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Abstract: The Dicentric Chromosome Assay (DCA) is widely used in biological dosimetry, where
the number of dicentric chromosomes induced by ionizing radiation (IR) exposure is quantified
to estimate the absorbed radiation dose an individual has received. Dicentric chromosome scor-
ing is a laborious and time-consuming process which is performed manually in most cytogenetic
biodosimetry laboratories. Further, dicentric chromosome scoring constitutes a bottleneck when
several hundreds of samples need to be analyzed for dose estimation in the aftermath of large-scale
radiological/nuclear incident(s). Recently, much interest has focused on automating dicentric chro-
mosome scoring using Artificial Intelligence (AI) tools to reduce analysis time and improve the
accuracy of dicentric chromosome detection. Our study aims to detect dicentric chromosomes in
metaphase plate images using an ensemble of artificial neural network detectors suitable for datasets
that present a low number of samples (in this work, only 50 images). In our approach, the input
image is first processed by several operators, each producing a transformed image. Then, each
transformed image is transferred to a specific detector trained with a training set processed by the
same operator that transformed the image. Following this, the detectors provide their predictions
about the detected chromosomes. Finally, all predictions are combined using a consensus function.
Regarding the operators used, images were binarized separately applying Otsu and Spline techniques,
while morphological opening and closing filters with different sizes were used to eliminate noise,
isolate specific components, and enhance the structures of interest (chromosomes) within the image.
Consensus-based decisions are typically more precise than those made by individual networks, as
the consensus method can rectify certain misclassifications, assuming that individual network results
are correct. The results indicate that our methodology worked satisfactorily in detecting a majority
of chromosomes, with remarkable classification performance even with the low number of training
samples utilized. AI-based dicentric chromosome detection will be beneficial for a rapid triage by
improving the detection of dicentric chromosomes and thereby the dose prediction accuracy.

Keywords: deep learning; neural network; object detection; ensemble; biological dosimetry; dicentric
chromosome; radiation

1. Introduction

Human beings are exposed to both natural and man-made sources of ionizing radiation
(IR). Natural sources of IR include cosmic radiation and consumables with trace amounts
of radioactivity and radon, a decay product of uranium found in water and soil at varying
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concentrations. IR is used for multiple applications, including the sterilization of certain
food items, medical appliances, medical diagnostic imaging, and radiotherapy for cancer.
IR causes a wide spectrum of DNA lesions: single-strand break (SSB), double-strand
break (DSB), base damage, mutations and DNA–protein cross-links, with their induction
depending on radiation dose, dose rate and radiation quality. Among these lesions, a DSB
is the most critical lesion which, when not repaired or mis-repaired, can lead to either cell
death or chromosome aberrations depending on the severity of exposure. Besides these
lesions, IR can also trigger the generation of reactive oxygen species (ROS) through the
hydrolysis of water and ROS generation. Oxidized DNA base lesions can lead to cytotoxic
and genotoxic effects. Some of the man-made sources include medical diagnostic exposures
and IR treatment of various illnesses such as cancer. Additionally, nuclear power plant
accidents such as Chernobyl and Fukushima Daiichi [1–3] could potentially expose several
hundreds and thousands of people to substantial doses of IR.

IR exposure leads to an array of health effects, ranging from an early onset of acute
radiation syndrome (ARS, hematopoietic syndrome, gastrointestinal syndrome, cerebrovas-
cular syndrome, and cutaneous syndrome) to delayed effects of tissue degeneration and
cancer. These early and delayed health effects are broadly classified into two groups:
(I) deterministic effects and (II) stochastic effects. While tissue reactions like cataracts, skin
reddening and ARS manifest only after exceeding a threshold dose (deterministic effects),
gene mutations and cancer occur randomly without a threshold, but with the probabil-
ity of incidence increasing with exposure dose (stochastic effects). Human exposure to
3.5–4 Gy of photons (X-rays and gamma rays) is expected to result in a mortality of 50%
of the exposed population within 30 days (LD50/30) without any medical intervention.
Therefore, the timely assessment of absorbed radiation dose is critical for saving human
lives. Furthermore, estimating absorbed radiation dose assumes even greater importance
in the case of large-scale accidents, where prioritizing the exposed population aids in the
effective utilization of available medical resources.

