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Abstract: Automatic noise-robust speaker identification is essential in various applications, including
forensic analysis, e-commerce, smartphones, and security systems. Audio files containing suspect
speech often include background noise, as they are typically not recorded in soundproof environments.
To this end, we address the challenges of noise robustness and accuracy in speaker identification
systems. An ensemble approach is proposed combining two different neural network architectures
including an RNN and DNN using softmax. This approach enhances the system’s ability to identify
speakers even in noisy environments accurately. Using softmax, we combine voice activity detection
(VAD) with a multilayer perceptron (MLP). The VAD component aims to remove noisy frames from
the recording. The softmax function addresses these residual traces by assigning a higher probability
to the speaker’s voice compared to the noise. We tested our proposed solution on the Kaggle speaker
recognition dataset and compared it to two baseline systems. Experimental results show that our
approach outperforms the baseline systems, achieving a 3.6% and 5.8% increase in test accuracy.
Additionally, we compared the proposed MLP system with Long Short-Term Memory (LSTM) and
Bidirectional LSTM (BiLSTM) classifiers. The results demonstrate that the MLP with VAD and
softmax outperforms the LSTM by 23.2% and the BiLSTM by 6.6% in test accuracy.

Keywords: speaker identification; audio; voice activity detection; deep neural network; recurrent
neural network; spectrogram

1. Introduction

Speaker identification is a prominent research area within the speech recognition
domain due to its applications in authentication, forensics, security, and biometrics. It is a
subfield of Automatic Speech Recognition (ASR), an interdisciplinary domain encompass-
ing acoustics, signal processing, machine learning, communication, and information theory.
ASR can be viewed from two perspectives: speaker identification and speaker verification.
The speaker identification aspect addresses the task of identifying a speaker from a group
of known individuals. In contrast, speaker verification involves determining whether the
suspected person is indeed the correct individual. Both aspects fall under the discipline of
acoustics, which involves the study of mechanical waves such as speech sounds [1–5].

Each approach has its advantages; speaker identification is crucial for biometric
security control, while speaker verification is essential for authenticating personalized
interfaces tailored to each speaker. In speaker identification, the features of the input
signal are compared with the stored features of all known speakers. In contrast, in speaker
verification, the input signal features are compared only to the stored features of the target
individual’s speech [6–10].
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However, there are still some significant issues with i-vectors. Moreover, some signif-
icant challenges in speaker identification systems still impact their accuracy and overall
performance. The first issue is the system’s robustness to noise, as noisy environments can
significantly degrade identification accuracy. The second issue is the general performance of
these systems, particularly in maintaining high accuracy across different conditions [11–16].

To address these challenges, we propose an ensemble approach that combines the
strengths of RNNs, DNNs, and softmax. This ensemble technique enhances both noise
resilience and accuracy. In contrast to previous works, we evaluate the performance of
VAD, DNNs, RNNs, and softmax within the context of a speaker identification system. The
accuracy of our system is compared with state-of-the-art techniques that primarily utilize
Long Short-Term Memory (LSTM), Gaussian Mixture Models (GMM), and i-vector-based
approaches. Similar to other studies in areas such as session compensation [1], unsuper-
vised speaker identification [1–10,17–19], speaker/speech separation [20], text-independent
identification [21–24], and natural language parsing [25], we apply our method to a widely
recognized dataset and evaluate its effectiveness using well-established performance met-
rics. The major contributions of our work are as follows:

• We tackle the critical challenge of noise robustness in speaker identification by propos-
ing a novel ensemble of an RNN and DNN with softmax, which significantly improves
the system’s accuracy in noisy environments.

• Our method is rigorously tested on a well-known dataset, demonstrating its reliability
and effectiveness. The system is evaluated against standard performance measures to
ensure valid and comparable results with existing approaches.

• We contribute a novel integration of our approach with existing techniques like session
compensation and text-independent identification. This comprehensive solution
advances the field by improving accuracy across a variety of conditions and speaker
identification tasks.

