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Abstract: Life cycle asset allocation is a crucial aspect of financial planning, especially for pension
funds. Traditional methods often face challenges in computational efficiency and applicability
to different market conditions. This study aimed to innovatively transplant an algorithm from
reinforcement learning that enhances the efficiency and accuracy of life cycle asset allocation. We
synergized tabular methods with Monte Carlo simulations to solve the pension problem. This
algorithm was designed to correspond states in reinforcement learning to key variables in the pension
model: wealth, labor income, consumption level, and proportion of risky assets. Additionally, we
used cleaned and modeled survey data from Chinese consumers to validate the model’s optimal
decision-making in the Chinese market. Furthermore, we optimized the algorithm using parallel
computing to significantly reduce computation time. The proposed algorithm demonstrated superior
efficiency compared to the traditional value iteration method. Serial execution of our algorithm took
29.88 min, while parallel execution reduced this to 1.42 min, compared to the 41.15 min required by
the value iteration method. These innovations suggest significant potential for improving pension
fund management strategies, particularly in the context of the Chinese market.

Keywords: life cycle asset allocation; Monte Carlo; glide path; Bellman equation; parallel optimization

1. Introduction

In the expansive field of computational finance, the topic of life cycle asset allocation
stands out as particularly significant. This is especially true given its alignment with the
evolving third pillar of China’s pension system—a current area of vulnerability. In the
context of China’s pension system, the application of life cycle asset allocation is particularly
crucial. It not only represents an innovation in traditional pension management models but
also serves as a vital approach to addressing current system challenges and enhancing the
level of retirement security. The Chinese pension system is primarily composed of three
pillars: the first pillar is the Basic Pension Insurance, which has broad coverage but limited
benefit levels; the second pillar includes Enterprise Annuities and Occupational Annuities,
which, despite achieving certain results, have relatively narrow coverage and face issues
such as a limited fund scale and imbalanced development structure; the third pillar consists
of supplementary pension insurance represented by personal pensions, which is still in its
early stages with enormous potential.

However, this system faces numerous challenges. Firstly, life insurance products are
highly homogenized, failing to meet the diverse needs of retirement. Many products lack
innovation in their design, with underlying assets heavily reliant on fixed-income products
such as bonds and time deposits. In the current context of global economic slowdown
and continuously declining interest rates, the sustainability of these products is under
severe threat. Low yields are insufficient to effectively counteract inflation, which, over
time, will erode the real purchasing power of pensions and affect the quality of life of
the elderly. Therefore, to address this shortcoming and manage potential future market
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risks, the development of personalized pension products that balance returns and risks
is urgently needed. Life cycle asset allocation is precisely such a strategy. Optimal asset
allocation strategies involve the glide path concept [1], which refers to calculating the
changing annual investment proportion in risky assets based on the specific life cycle and
financial market of the investor throughout an investor’s life cycle. The optimal problem
is typically modeled as a stochastic process, examined through a set of inter-connected
random variables, such as the Markov process. The development of algorithms calculating
for glide path and efficient problem-solving for these models is increasingly emphasized
due to the complex nature of life cycle asset allocation.

Historically, the foundational work in classical life cycle fund models was initiated
with Markowitz’s mean-variance model [2], which pioneered the integration of mathe-
matical statistics into effective asset allocation within modern investment theories. This
was extended by Modigliani [3], who proposed the life cycle hypothesis, suggesting that
investors should strategically manage their consumption and investment throughout their
lifespan with a view toward future earnings. Building on this, numerous academics
have further developed life cycle investment mechanisms, providing effective investment
guidance and ensuring retirement security. A significant advancement in life cycle fund
development was achieved by Merton [4], who advocated the use of utility functions to
capture the investment and consumption preferences of individual investors. This was
enhanced by Bodie et al. [5], who emphasized the critical relationship between an investor’s
income and their investment decisions by incorporating human capital considerations. This
perspective suggests that younger investors, with greater career flexibility, are likely to
have a higher tolerance for risk. Moreover, various models based on life cycle investment
strategies, such as those by Cocco et al. [6] and Campbell et al. [7], have gained significant
recognition. Gomes, F. et al. [8,9] introduced borrowing constraints and bequest motives.
These models account for external factors like labor income risk, which can affect investors.
However, some of these assumptions for the complexity of human financial behavior and
stochastic market conditions do not appear to reflect empirical observations.