In addition, DNA is a highly radiation-sensitive molecule. This molecule contains
information to encode all proteins in the organism, and alterations in this molecule can be
fatal. Both radiation itself and the free radicals generated by radiation cause adverse effects
on DNA [4]: disruption of the nitrogenous bases (scission, modification or dimerization
of nitrogen bases) and DNA strand breakage (which can occur on a single strand or on
both strands). In some cases, damage to double-stranded DNA can be reflected at the
chromosomal level. The cellular machinery has mechanisms to counteract such DNA
damage to ensure the correct transmission of genetic information to daughter cells [5].
However, it may sometimes fail.

If two chromosomes fragment because of ionizing radiation at some point prior to
replication, ideally, the repair mechanisms fuse each fragment with its corresponding
chromosome. However, if both chromosomes are in close proximity to each other, a failure
in the repair process can also occur and the fragments do not fuse with their original
chromosome; instead, the fragmented chromosomes fuse with each other, and the fragments
join together. This results in two types of chromosomes: those derived from the union
of fragmented chromosomes, with two centromeres (dicentric chromosomes), and those
derived from the fusion of fragments, without centromeres (acentric chromosomes).

Moreover, radiation damage to genetic material—when exposure exceeds the capacity
of genetic repair mechanisms—has clear biological effects on cells. The mutation of certain
genes alters proteins involved in the regulation of the cell cycle. These genes include onco-
genes (genes that code for proteins that induce the cell cycle) and tumour suppressor genes
(genes that code for proteins that inhibit the cell cycle) [6,7]. While mutations in oncogenes
usually result in the overexpression of their products, mutations in tumour suppressor
genes typically result in the deficient or absent expression of their products. In short,
the alteration of oncogenes and tumour suppressor genes affects cell cycle progression and
can lead cells to divide uncontrollably, i.e., cancer cells.
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The appearance of cancer cells cannot be determined from the amount of radiation
absorbed, as it depends largely on which genes are affected and the level of damage.
Rather, the probability of their occurrence can be estimated; that is why they are known as
stochastic effects. However, when a certain radiation threshold is reached, cell death by
mitotic catastrophe occurs in any case. The DNA is so damaged that the checkpoints fail
to stop the cell cycle and the cell goes into mitosis. To avoid the consequences of passing
on aberrant genetic material to descendant cells, the cell enters either a state of senescence
(permanent and irreversible cessation of the cell cycle and function) or undergoes cell
suicide (apoptosis). When radiation causes cell death in tissues, damage occurs after a
well-defined dose threshold. This non-probabilistic damage is called deterministic or
non-stochastic damage.

Biological effects (acute or chronic) do not appear instantaneously. For this reason, the
early detection of whether an individual has received radiation can be decisive for their
survival (as long as treatment can be provided to mitigate the effects). This is the origin of
biological dosimetry, which includes a set of techniques that make it possible to determine
whether an individual has been exposed to IR and, if so, to quantify the absorbed dose.
To predict health effects, evaluate risks and provide protection against ionizing radiation,
various biological techniques are used, each with its own specific purpose:

1. Chromosome banding: This technique is used for chronic or acute exposures in
a delayed manner. It consists of analyzing stable alterations in the chromosomes,
providing information about the dose received.

2. FISH (fluorescence in situ hybridization): Also used in chronic or acute exposures,
FISH can detect specific chromosomal abnormalities, such as translocations. It is
useful for evaluating the cumulative dose over time.

3. Analysis of dicentric chromosomes: This technique is applied in acute exposures.
Dicentrics are abnormal chromosomes that form after exposure to ionizing radiation.
Their presence indicates a high radiation dose.

