
12 12 95 5 202.74 199.60
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Considering the fiber length and fiber ratios used as input parameters in this study, it
was determined that the qu values increased as the fiber length increased, and the 12 mm
fiber reinforced samples had higher strength. It was also determined that the qu values
increased as the fiber ratio increased, but this increase continued up to 4% fiber ratio. These
results show that fiber length is more effective in increasing strength.

Following this, the ANN was re-evaluated using experimental data. When the pre-
dicted values obtained from the ANN were compared with the experimental results, an
R value of 0.99 was observed. The regression plot corresponding to the testing process is
presented in Figure 5.
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To demonstrate the predictive accuracy of the ANN model, a comparison was made
with other AI models, including GPR, SVM, and LR. As shown in Table 3, the ANN model
produced the best R and MSE value, indicating that it outperformed the other models.

Table 3. Evaluation of R values among different AI models.

NN GPR SVM LR

R Value 0.90 0.88 0.87 0.68

MSE Value 0.14 0.16 0.17 0.60

As can be seen in Table 3, both the ANN and GPR models demonstrated close per-
formance in predicting compressive strength. The decision to choose the ANN model in
this study is due to its high flexibility, complexity in data, and ability to capture nonlinear
relationships. This capability is especially valuable in predicting compressive strength,
where various factors interact in nonlinear ways. Additionally, ANNs are more scalable
with larger datasets, allowing them to refine and improve predictions as more data become
available. ANN models are also more robust for applications requiring rapid predictions
and can generalize better with diverse, complex input conditions typically seen in com-
pressive strength studies. In contrast, GPR, while effective, can become computationally
intensive with larger datasets, making it less practical for extensive applications.
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The question of the model’s generalizability to real-world data and its reliability is a
critical consideration. Consequently, a cross-validation strategy is employed [38,39]. This
approach not only mitigates the risk of training a model that is overly reliant on the specific
dataset, but also facilitates the assessment of the model’s generalizability.

In the cross-validation technique, the dataset is partitioned into smaller subsets, with
each subset alternately functioning as the test set while the remaining subsets are used for
training. The model undergoes training on the training subsets and is then evaluated on the
specified test set. This procedure is reiterated for each iteration of the cross-validation pro-
cess. The performance metrics derived from each iteration are subsequently consolidated
and averaged to compute the total efficacy of the system.

In this research, a five-fold cross-validation approach was employed to impartially
assess the model’s performance. Consequently, the model’s R value was calculated as 0.90.
Figure 6 displays the results and depicts the optimal error rate between the predicted data
obtained from system output using the five-fold cross-validation and the actual values.
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4. Conclusions

In this study, an ANN model was developed to predict the qu of clayey soil reinforced
with basalt fibers and to determine the optimal fiber length and ratio that provide the great-
est increase in qu. For this purpose, previously published data from experimental studies
involving bentonite, a highly plastic clay, were utilized. The qu values were obtained from
mixtures of bentonite reinforced with basalt fibers at varying lengths (6 mm and 12 mm)
and proportions (1%, 2%, 3%, 4%, and 5%). The qu values obtained after the experimental
study were evaluated using the ANN. The compressive strength values predicted by the
ANN closely matched the experimental results, demonstrating the effectiveness of the
ANN in evaluating compressive strength performance.

The ANN methodology enables the quick estimation of qu for known mixing ratios at
different curing ages without the need for preliminary experiments. This capability not only
streamlines the evaluation process, but also enhances efficiency and reliability in predicting
material performance. As a result, the adoption of ANNs in this context offers substantial
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advantages in terms of time savings, cost reduction, and labor efficiency. ANNs’ scalability,
adaptability to complex patterns, and suitability for larger data volumes make them a
preferred choice for the model presented in this paper. These advantages will also support
potential future research extensions. Ultimately, this study aimed to provide a practical
tool for engineers and researchers in the field, fostering more informed decision-making
and optimizing resource utilization in geotechnical engineering.

It should be noted that although the optimum basalt fiber ratio and length values
obtained from this study can be used for high-plasticity clays used in experimental studies,
it will not be appropriate to use them for clays with different engineering properties. The
database on this subject can be enriched with new studies to be conducted by changing
the basalt fiber contribution ratios and fiber length values in clays with different proper-
ties. Similarly, the development of the study is also possible by increasing the number of
fiber-reinforced soil series, changing the soil–fiber mixture ratios, or changing the water
ratio used in the preparation of the mixtures. In addition, since the success rate of arti-
ficial intelligence will increase in parallel with the increase in the number of input data,
more experimental results mean more accurate predictions. In addition, deep network
architectures can be used to increase the prediction performance obtained as a result of
different mixtures used. This study has shown that considering the decrease in soils with
suitable geotechnical properties in parallel with the increase in population and structures,
the use of basalt fiber, which is sustainable and environmentally friendly and whose raw
material is abundant and naturally available in nature, will provide significant gains in soil
reinforcement applications.
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Gümüşhane Üniversitesi Fen Bilim. Derg. 2023, 13, 688–701. [CrossRef]
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