Blake et al. [10] apply the assumption of the Epstein–Zin utility function. Firstly, the
analytical resolution of such intricate problems, often distilled into a Bellman equation
framework, encounters insurmountable hurdles due to the intricacies of expectation terms
and the lack of closed-form solutions. The Bellman equation, central to stochastic control
and decision-making, faces challenges such as mathematical complexity and computational
inefficiency, while also presenting significant opportunities for advancement in various
fields [11]. The equation’s application in infinite-dimensional spaces and under conditions
of uncertainty introduces unique mathematical difficulties and necessitates innovative ap-
proaches to ensure solution uniqueness and optimality [12,13]. Furthermore, Gerstenberg,
Neininger et al. [14] have expanded the scope of Bellman equations into the realm of distri-
butional reinforcement learning (RL). In macroeconomic utility maximization problems,
Shigeta emphasizes the Bellman equation’s role in modeling consumer behavior under un-
certainty and constraints [15]. Fei et al. [16–18] proposed an Exponential Bellman Equation
for improved regret bounds, while Jones and Peet [19] generalized Bellman’s equation for
path planning and obstacle avoidance. Beck et al. [20,21] introduced efficient nonlinear
Monte Carlo methods to tackle the computational challenges in high-dimensional stochastic
optimal control. Becker et al. [22–24] address the challenge of solving high-dimensional
optimal stopping problems using deep learning techniques. Kristensen et al. [25] address
the verification of a continuous-time utility maximization problem, which is a common
framework in macroeconomics. Despite the effectiveness of various algorithms in dynamic
programming and reinforcement learning, such as value iteration, these models exhibit
significant limitations in addressing high-dimensional state spaces and complex stochas-
tic environments inherent in pension planning. Traditional models, like value iteration
and policy iteration, suffer from high computational complexity and slow convergence,
especially in high-dimensional state spaces. To address these issues, we propose a Monte
Carlo method that effectively manages high-dimensional state and decision spaces, offers
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flexibility with different stochastic models, and ensures faster convergence for solving
specific challenges. This approach provides a robust solution to the computational and
modeling deficiencies of existing methods, ensuring efficient and accurate pension plan-
ning. Secondly, the models are based on American investors, lacking examination of the
effectiveness on Chinese investors. Whiel advancements in Monte Carlo planning and
simulation by Silver et al. [26], Fatica et al. [27], and Abbas-Turki et al. [28] provide robust
methods for navigating the probabilistic nature of asset allocation.

With the advancement of reinforcement learning, we innovatively correspond the
concepts of states and actions in reinforcement learning with the proportions of risky assets
and investment behaviors in life cycle asset allocation, matching optimization strategies
with glide paths, introducing a Monte Carlo-based algorithm to solve the Markov process
represented as a Bellman equation. It facilitates the exploration of state and policy spaces
through random sampling, thus enabling the evaluation of the expected returns of var-
ious strategies across a multitude of possible scenarios. Addressing robustness, model
complexity, and computational demands is crucial, necessitating advanced algorithms
where high-performance computing plays a vital role. Contributions by Mao et al. [29] and
Weng et al. [30] in improving computational frameworks through Poly-hoot and Envpool,
respectively, demonstrate the critical role of high-performance and parallel computing
in enhancing model performance and efficiency. Incorporating these advancements into
the life cycle asset allocation discourse, this paper parallelizes the proposed algorithm to
overcome computational bottlenecks and meet application requirements. Furthermore,
we build a labor income model for Chinese investors, aiming to bridge the gap between
theoretical models and their practical implementation in the fast-evolving landscape of
computational finance. Our innovative approach demonstrates substantial advancements
in life cycle asset allocation by (1) transplanting reinforcement learning algorithms to the
pension problem, (2) utilizing Chinese consumer data for validation, and (3) optimizing
the algorithm through parallel computing.