4. Analysis of binucleated or micronucleated cells: Another technique for acute expo-
sures. Micronucleus cell counting provides information on the dose received and is
used in emergency situations.

How can we measure the absorbed radiation dose in humans in a minimally inva-
sive manner? The ubiquitous nature of circulating blood lymphocytes and their inherent
radiosensitivity make them an ideal model system for estimating the absorbed radiation
dose in humans. Bender and Gooch [8,9] first demonstrated the utility of the Dicentric
Chromosome Assay (DCA) for estimating the absorbed dose (biodose) in individuals
exposed during the Recuplex criticality accident in Hanford, WA, USA. These seminal
studies laid the foundation for cytogenetics-based biodosimetry and, since then, numer-
ous studies have utilized DCA for absorbed radiation dose estimation in the victims of
Chernobyl [10–13] and Fukushima Daiichi. Since most deterministic effects increase as a
function of radiation dose, absorbed dose estimation will help in choosing the appropri-
ate medical countermeasures to mitigate or alleviate the severity of IR-induced radiation
injuries or sickness.

The DCA is universally accepted as the gold standard for absorbed radiation dose
estimation [14] due to several salient features: (I) the low baseline frequency of dicentric
chromosomes (1 dicentric chromosome in 1000 T-lymphocytes, 0.001/cell), (II) baseline
frequency is not modulated by age and gender, (III) it is fairly specific to radiation exposure,
(IV) it has a radiation dose-dependent formation and (V) the detection range is from 0.05
to 5 Gy. The upper limit of detection can be extended to >20 Gy using a technique known
as prematurely condensed chromosomes (PCCs), performed by cell fusion in the G0/G1
phase and by Calyculin-A in the G2 phase of the cell cycle. Since the centromeric regions of
the PCCs are not clearly detectable in Giemsa-stained preparations, fluorescence in situ
hybridization (FISH) with a pan-centromeric DNA probe is needed to detect dicentric
chromosomes. Dicentric chromosomes are formed due to the mis-rejoining of two bro-
ken chromosomes with intact centromeres. Dicentric chromosomes, in most cases, are
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accompanied by acentric fragments resulting from the two broken chromosomes. Since
the number of dicentric chromosomes increases as a function of radiation dose, absorbed
radiation dose can be easily estimated from the frequency of dicentric chromosomes us-
ing several currently available algorithms (Dose Estimate, CABAS and BioDose) with an
ex vivo generated dose–response curve, using either X-rays or gamma rays.

DCA is labor-intensive and the turnaround time for dose estimation varies from 72
to 96 h. Manual scoring of dicentric chromosomes creates one of the bottlenecks for large-
scale incidents or accidents where absorbed dose estimation is needed for hundreds of
thousands of exposed individuals. Developing an efficient automated detection system for
dicentric chromosomes would considerably shorten the manual scoring time and help in
biodose estimation for medical intervention, particularly for those who received high-dose
exposures (>2 Gy).

To accelerate the speed of dicentric chromosome detection/counting in the metaphase
images of lymphocytes, an AI-based approach was undertaken in this study. Studies have
shown that there is a relationship between the frequency of dicentric chromosomes and
radiation esposure dose [15–17]. The frequency ofdicentrics is dependent on the absorbed
dose. The linear quadratic equation for the yield of dicentrics is as follows:

Y = αD + βD2 + c

where Y corresponds to the frequency of dicentrics, D to the radiation dose and c to
the frequency of dicentrics prior to exposure. α and β are coefficients obtained from
statistical analysis. Owing to a low base line frequency of dicentric chromosomes in healthy
individuals (1 dicentric chromosomes in 1000 lymphocytes 0.001/cell), the c value is usually
negligible [18]. On the other hand, the coefficient β usually tends toward 0 for particularly
high LET radiation such as neutrons. Hence, in this way, the dose effect relationship is
linear for dicentrics:

Y = αD

Therefore, the absorbed radiation dose can be easily estimated from the yield of
dicentric chromosomes, and thus the prognosis of the patient can be established: an
individual who has received an absorbed dose less than 2 Gy has a high chance of survival;
if the absorbed dose ranges between 2 and 6 Gy, there is a chance of survival if the individual
receives adequate medical countermeasures; and if the absorbed dose is higher than 6 Gy,
chance of survival will be minimal, and therefore palliative treatment should be given.