2. Related Work

Several techniques have been introduced to automate the speaker identification pro-
cess. Chen et al. [10] proposed an i-vector-based system for the speaker identification
task. An i-vector-based method implies a low-dimensional representation of speech signals
with different durations. In i-vector-based frameworks, session compensation is the first
stage, before classification. Session compensation refers to methods adopted to deal with
the conflation of things such as channel properties and the choice of spoken words with
speaker characteristics [18]. The work in [17] proposes joint optimization of session com-
pensation and the classifier. This work uses sparse coding (SC) for session compensation
and softmax plus support vector machine (SVM) classifiers for the classification task. The
system has been tested on King-ASR-010, VoxCeleb, and RSR2015 datasets. King-ASR-010
and RSR2015 are Chinese and Mandarin speech corpora that have labeled examples. This
work is based on supervised learning, while that in Audeep is unsupervised learning,
which is a plus in the case of unavailability of labeled data [19]. However, the work in [17]
is compared with classifiers in the i-vector framework only.

The work presented in [19] was also organized in the form of a framework that
was evaluated on three public datasets, the CHAINS, LapsBM1.4, and YouTube datasets.
This framework uses ranked lists, which encode similarity information defined by the
speaker model. As a model, Gaussian Mixture Models (GMMs), vector quantization, and
i-vector techniques are used, whereas, for learning, RLSim and ReckNN algorithms are
used. Tiwari [19] proposed a methodology for smart devices to recognize speakers based
on a very short utterance. The work uses an i-vector and GMM-based approach which
was tested on the THUYG-20 dataset and claimed to have an equal error rate (EER) of
3.21 percent. A novel GMM-based speaker identification technique is proposed in [21]
which uses two statistical estimations. The novel GMM deals with noise. The system is
tested on the NIST 2000 dataset and is claimed to have a 16 percent relative improvement
over i-vector-based speaker identification methods.
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In [22], the authors provided an exhaustive systematic review for the identification,
comparison, and analysis of feature extraction methods and algorithms found in the re-
search literature spanning the period 2011–2016. This review shows that MFCC-based
feature extraction methods are applied more as compared to other methods. The im-
portance of paralinguistic information such as gender, age group, language, accent, and
identity of the speaker in a speech signal is dealt with in [23]. This work compares the
Gaussian Mixture Model–Universal Background Model (GMM–UBM), GMM–Support Vec-
tor Machine (GMM–SVM), and i-vector-based approaches. This work has a very interesting
finding, i.e., “For speaker recognition, error rate decreases as age increases”.

Nayana et al. [23] proposed a methodology for speaker identification based on Gaus-
sian Mixture Models (GMM) and the i-vector method with two features, PNCC (Power-
Normalized Cepstral Coefficients) and RASTA PLP (Relative Spectral Perceptual Linear
Prediction) coefficients. As is shown by Table 1, the most widely used features are i-vectors,
whereas the most widely used classifiers are GMM, PLDA, and deep neural networks.
In [26], the authors proved that Convolutional Neural Networks (CNN) outperform GMM
and ResNet features and self-attention features outperform i-vectors.

Table 1. Summary of various studies on speaker identification and related features.

Study Resolved Issues Features Used Speaker Identification
Predictor Dataset Used Performance

Chen et al. [10]
Joint optimization of
session compensation and
the classifier

i-vectors
Softmax plus support
vector machine
(SVM) classifiers

King-ASR-010,
VoxCeleb,
and RSR2015

80% to 90%

Campos and
Pedronette [18] Unsupervised identification speaker

i-vectors
Gaussian Mixture
Models (GMMs)

CHAINS,
LapsBM1.4,
YouTube dataset
(collected for [18])

Gain of 56.29%

Tiwari et al. [19]
Speaker recognition for
short-duration
speech utterances

i-vectors
GMM-based Universal
Background Model
(GMM-UBM)

THUYG-20 92.368%

Ayadi et al. [27] Text-independent
identification

speaker
i-vectors GMM NIST 2000 87%

Nayana
et al. [23]

Comparison of
text-independent speaker
identification systems

i-vectors GMM 85% to 94.7%

Ghahabi and
Hernando [15]

Lack of labeled
background data i-vectors

Imposter selection
algorithm, deep belief
network, and deep
neural network

NIST SRE 2006,
NIST 2014

The proposed system
fills 46% of the
performance gap in
terms of minDCF

Cumani and
Laface [16]

Transformation of i-vectors
so that they become more
suitable for discriminating
speakers using Probabilistic
Linear
Discriminant Analysis

i-vectors

Probabilistic Linear
Discriminant Analysis
and Linear
Discriminant Analysis

NIST SRE-2010 and
SRE-2012

Relative improvement
of 7% and 14% of
detection cost function

Zeinali
et al. [28] Text-dependent verification speaker

i-vectors
Hidden Markov Models
(HMMs) RSR2015

Reduced equal error
rate (EER) by 50% and
67%. Reduced
Normalized Detection
Cost Function (NDCF)
by 61% and 67%

Cumani and
Laface [29]

Total variability i-vector
treats each training segment
belonging to
different speakers

e-vectors
PLDA and Pair-Wise
Support Vector
Machine (PSVM)

NIST SRE 2010 and
NIST SRE 2012

300-dimensional
e-vectors for PLDA are
almost equivalent to
600-dimensional
i-vector PLDA
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Table 1. Cont.