The rest of this paper is organized as follows: Initially, we will succinctly outline the
life cycle asset allocation model being examined. Following this, we will elaborate on
our Monte Carlo-centric algorithm employed to adeptly navigate the Bellman equation’s
challenges. Subsequently, we present experimental results, the parallel methods and their
effectiveness, along with detailed analyses. Finally, this paper will conclude with an
overview and suggestions for future research directions.

2. Materials and Methods
2.1. Life Cycle Asset Allocation Model
2.1.1. Utility Function Selection

We adopt the utility function and financial asset used in Blake et al. [8]. Consumer
preferences are in Epstein–Zin preferences, the utility function, recursive form:

Ut = {(1− β)Ct
1−1/φ + βpt(Et[Ut+1

1−γ])
(1− 1/φ)/(1− γ)}

1/(1− 1/φ)

(1)

In this context, Ut is the level of utility at age t; Ct is the level of consumption at age
t; pt is the (non-random) one-year survival probability at age t, i.e., the probability that a
member alive at age t will live to age t + 1; γ is the relative risk aversion coefficient (RRA);
φ is the intertemporal elasticity of substitution (EIS); and β is an individual’s one-year
personal discount rate.

Given the risk of death at age t, the member is assumed to have a maximum potential
age of T years. Thus, in the final year, pT = 0. The termination condition of the utility
function is as follows:

UT = {(1− β)CT
1−1/φ}

1/(1− 1/φ)
(2)

Epstein–Zin preferences are able to separate relative risk aversion (RRA) from in-
tertemporal elasticity of substitution (EIS), where individuals with high risk aversion want
to avoid consumption uncertainty in a given period, this being the avoidance of consump-
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tion reductions required in unfavorable states of nature (e.g., a large drop in stock prices).
Individuals with low EIS want to avoid consumption fluctuations over time, in particular
avoiding consumption reductions compared to the previous time period to a decrease
in consumption.

2.1.2. Financial Asset

Two types of financial assets are assumed, a risky equity fund and a risk-free bond
fund. By choosing to invest in the bond fund, which has a constant annual real return R f ,
and the equity fund, which has a return from age t to t + 1, a portion of the pension fund αt
is invested in the risky asset at age t, the total return Rt is shown as follows:

Rt = R f + αt(µ + σZ1,t) (3)

where 0 ≤ αt ≤ 1 since the risky assets shall not be sold out; µ is the annual risk premium
of the risky asset (a deterministic parameter); σ is the annual volatility of the return of
the risky asset (a deterministic parameter); {Z1,t} is a series of independent identically
distributed standard normal random variables. Prior to retirement, the pension fund’s total
pension wealth Wt+1 has the following recurrence relationship:

Wt+1 = (1 + Rt − ct)× (Wt + Yt − Ct) ≥ 0, start ≤ t ≤ retirement (4)

Wt+1 = (1− αt)×Wt/..
at ×

..
at+1 + [αtWt + (1− αt)×Wt/..

at − Ct]× (1 + R f + µ + σZ1,t),
start ≤ t ≤ retirement

(5)

The wealth of the pension shall never be negative. Labor income Yt will be discussed
in Section 2.1.3. ct is the custodian fee, the pension target fund fee structure is as follows:

Self-charges:
Subscription/subscription fees (a one-time charge is not repeated, and the subscription

fee rate is 1.2% on average), management fees, and custodian fees (according to the Wind
system, as of the end of 2019, the weighted average of the management fee rate is 0.81%;
the weighted average of the custodian fee rate is 0.17%, and the two fees add up to a rate
of 0.98%).

Underlying fund fees:
Subscription/subscription fees (generally between 0.8% and 1.5%, and large FOF

products have the advantage of preferential purchase fees), management fees, custodian
fees (according to the Wind System, the weighted average of the management fee rate for
equity-type open-end funds was 0.76%; the weighted average of the management fee rate
for bond and hybrid open-end funds was 0.33%).