Initial approaches on the automation of dicentric chromosomes focused on segmen-
tation techniques [19,20], whereas more recent studies have achieved high precision and
accuracy levels using convolutional neural networks [14,21–23].

The aim of this work is to identify dicentric chromosomes in the images of metaphase
cells by developing an artificial intelligence software based on deep learning and computer
vision for distinguishing between damaged (dicentric chromosomes) and undamaged
chromosomes (monocentric). Specifically, an ensemble of detectors is proposed in this
work. An ensemble aims to merge the results of the models that compose it, and this
strategy has been widely used in earlier studies [24–27]. The decision made by consensus is
likely to be more accurate than decisions made by individual models, since the consensus
function used by the ensemble can correct some classification errors, provided the results
from the individual models are accurate.

The remainder of this paper is organized as follows. Section 2 describes the methodol-
ogy proposed in this work. Then, the experiments that have been carried out are described
in Section 3. Finally, Section 4 details the conclusions of this work.

2. Methodology

The following section details our methodology for dicentric chromosome detection.
Briefly, the detection system was divided into different steps. Figure 1 depicts a scheme of
the entire detection process. An image of chromosomes in individual metaphase cells was
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first supplied as an input to the system. Then, the image was preprocessed by applying
different binarization operations and morphological filters separately. In this way, several
distinct images were generated from the original one in this phase. After that, each
generated image was transferred to a trained deep neural network. Once the predictions of
all generated images were released by each model, they were combined using a consensus
function to produce the final output prediction.

Figure 1. Schema of the overall proposal’s operation. The input image is preprocessed using multiple
operators. Each preprocessed image is supplied independently on a deep neural network (DNN)
model. Predictions released by each model are finally merged by ensembling and evaluated with a
consensus function, producing the final output prediction .

2.1. Image Processing Operators

First of all, let us denote S as a set of input patterns for dicentric chromosome detection
containing N patterns, where the i-th training pattern is composed of a raw image Xi and its
corresponding exact ground-truth yi where the target objects were chromosomes (dicentric
and non-dicentric (also known as monocentric)):

S = {(Xi; yi) | i ∈ {1, ..., N}} (1)

Now, let us assume that an image processing operator Gj, j ∈ {1, ..., M} affects the
images while the ground-truths remain unchanged, where M is the number of different
operators considered, such as binarization or morphological filters. Therefore, the j-th
operator takes the image Xi as input and produces the processed image X̃i,j.

X̃i,j = Gj(Xi) (2)

For the sake of notational simplicity, it will be assumed that j = 1 corresponds to the
no-operation operator, i.e., X̃i,1 = Xi.

Then, we may denote T as the training set for dicentric chromosome detecting, which
is made of N × M training patterns:

T =
{(

X̃i,j; yi
)
| i ∈ {1, ..., N}, j ∈ {1, ..., M}

}
(3)

2.2. Chromosome Detection by Neural Network

The second stage consists of M deep convolutional neural networks, denoted as Dj,
j ∈ {1, ..., M}, for object detection. The model Dj is generated after a training process
by using those images from T obtained by the operator Gj and their associated ground-
truth. A YOLOv8 model [28] has been used as the selected neural network architecture.
The application of this model is not limited to the proposed approach and can be replaced
with other object detection models if needed.

Each neural network receives an image Z as input and produces a set of detections
(detected chromosomes) R as output.