Study Resolved Issues Features Used Speaker Identification
Predictor Dataset Used Performance

Xu et al. [30]
Extensive computation
run-time while calculating
i-vectors

i-vectors

Baum–Weltch statistics
and
Subspace-Orthogonal
Prior (SOP)

NIST SRE 2010

SOP approach speeds
up i-vector calculation
considerably as
compared to standard
i-vector calculation

Luo et al. [31] Speech separation

time–frequency
representation
of the
mixture signal

Deep learning
Wall Street Journal
(WSJ0) Street
dataset

Comparable or better
performance than other
state-of-the-art deep
learning methods

Maghsoodi
et al. [32]

Text-dependent speaker
recognition with random
digit strings

i-vectors HMM RSR2015

1.52% and 1.77% equal
error rate (EER) for male
and female speakers,
respectively

Wang et al. [33]
Discriminant speaker
embeddings for
short-duration speech

i-vectors
Neural-network-based
deep discriminant
analysis (DDA)

SRE corpus 30% relative
EER reduction

3. Proposed Framework

Our proposed methodology uses two deep neural networks: a recurrent neural net-
work (RNN) and a multilayer perceptron, also called a deep neural network with a softmax
layer as its last layer. The RNN is used for learning features from the audio signal. In
contrast, the deep neural network with softmax is used to identify the speaker (i.e., for
classification) based on these features [34]. The RNN is chosen because audio signal pro-
cessing is a sequence processing problem. We use a multilayer perceptron with a softmax
activation function for the speaker recognition task. Voice activity detection (VAD) is used
to remove noise from the input signal. A BiLSTM, which can also be used for sequence
processing problems, is also put in place of the RNN to compare its performance with
the proposed system. A softmax classifier is used as the last layer of the deep neural
network speaker identifier because it will convert the readings coming from the hidden
layers into a probability distribution in which the most probable item, i.e., the speaker, will
be output. For noise robustness, a framing-based noise removal method is incorporated
into the preprocessing phase of the system. During this process, which is called voice
activity detection, only the frames which belong to the actual speaker are preserved, while
the frames belonging to the noise are discarded. This methodology uses the spectrum
flatness index and energy ratio index of the signal to decide whether the frame belongs
to the speaker or the noise [16]. The threshold used in this decision will be selected as
a hyperparameter of the system. The layout of the proposed methodology is shown in
Figure 1.

Figure 1. The proposed framework.

We use the Kaggle speaker recognition dataset. The dataset contains 16,000 samples
to benchmark speaker recognition technology on single-speaker audio acquired under
unconstrained conditions. The conditions represented in the dataset provide samples of
five individuals in clean interviews and speech in different outdoor conditions.
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3.1. Prepocessing

The purpose of preprocessing is to represent the raw audio signal in such a represen-
tation that its essence comes to the surface. In this phase, we perform a set of activities,
namely, detection and extraction of voice activity. The preprocessing activities performed
for the proposed system are discussed below.

Voice Activity Detection (VAD): The idea behind VAD is to take into account only
actual speech frames and discard noisy frames. For this purpose, two indices are used
which are (i) the spectrum flatness index and (ii) the energy ratio index. The former is a
measure of noise in the signal spectrum, whereas the latter separates noise from speech
frames taking into account the energy distribution along the signal spectrum.

Feature Extraction: We extract two types of features from audio files, which are MFCCs
and spectrograms.