2.1.3. Labor Income Patterns in China: Insights from the China General Social
Survey (CGSS)

Labor income is usually an important component of total assets. The growth rate
of labor income from age t to t + 1 is given by gt. Two aspects of labor income present
risk—the systematic volatility of labor income and the correlation between labor income
growth and stock returns. Labor income Yt+1 earned at age t + 1 is shown below [31]:

Yt+1 = Yt × exp((St+1 − St)/St) (6)

where Ystart = 1; St is the labor income.
To analyze current trends and patterns within the context of labor income dynamics,

we use robust statistical methods to ensure accurate and insightful results. The China
General Social Survey (CGSS) is one of the most comprehensive, continuous national social
surveys conducted in China. In our study, we utilize the most recent dataset, specifically the
2021 data, to model labor income. The 2021 dataset provides a contemporary snapshot of the
economic conditions influencing labor income, making it a vital resource for understanding
the factors that impact earnings across different demographics and regions. We process
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the data by the age and the income columns, dropping the unavailable and the extreme
sample points and computing the average labor income per year for investors in China. We
use a degree 3 polynomial function to estimate labor income, St = −1745.40 + 141.43× t−
3.13× t2 + 0.021× t3, shown in Figure 1.
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Figure 1. Labor income estimation.

Many studies have hypothesized that real income follows a hump-like pattern, charac-
terized by rapid growth until around age 35, a slower rise between ages 45 and 50, and a
gradual decline thereafter. This pattern is widely accepted as a general model of income
dynamics over the life cycle. However, through our detailed data cleaning and modeling
of the China General Social Survey (CGSS), we have uncovered unique characteristics in
the labor income trajectory of Chinese consumers, as depicted in the figure. The graph
illustrates labor income against age, highlighting several key deviations from the expected
pattern. Initially, labor income increases rapidly, reaching its peak earlier than the global
average, around age 30–35. This peak is followed by a relatively sharp decline, contradict-
ing the hypothesis of a slower rise until the age of 50. Instead, the data show a continuous
decrease in labor income after the early thirties, which becomes more pronounced beyond
the age of 40. By age 60, labor income levels are significantly lower, indicating a steep
downward trend.

This distinctive pattern can be attributed to several socio-economic factors unique
to China, including retirement policies, the structure of the labor market, and cultural
attitudes toward work and retirement. The earlier peak and subsequent decline suggest
that Chinese workers may experience a more pronounced reduction in income as they age
compared to their counterparts in other countries. Figure 1 visually presents these findings,
emphasizing the rapid increase in labor income up to the early thirties, the peak around
age 30–35, and the subsequent decline, highlighting the unique labor income trajectory of
Chinese consumers. By examining these data, we can gain a deeper understanding of the
economic behavior and challenges faced by Chinese workers throughout their careers.

2.1.4. Optimization Problem

The model has two control variables at each age t, the proportion of risky asset
allocation αt, and the level of consumption Ct. The objective function is max

αt ,Ct
Ut.

(1) Before maturity of the product:

0 ≤ αt ≤ αmax (7)

When start ≤ t ≤ retirement, Ct ≤ Yt. Each year, individuals are not allowed to
borrow money from the fund, therefore the consumption shall be less than the labor income.
And the contribution rate shall be larger than or equal to zero.
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When retirement ≤ t ≤ T, Ct ≤ (1− αt)×Wt/..
at + αtWt;

(2) Obtain the Bellman equation:

Vt = max
αt ,Ct
{(1− β)Ct

1−1/φ + βpt(Et[Vt+1
1−γ])

(1− 1/φ)/(1− γ)}
1/(1− 1/φ)

(8)

Since no analytic solution exists, a numerical solution method must be used to derive
the value function and the corresponding optimal control parameters [13]. The utility
function termination condition is used to compute the corresponding value function for
the previous cycle, and the process is iterated backward following a standard dynamic
programming strategy.