Rj = Dj(Z) (4)
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Each k-th detection rj,k contains an axis-aligned bounding box wj,k, an object class
label qj,k, and a confidence level vj,k:

Rj =
{

rj,k | k ∈ {1, ..., W}
}

(5)

rj,k =
(

wj,k, qj,k, vj,k

)
, k ∈ {1, ..., W} (6)

wj,k =
(

aj,k, bj,k, cj,k, dj,k

)
(7)

where W is the number of detections,
(

aj,k, bj,k

)
∈ R2 are the coordinates of the upper left

corner of the k-th detection within the image X,
(

cj,k, dj,k

)
∈ R2 are the coordinates of the

lower right corner of the k-th detection within X, qj,k is the class label of the k-th detection,
and vj,k ∈ R is the confidence level of the k-th detection.

A minimum confidence level vmin is defined so that detections below that threshold
are ignored. As a result, the filtered set of detections is computed:

R′
j = {rj,k ∈ Rj | vj,k ≥ vmin} (8)

2.3. Ensemble of Networks

Next, an ensemble of detector networks framework is described. This ensemble is
proposed to enhance the classification performance of the individual networks presented
before. The aim of the ensemble is to merge the results of the previously considered
networks. This is because a decision made by consensus is generally more accurate than
decisions made by individual networks. The reason for this is that the consensus process
can correct some classification errors, provided that the majority of the outputs from the
individual networks are accurate. It is expected that the more diverse the operators Gj are,
the more likely that the ensemble will provide better outcomes than any of its members.

Then, the consensus strategy to combine the results coming from the elements of the
ensemble to yield the proposed consensus output is computed as follows:

R′
φ = φ

({
R′

j | j ∈ {1, ..., M}
})

(9)

where φ is a suitable aggregation function.

3. Experimental Results

This section describes the dataset used in the experiments, the preprocessing methods
selected, and the results obtained.

3.1. Dataset

This study used a private set of chromosome micrographs provided by Dr. Adaya-
balam S. Balajee from the Radiation Emergency Assistance/Training Site (REAC/TS) of the Oak
Ridge Institute for Science and Education (ORISE) in Tennessee, USA, and by Dr. Alegría
Montoro Pastor from Hospital La Fe, Valencia, Spain. The dataset included 50 images of
metaphase cells that were prepared from 2 Gy irradiated lymphocytes ex vivo. Chromo-
somes were stained using the Giemsa technique, and the image size ranged from 732 pixels
to 1024 pixels in height and from 912 pixels to 1280 pixels in width. The images include a
total of 2339 chromosomes, of which 87 are dicentric (3.72%). Some images from the dataset
used in the study are provided in Figure 2. In these images, normal chromosomes (mono-
centric) and damaged chromosomes (dicentrics—chromosomes with two centromeres) can
be observed.
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Figure 2. Example of two images from the dataset, where normal chromosomes and chromosomes
with two centromeres (dicentric) are presented.

3.2. Preprocessing

In preprocessing, the images were converted to grayscale, binarized, and then a
morphological operation with a given filter size was applied. Two techniques were used
for threshold selection: Otsu and Spline. The Otsu technique [29] uses variance to find
the threshold value that minimizes variance between pixels within the same segment and
maximizes variance between pixels in different segments. The Spline technique uses data
obtained from histograms of grayscale images to select the intensity of the largest peak
generated by dark pixels.

The morphological filters used were opening and closing filters, which sequentially
apply erosion and dilation (opening filter) or dilation and erosion (closing filter). The ero-
sion filter consists of converting all pixels in the image that are surrounded by a pixel with a
white value to white. The dilation filter consists of converting all pixels in the image that are
surrounded in any of their eight neighboring pixels by a pixel with a white value to black,
while the dilation filter consists of converting all pixels in the image that are surrounded in
any of their eight neighboring pixels by a pixel with a black value to black. Additionally,
different filter sizes were used: 2 × 2, 3 × 3, 4 × 4, 5 × 5.