3.2. Learning

In this phase, features are learned from the preprocessed data, represented as MFCC
features. An RNN is employed due to its ability to process sequential data, which, in this
case, consist of audio features. The RNN autoencoder compresses MFCCs and spectrograms
from a higher-dimensional space into a lower-dimensional space. To accelerate model
convergence, the decoder’s expected output from the previous step (i.e., the previous
epoch) is fed back as input into the decoder RNN. Figure 2 shows an RNN in its simplest
form. The equations for a recurrent neural network (RNN) are given below to show how it
maps an input x into an output y:

h(t) = fH(WIH x(t) + WHH h(t − 1))

y(t) = fO(WHO h(t))

where WIH , WHH , and WHO are weight matrices (I for input, O for output, and H for
hidden layers).

Figure 2. Illustration of recurrent neural network.

3.3. Speaker Identification

In this phase, the speaker of a given utterance is recognized based on the learned
feature from the training data. A 5-fold cross-validation setup is used for the evaluation
of the system for speaker identification. A deep neural network (multilayer perceptron)
is trained and tested on the features learned during this phase. The optimal number of
hidden layers and learning rate for this network will be identified in this work which will
maximize or minimize the proposed evaluation metrics.
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3.4. Softmax Classifier

A deep neural network is another name used for a multilayer perceptron. It is a
perceptron with more than two layers. It is a feed-forward artificial neural network.
Figure 3 shows an example of a deep neural network. A softmax classifier takes several
numbers (usually the output of the hidden-layer neurons in the neural network) as input
and transforms them into a probability distribution. When softmax is included in a neural
network, it (softmax) is made the last layer of the network. The use of a softmax layer inside
a deep neural network is needed, and it serves as the activation function of the network
and transforms the outputs of the hidden layer into a probability distribution. The softmax
classifier maps a number xi into probability as follows:

Softmax(xi) =
exp(xi)

∑n
j=1 exp(xj)

= pi (1)

We evaluate our proposed work based on the following evaluation parameters.

Figure 3. Illustration of deep neural network.

Accuracy: We calculate accuracy to find the ratio between the total number of input
samples and the total number of correct predictions.

Root Mean Square Error: It is the measure of differences between the values predicted
by a model and the observations.

4. Results and Discussion
4.1. Experimental Setup

To recognize the suspect identity, the system must consider the evidence recording
both in clear and noisy environments and the recording used to match the pre-recorded
sounds in different environments. Therefore, using a multilayered perceptron with a
softmax output layer, we perform a set of experiments. The features used to compare the
performance of the system are as follows:

i. Spectrograms.
ii. MFCC features.

The model for the proposed MLP system is shown in Figure 4. Our system is compared
to two RNN classifiers including LSTM and BiLSTM. Figure 5 shows the LSTM model used
in the experiments and Figure 6 shows the BiLSTM model used in the experiments.

To see the effectiveness of the spectrogram features for speaker identification, we
perform an experiment as depicted in Figure 7. The effectiveness of the MFCC features
is examined for the speaker identification task. Figure 8 shows this experiment. The
experiments are performed on the Kaggle speaker recognition dataset. We extract the
spectrogram, MFCC, LSTM, and BiLSTM features considering the following points:
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• The files are variable length. To extract fixed-length spectrograms and MFCCs, we use
the technique of zero padding.

• The autoencoders transform any length input into a fixed-length feature vector
as output.

Figure 4. The proposed MLP classifier.

Figure 5. The LSTM network used.
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Figure 6. The BiLSTM model.

Figure 7. The proposed framework compared with baselines in terms of spectrogram features.
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Figure 8. The proposed framework compared with baselines in terms of MFCC features.

4.2. Experimental Results

After extraction of the four types of features, these are embedded in the multilayer
perceptron with a softmax activation function. Table 2 shows the selected hyperparameter
settings. The results of the experiments are shown in Table 3, which shows that the proposed
system outperforms both of the baseline systems with a gain in accuracy of 3.6% and 5.8%.
The results suggest the best feature set for the proposed system is MFCCs with VAD. We
find that, on the application of VAD, the spectrograms and MFCC feature vectors become
of variable size. This is because VAD filters noisy frames from speech signals, with only
speech frames filtered out. To handle the variable length of the feature vectors, i.e., to make
them fixed length, we perform zero padding using Algorithm 1.

Table 2. Hyperparameter settings for the model.

Number Hyperparameter Name Value

1 Number of hidden layers 2

2 Number of neurons in the first
hidden layer 35

3 Number of neurons in the
second hidden layer 35

4 Loss function Categorical_crossentropy
5 Optimizer Adam

Table 3. Performance of systems using different features.