2.2. Description of Monte Carlo-Based Algorithm for Solving the Bellman Equation

We first come up with this Monte Carlo-based algorithm to solve this pension problem,
making use of the idea of reinforcement learning and making it possible and applicable
to make the solving process to parallelization. We consider the proportion of risky asset
αt as the rows, and therefore we discrete it as 20 intervals. In addition, we assume the
consumption rate Ct as the columns, and discrete it as 20 intervals. The state s at age t is (αt,
Ct). The action a represents the movement (right, left, up, and down). To make the process
more robust, we make the movement continuously with one interval a time, the next state
at age t + 1 is (αt+1, Ct+1). Each reward, where the utility Ut comes from, is the function
of Ct.

When a state is encountered, choosing a certain behavior with a certain probability
to reach the next state and obtaining the corresponding reward is a randomness strategy.
There must be at least one optimal strategy among all the strategies. The sum of the
multiple subsequent rewards is the payoff. It is not appropriate enough to measure the
goodness of a strategy in terms of rewards.

Specifying a state, taking a stochastic strategy, and then weighting the rewards by an
average—which is the expectation—gives the state value function. In addition to this, there
is another type of value function, which is the state action value function.

Our solution algorithm is formulated in Algorithm 1:

Algorithm 1: Monte Carlo Method for Solving the Bellman Equation

1 : Initialization Q(s = (α, C), a)← 0 , ∀s ∈ S, a ∈ A
2 : Set N(s = (α, C), a)← 0 , ∀s ∈ S, a ∈ A
3 : Set ϵ← 1 , k← 1
4 : πk ← ϵ-greedy(Q)
5 : For k< 1000 do
6 : Generate episode Ek = (s1, a1, r2, . . . sT) following πk, while for
start ≤ t ≤ retirement Ct < Yt, for retirement ≤ t ≤ T, Ct ≤ (1− αt)×Wt/..

at + αtWt
0 ≤ αt ≤ αmax.
7 : for each (st, at) ∈ Ek do
8 : N(st, at)← N(st, at) + 1
9 : Gt = rt+1 + γrt+2 + . . . + γkrt+1+k
10 : Q(st, at)← Q(st, at) +

1
N(st ,at)

(Gt −Q(st, at))

11 : end for
12 : k← k + 1
13 : ϵ← 1

k
14 : πk ← ϵ-greedy(Q)
15 : end for

To address high-dimensional and iterative problems, we used several methods. State
space discretization was our first approach. We divided the state space (pension wealth)
into a finite number of points, transforming a continuous problem into a discrete one. This
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reduces computational complexity. The Monte Carlo method simulated many future state
paths. It estimates expectations in high-dimensional spaces.

Dynamic programming was also applied, which iterates backward from the end-
point to the starting point. This progressively solves the value function, ensuring the
optimal strategy at each step. We used interpolation methods, like linear interpolation, to
smooth transitions between state points. This maintains accuracy in the value function
calculations. Consistent results were ensured by setting the same random seed for Monte
Carlo simulations.

In setting the state space, we avoided computational issues by starting from 0.01
instead of 0. This prevents problems like division by zero. The range ends at 1000, making
calculations and interpretations easier. We generated 100 state points to capture wealth
changes accurately. This balance ensures sufficient granularity without overwhelming
computational resources.

We chose pension wealth for the state space because it influences consumption and
investment decisions, which determines how much members can consume and invest.
Pension wealth also affect the trade-offs between risk and return. These levels change over
time due to investment returns, consumption, and labor income. Capturing these dynamics
is essential for optimizing long-term decisions. In dynamic programming, the pension
wealth is the state variable. It describes the current financial status. The state transition
equation dictates the changes over time, guiding optimal strategy calculations.

The utility function is central to dynamic programming and the Bellman equation.
It measures satisfaction in each state. In our pension problem, it reflects preferences for
consumption and risk aversion. The utility function quantifies immediate utility and
expected future utility. Immediate utility indicates satisfaction from current consumption.
Expected utility combines immediate utility with the future value function. Monte Carlo
simulations help calculate this. Interpolating the future state’s value function aggregates
immediate utility and the weighted future value. This provides a comprehensive measure
of overall utility.