3.2.1. Binarization and Thresholding Techniques

For the selection of the threshold value, two different techniques have been employed,
one of our own devising and another applied in a paper also focused on the detection of
dicentric chromosomes through a two-stage convolutional network that uses a single type
of image preprocessing [14].

Our process consisted of obtaining image histograms (plots showing the number of
pixels present for each intensity value) and plotting a representative polynomial (hereafter
a Spline curve) of the discrete set of points through interpolation. On this curve, the points
representing local maxima were identified. To determine the threshold value for the
binarization process, the chosen value was selected from the valley between the peaks. (see
Figure 3). To fix the values for the binarization parameters with the methods Spline and
Otsu, samples from the first split (only ten images) of the dataset were selected.

When we observed that one of the selected images exhibited three peaks (local max-
ima), unlike most images with two peaks, we carefully analyzed the whole dataset for our
own research interest and found that only two cases from the whole dataset (50 images)
displayed three peaks. In 48 cases, two thresholds appear: the first from the black peak
(which corresponds to the chromosomes), and the second from the white peak (which
corresponds to the background). Binarization was performed using the threshold derived
from the black peak. Only two cases in the whole dataset (images 2Gy-068 and 2Gy-360)
showed three local maxima, and therefore three thresholds observed (see Figure 4). In both
cases, two of these thresholds corresponded to black peaks, and only the binarization
using the threshold generated from the largest black peak (i.e., the peak with the largest
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number of pixels) produced acceptable results (recognizable chromosomes), regardless of
whether the lower black peak was to the left or right of the upper black peak. Taking this
into account, the threshold selection was the one generated by the maximum of the peaks,
excluding the last peak (which is always higher in the number of pixels since it corresponds
to the background).

Figure 3. Histogram of image 2Gy-023 with Spline curve and thresholds obtained from local maxima
(black peak on the left and white peak on the right).

Figure 4. Histogram of images 2Gy-068 and 2Gy-360 with Spline curve and thresholds obtained
from local maxima (black peak on the left and white peak on the right). Note that three peaks
are presented.

Once binarization was applied, it was observed that, although in most chromosomes,
the thresholding allowed perfect recognition and even to distinguish between dicentric
and non-dicentric chromosomes, the threshold was significantly displaced to the left in
some images, rendering these images unsuitable for training the model (even though the
threshold is obtained when a valley of the histogram is reached).

On the other hand, the results obtained from thresholding with Otsu’s method (used
in the previously mentioned study [14]) were studied, while using Otsu’s algorithm to
set the threshold solves the problem that arose when using the Spline technique alone. It
should be noted that the separation between sister chromatids is small—zero in many of
the chromosomes—and that this could be an obstacle to the model in discerning between
dicentric and non-dicentric chromosomes. A comparison between the methods is presented
in the first row of Figure 5.
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Figure 5. Preprocessing techniques applied on example image. First row: original image. Second
row: comparison between filter sizes for image 2Gy-023. In this example, the thresholding tech-
nique (Spline) and the type of morphological filter (closing) have been kept constant. Third row:
comparison between opening and closing morphological filters for image 2Gy-023. In this example,
the thresholding technique (Spline) and the filter size (3 × 3) were kept constant. Fourth and fifth
rows: comparison between filter sizes for image 2Gy-023. In this example, the thresholding technique
(Spline) and the type of morphological filter (closing) have been kept constant.

3.2.2. Morphological Filters

The erosion filter consists of converting all the pixels of the image that are surrounded,
in any of their eight neighboring pixels, by a pixel with a white value to white. On the other
hand, the dilation filter consists of turning all the pixels of the image that are surrounded,
in any of its eight neighboring pixels, by a pixel with a black value to black.
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In addition, the opening filter consisted of the sequential application of an erosion
filter and a dilation filter (in this order), while the closing filter consisted of the sequential
application of a dilation filter and an erosion filter (in this order). While the opening
filter was used to remove protruding elements, the closing filter was used to join elements
separated by a narrow gap.