System Spectrograms MFCCs

Baseline1 0.829 0.958
Baseline2 0.833 0.936

The proposed system 0.806 0.994



Appl. Sci. 2024, 14, 10426 10 of 17

Algorithm 1 Zero padding of the feature vectors

1: Input: Set of feature vectors {v1, v2, . . . , vn}
2: Output: Zero-padded feature vectors
3: Calculate the size i of the largest vector
4: for each feature vector vj do
5: Calculate pad size as i − size(vj)
6: Pad zeros equal to i − size(vj) to vector vj
7: end for

One of the effects of using VAD before feature calculation is that it reduces the di-
mensionality of the features (16,281 and 11,457 spectrogram features, and 3240 vs. 2280
MFCC features), which, in turn, decreases the step size, as shown in Table 4. The model
loss during training with different features is presented in Figure 9. It can be observed that,
when using spectrograms, the model converges more slowly compared to during the use of
MFCC features. We also notice that the MLP model converges earlier in terms of training
loss compared to the LSTM and BiLSTM models. The loss declines sharply after just a
few epochs, which supports the idea that the MLP model rapidly learns the input data
weights. LSTM and BiLSTM take longer to converge due to their complexity and the need
to handle sequential data input dependencies. Additionally, the figure shows that, with the
application of VAD, the noise interference in the MLP model is minimized, resulting in a
smoother loss curve.

Table 4. The average step size reduction due to VAD.

MFCC Features Without VAD With VAD Spectrogram Features With VAD

8 s 22 ms/step 3 s 6 ms/step 16 s 31 ms/step 11 s 21 ms/step

Figure 9. MLP model loss with different features.

The validation loss shown in Figure 10 also indicates that MFCC features with VAD
outperform both MFCC features without VAD and spectrogram features. The validation
loss curves for the MLP, LSTM, and BiLSTM models are displayed. In this experiment, the
MLP consistently outperforms both LSTM and BiLSTM across all epochs, maintaining a
lower validation loss. This suggests that the MLP is more likely to generalize well to unseen
datasets compared to LSTM and BiLSTM, as the latter models exhibit higher fluctuations in
validation loss. This is particularly true when MFCC features are combined with VAD, as
VAD helps stabilize the validation performance of the MLP model.
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Figure 10. MLP model validation loss.

The model accuracy is shown in Figure 11. The MLP model achieves the highest
training accuracy, surpassing both LSTM and BiLSTM. The prominent features learned by
the MLP model contribute to a steeper rise in accuracy. Although the accuracy of LSTM
and BiLSTM improves over the epochs, it remains slightly below that of the MLP model,
indicating that these models require more epochs to capture sequential information but
still do not reach the accuracy level of MLP. This figure reinforces the idea that using VAD
with MFCCs improves model performance, particularly in noisy environments.

Figure 11. MLP model accuracy.

The validation accuracy is shown in Figure 12. As depicted, while the LSTM and
BiLSTM models have the lowest validation accuracy, the MLP model performs significantly
better. The consistency of the validation accuracy curve for the MLP suggests that it can
predict speakers in the test data more reliably. Although LSTM and BiLSTM show steady
improvements in accuracy, they experience greater intra-iteration fluctuations compared to
the embedding-RNN case, and their rate of accuracy improvement is relatively slower. This
further highlights the effectiveness of the MLP model, particularly when using MFCCs in
combination with VAD, which leads to superior validation performance.

In both Figures 11 and 12, it can be observed that MFCCs with VAD outperform both
MFCCs without VAD and spectrogram features with and without VAD. These results also
suggest that spectrograms perform poorly for speaker identification compared to MFCC
features. After identifying the best feature set with VAD, we compare our proposed model,
i.e., the MLP with softmax, against LSTM and BiLSTM classifiers. The accuracy results of
the MLP, LSTM, and BiLSTM classifiers are shown in Table 5.
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Figure 12. MLP model validation accuracy.

Table 5. Performance metrics for different models.

Metric MLP LSTM BiLSTM

Test Accuracy 0.994 0.762 0.929
Test Loss 0.088 0.603 0.263
Test Mean Squared
Error 0.005 0.0372 0.0218

Note that all of the MLP, LSTM, and BiLSTM models are compared on the
following settings:

• VAD performed;
• MFCC features extracted;
• Softmax output activation function.