Managing the exponential expectation terms in Equation (8) required special handling.
Avoiding zero values was crucial, as zero’s negative exponentiation can lead to undefined
results. To explore the implications of different consumption paths on the overall utility, we
set the initial value function for the final year as the terminal value of the utility function.
This approach ensures that the terminal value reflects the cumulative effect of all prior
consumption decisions. Initialization: set the initial value function at T using the terminal
utility function UT . Random Generation of C: for period T, generate CT randomly from a
chosen probability distribution.

This Monte Carlo-based algorithm for solving the Bellman equation operates on the
principle of learning from complete episodes of interaction with an environment. At each
state within an episode, a decision is made to take an action, guided by the probability ε,
leading to a subsequent state and an associated reward. This sequence continues until a
terminal state is reached, capturing a full trajectory of states, actions, and rewards. The
goal is not to evaluate the quality of a strategy based solely on immediate rewards but
to consider the long-term payoffs, which are captured in the state-action value function
Q. This function estimates the expected return of taking an action in a given state and
following the current policy thereafter. By averaging the returns over multiple samples, the
algorithm approximates the expected value, thus providing an estimate of the state-action
value function that underlies optimal decision-making according to the Bellman equation.
This stochastic approach, incorporating randomness in the strategy choice, is critical for
exploring the action space to find an optimal strategy among all possible ones.
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3. Results
3.1. Glide Path

The glide path depicted in the following graph illustrates the strategic asset allocation
for a pension target-date fund, emphasizing a decreasing risk profile as participants age.
The parameters we use for the model are shown in Table 1.

Table 1. Model Parameters.

Parameter Value

µ 0.04
σ 0.2
γ 5.0
φ 0.2
β 0.96

start 20
retirement 65

T 120
pt 0.99

Figure 2 shows the calculated glide path curve. This risk mitigation strategy is com-
monly employed in life cycle or target-date funds, where the equity ratio is highest during
the early working years when the investor’s age is below 50. This allows for a more ag-
gressive investment stance, capitalizing on the potential for higher returns that equities can
offer over the long term, while the investor can endure short-term volatility.
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Figure 2. Glide path.

As the individual nears retirement, beginning approximately at age 55, the optimal
equity allocation rate begins to decrease steadily. This gradual transition, known as the
“glide path”, is designed to systematically reduce the fund’s risk exposure as the investor’s
capacity to recover from market downturns diminishes with shorter investment horizons.
By the time the investor reaches age 75, the fund has shifted most of its holdings into more
conservative investments, such as bonds and cash, to preserve capital and provide income
stability for the forthcoming retirement years. The graph effectively encapsulates this
prudent approach to balancing growth and security through age-adjusted asset allocation.

Figure 3 illustrates the trend of optimal consumption over time. The graph shows a
consistent upward trajectory during the initial periods, reflecting a period of increasing
consumption. Eventually, the consumption level stabilizes, indicating an equilibrium or a
steady state.

Figure 4 presents the evolution of pension wealth over time comparing it to the
60/40 strategy. Initially, there is a steady accumulation of pension wealth, represented by
a significant upward trend, suggesting contributions or growth in value. This rise peaks
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before a sharp decline is observed, eventually reaching a point where pension wealth
drops to a stable, near-zero level. This behavior highlights the life cycle of pension wealth
accumulation and decumulation, reflecting typical retirement consumption patterns.
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3.2. Parallel Monte Carlo

In this study, we implemented a parallel Monte Carlo simulation to solve a Bell-
man equation, which is essential for decision-making under uncertainty in finance. We
utilized the mpi4py library to leverage the distributed computing capabilities of the high-
performance computing (HPC) environment. Specifically, our experiments were conducted
on a cluster with 256 AMD EPYC 7773X 64-Core Processors, Table 2 shows the server
parameters used.

Table 2. Server Parameters.

Server Parameters

Nodes AMD EPYC 7773X 64-Core Processor
Operating Centos7.6

MPI hpcx-2.4.1
Network HDR Infiniband (200 Gb)

To enhance the efficiency of our parallel algorithm, we adopted a hybrid memory
approach that exploits both distributed and shared memory systems. The hybrid approach
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allowed us to minimize the communication overhead between processes by effectively man-
aging the data locality, thus reducing the time spent in data exchange and synchronization
across the processors.

Additionally, we optimized memory access patterns by aligning the data structures
with the cache line, leading to a reduction in cache misses and improved data through-
put. By carefully orchestrating the computational load and communication among the
processors, we achieved a significant reduction in the overall runtime, demonstrating the
scalability of our simulation across multiple nodes.

The optimization measures were specifically tailored to the computational characteris-
tics of Monte Carlo methods, where the primary focus was on load balancing and reducing
the random memory access patterns that could lead to bottlenecks in a high-performance
computing setup. The randomness inherent in the Monte Carlo simulation often results
in non-uniform memory access patterns. To address this, we implemented an intelligent
scheduling system that dynamically adjusts the allocation of tasks based on the current load
of each processor, thus ensuring that no single processor becomes a point of contention,
leading to a more efficient parallel execution.

Our implementation demonstrates the utility of parallel optimization techniques such
as reducing communication costs through intelligent data distribution, optimizing memory
access, and implementing dynamic load balancing. These optimizations are crucial for
simulations that require a substantial number of iterations to obtain high-precision results,
as is the case with the evaluation of the expected utility in asset allocation strategies. Table 3
shows a time comparison between the value iteration method and our proposed method
after parallelization versus serialization. The value iteration method shares the same
parameters as the model.

Table 3. Computing time.

Thread Number Computing Time (min)

Value Iteration Method 1 41.15

Our Method (Proposed)

1 29.88
2 15.74
4 8.06
8 4.17

16 2.69
32 1.42

The value iteration method was conducted on a discretized grid of state variable, pen-
sion wealth, and it employed a backward induction approach to solve for value functions
and policies. The Gauss–Hermite quadrature method with nine nodes was used to capture
the stochastic shock dynamics influencing equity returns and income growth. To further
refine the accuracy, the variable space was represented by 30 grid points for pension wealth,
10 grid points for labor income, and 20 points each for consumption and asset allocation.

Initialization Stage: At age 120, we define the terminal value function V[T]. At this
terminal age, the initial terminal utility UT is calculated based on the given pension wealth
and possible consumption levels. The maximum possible consumption C is equal to the
total pension wealth W, and this value is chosen to initialize the terminal utility.

Dynamic Programming and Backward Induction: We iterate backward from age 119
to age 20 to compute the optimal value function and corresponding decisions at each age.
For each age, we initialize a matrix V[age] to store the current value function and set up
policy matrices policyC[age] and policyα[age] to record the optimal consumption and asset
allocation proportions, respectively.

Computation of the Value Function: For each state variable (pension wealth W), at
each time point, different combinations of consumption C and asset allocation proportion a
are explored. Through a nested loop, all possible combinations of consumption and asset
allocation are evaluated, and the utility U for each combination is computed. At each
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iteration, the immediate utility U from consumption is calculated, along with the expected
future value expected V.

Immediate utility U is defined by a power function of consumption C, factoring in a
time preference parameter β. The expected future value expected V is calculated using
Gauss–Hermite quadrature, which integrates over possible future outcomes by simulating
changes in assets based on the distribution of returns.

Finding the Optimal Decisions: For each combination of consumption and asset
allocation, the total utility is computed. After iterating through all combinations, the
optimal consumption and asset allocation that correspond to the maximum utility are
stored in the policy matrices, while the maximum utility is recorded in V[age].

Iteration and Recording of Optimal a and C Strategies:
Through the backward iteration, we ultimately derive the optimal strategies policyC[age]

and policyα[age] for each age. These strategies represent the optimal consumption level
and asset allocation proportion at every age, determined by selecting the combinations of
C and a that maximize utility.