It can be seen that the proposed system outperforms the LSTM and BiLSTM classifiers.
Figure 13 compares the model accuracy and validation accuracy of the MLP, LSTM, and
BiLSTM models. The error rate is consistently lower in the MLP compared to the LSTM
and BiLSTM models, which demonstrates more accurate speaker identification. The sharp
decline in the MSE for the MLP confirms its ability to reduce prediction errors in less
time than more established methods, such as those using VAD. The MSE in the LSTM
and BiLSTM models remains slightly higher throughout, suggesting that their sequential
nature may introduce more variability in predictions, especially when noise affects the
data. Figure 14 compares the model loss and validation loss of these models, showing that
the validation MSE for the MLP continues to be lower than that of LSTM and BiLSTM,
proving that the MLP has a better ability to generalize successfully on unseen data. The
relatively stable and lower MSE curve for the MLP supports the hypothesis that MFCC
features combined with VAD enhance noise robustness. The MSE for both LSTM and
BiLSTM, though slightly lower than for MLP, highlights their sensitivity to noise and
variable-length data.

To evaluate the performance of our proposed system, we compare it with the
following baselines.

Baseline 1: We use a multilayered perceptron without a softmax output layer and with
VAD as our first baseline.

Baseline 2: We use a multilayered perceptron with a softmax output layer and without
VAD as our second baseline.

We compare the proposed system against these two baseline models, as well as the
two following recurrent neural network (RNN) architectures: Long Short-Term Memory
(LSTM) and Bidirectional LSTM (BiLSTM).
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Figure 13. Model accuracy of the three models.

Figure 14. Validation accuracy comparison.

The results clearly show that our method outperforms the two baseline models. The
first baseline, based on an MLP with VAD but without the softmax output layer (Baseline 1),
provides lower accuracy. This indicates that including softmax allows the model to extract
speaker information more effectively and distinguish it from noise, which is crucial in
noisy environments. Baseline 2, which lacks VAD, performs the worst of all systems (and
significantly worse compared to the proposed system), underscoring the importance of
VAD in reducing noise and improving overall accuracy.

The proposed system also outperforms both LSTM and BiLSTM, as shown in
Figures 15 and 16. This result is somewhat surprising given that RNN architectures like
LSTM and BiLSTM are expected to perform well on sequential data. However, the inte-
gration of MFCCs with VAD and softmax appears to provide a more powerful feature
set for the MLP, outperforming these sequentially concatenated models. Additionally, the
oscillations observed in the MLP’s loss may be caused by the learning rate or the complex
nature of the dataset, which includes noisy environments. These oscillations are not a major
concern, as the general trend shows convergence, and the model continues to improve in
accuracy over time. Furthermore, the validation loss remains substantial, indicating that
the model has not overfitted and is capable of generalizing to unseen inputs.

Moreover, the proposed system converges faster than the LSTM and BiLSTM models,
as shown in Figures 17 and 18. A key advantage is its faster convergence; the model learns
more quickly, meaning it requires less computing time and fewer resources to optimize
performance. This makes the simpler MLP architecture, combined with VAD and softmax,
more efficient for speaker identification tasks while still providing comparable performance
to more complex LSTM and BiLSTM models. Our proposed system, leveraging an MLP
with VAD and softmax, converges faster than RNN architectures and achieves higher
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accuracy. This makes it an optimal choice for speaker identification tasks, especially in
noisy environments. The results highlight the effectiveness of integrating VAD for noise
reduction and softmax for enhancing speaker identification, providing a robust solution for
real-world applications.

Figure 15. Model loss of the three models.

Figure 16. Validation loss of the three models.

Figure 17. Model MSE of the three models.
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Figure 18. Validation MSE of the three models.

5. Conclusions

In this article, we present a novel approach to speaker recognition in noisy environ-
ments utilizing voice activity detection (VAD), a multilayer perceptron (MLP) classifier,
and a softmax activation function. We conducted a series of experiments to demonstrate
the effectiveness of these techniques in addressing the challenges of speaker recognition
under noise. The results of our study show that the proposed system, which combines
MFCCs with VAD and softmax, significantly outperforms the two baseline systems. Fur-
thermore, we observed that the MLP classifier delivers superior performance compared
to Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM) classifiers for the
speaker recognition task. Our findings indicate that using VAD, an MLP, and softmax
with MFCC features provides a robust solution for speaker recognition, especially in noisy
environments. This suggests that the MLP classifier, when combined with these techniques,
offers a more reliable and efficient approach for handling noise in speaker recognition tasks.
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