Simulation of the Optimal Path:
Once the optimal strategies for each age are determined, we can simulate the optimal

paths of wealth, consumption, and asset allocation over the life cycle. Starting with
initial pension wealth and salary income, the optimal consumption C and asset allocation
proportion α at each age are derived from the previously calculated policies policyC[age]
and policyα[age]. Simultaneously, the pension wealth W and labor income Y are updated
iteratively using shocks Z1 and Z2, recording the changes over time.

The effectiveness of the parallel optimization techniques employed in our Monte
Carlo simulation is evidenced by the marked reduction in computing times with the
increasing numbers of threads. When executed on a single thread, the simulation took
approximately 29.88 min to complete. Through the implementation of parallel processing,
this time was more than halved to 15.74 min with two threads. The trend of decreasing
computational time continued as more threads were introduced, with four threads cutting
the time down to 8.06 min, an almost four-fold improvement over the single-threaded
execution. With 32 threads, the time was further reduced to 1.42 min. This represents
a remarkable twenty-fold decrease from the initial time, highlighting the scalability of
our parallel algorithm. These times reflect a near-linear speed-up with increasing thread
counts, suggesting efficient utilization of computational resources and minimal overhead
from parallelization. Our results validate the implementation of our parallel optimization
strategies, making a strong case for their effectiveness in high-performance computing
contexts, particularly in complex financial simulations where time efficiency is paramount.

4. Discussion

Life cycle asset allocation dynamically adjusts the proportion of various assets (includ-
ing stocks, bonds, etc.) in the investment portfolio based on factors such as an individual’s
age, financial status, and market conditions, aiming to achieve the optimal balance between
risk and return. Our research indicates that asset allocation based on Chinese consumer
data similarly follows a downward-sloping curve. During younger years, when the capac-
ity for risk is higher, the proportion of high-risk assets such as stocks can be moderately
increased to seek higher growth in returns. This finding aligns with consumer data in
Western countries. As age increases and retirement approaches, the proportion of risk assets
should be gradually reduced, and the allocation of more stable, principal-protected assets
should be increased to ensure the safety and liquidity of the pension. We observe that con-
sumption behavior aligns closely with the labor income trajectory discussed above. During
the early years (up to age 30), as labor income rapidly increases, optimal consumption also
rises steadily. This period reflects a phase where individuals prioritize current consumption
over long-term savings due to the rapidly increasing income. The decline in labor income
becomes more pronounced beyond age 40 but the consumption level remains relatively
steady, suggesting effective financial planning and saving strategies that allow individuals
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to maintain their consumption levels despite decreasing income. As individuals approach
retirement age (around 60), there is a marked drop in consumption, which aligns with the
significant reduction in labor income. This drop reflects the transition from reliance on
labor income to dependence on accumulated savings and pension funds. After retirement,
consumption is maintained through pension income, which helps to smooth consumption
and support individuals in their retirement years.

The
..
at is computed by the PMA92 Table, which is a mortality table for male pension

annuitants in the UK and may not be suitable for Chinese investors. In the future, we also
could include other investment targets such as REITs.

5. Conclusions

This paper has made significant advancements in the field of life cycle asset allocation.
We innovatively transplanted an algorithm from reinforcement learning, which combines
tabular methods and Monte Carlo simulations, to solve the pension problem. Our approach
markedly reduces computation time compared to the value iteration method. Additionally,
we validated it with data from China, offering detailed insights into risk and returns
crucial for real-world asset allocation strategies in the Chinese market. Our experiments
derived a customized life cycle asset allocation for Chinese investors aimed at maximizing
optimal utility, thereby preserving and appreciating pension assets, providing a more
robust economic guarantee for the retirement life of the elderly. Further, by leveraging high-
performance computing, we tackled the complex stochastic nature of financial markets
by accelerating the process, showcasing the algorithm’s efficiency. However, the model
requires substantial computing resources. Future work should focus on improving the
specific Monte Carlo algorithm with state-of-the-art reinforcement learning methods to
make the asset allocation problem more efficient and accurate.
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