On the other hand, the size chosen for these filters will eventually determine the
proportion to which the image will be affected. In this experiment, opening and closing
filters with filter sizes of 2 × 2, 3 × 3, 4 × 4 and 5 × 5 were applied and each combination
was studied separately.

After applying binarization, it was observed that in some chromosomes, gaps in the
pixels had higher gray values when viewed in grayscale. In particular, this occurrence
around the centromeres as well as the ends of the chromosomes (telomeres) could be
problematic, since it might miss one of the centromeres of a dicentric chromosome, resulting
in the erroneous interpretation of a dicentric chromosome as a false negative. In such
scenarios, the opening filter proved to be useful by recovering the bonds between sister
chromatids. However, in other cases, the opening filter caused the appearance of closing
points between chromatids that are not real centromeres and could therefore be interpreted
as a false positive by the model.

On the other hand, the closing filter worked optimally in the opening of non-centromeric
regions between sister chromatids that appeared as a product of binarization. However,
in other cases, it removed centromeres from the chromosomes and could lead to the
interpretation of false negatives by the model (see second row of Figure 5).

With respect to filter size, the use of 2 × 2 size filters introduced very few noticeable
changes in the images, while 5 × 5 size filters greatly distorted the chromosomes. The 3 × 3
and 4 × 4 filters introduced changes that varied between the two extremes (see fourth and
fifth rows of Figure 5).

As can be seen, each of the configurations introduced a number of advantages and
disadvantages depending on the image quality and variations in chromosome morphology.

3.3. Results

A 5-fold cross validation was applied on every experiment to ensure that training and
validation partitions were independent of each other and that the training was not biased.
To this end, the dataset, which was randomly reordered, was split into five partitions. Since
the dataset is composed of 50 images (see Section 3.1 for more details), each partition is
formed by 10 images. Thus, each deep neural network model used one split for validation
(10 images) and the remaining partitions for training (40 images).

The model used in this study was the YOLOv8x neural network, which consists
of a structure of 640 pixels and 68.2 million parameters [28]. The YOLO architecture
is based on a feature pyramid neural network consisting of multiple layers that detect
objects at different scales. This pyramid consists of two main parts: the head, responsible
for launching the predictions, and the backbone, which improves the information flow
between the different layers of the network. Both parts use a module called C2f (cross-
stage partial bottleneck with two convolutions), which merges contextual information
with high-level features to enhance detection performance [30,31]. The model was trained
using pre-trained weights from common object detection. As previously mentioned in
Section 2, the use of this model is not limited to the proposed approach and can be modified
for use with other object detection models if desired. To avoid a high number of false
positives, only predictions with confidence and intersection over union values of at least
0.7 were selected (i.e., vmin = 0.7). Regarding the augmentation algorithms used in the
training processing, the YOLO algorithm automatically applies multiple data augmentation
techniques by default. The algorithms included hue adjustments, modification of saturation
and brightness values, image rotations, vertical and horizontal image flips, image scaling,
image shearing from different angles, perspective transformation, vertical and horizontal
image translation, channel shifting (from RGB to BGR), the compositing of several images
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into mosaic, the deletion of parts of the image, and image fraction crop. The remaining
parameters of YOLO were kept at default values. Table 1 exhibits more detail about the
parameters and the tuned values.

Table 1. Tuned configurations for the parameters of the proposal.

Parameter Description

vmin

Minimum confidence threshold for detections. The detector disregards those
objects detected with a confidence below this threshold. The parameter is noted
as con f in YOLOv8x (default value of 0.25). In this work, vmin = 0.7.

iou_detector Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS).
Parameter used by YOLOv8x noted as iou with a default value of 0.7.

ϕ

The aggregation function of the ensemble. In this work, it combines the
prediction provided by the different methods of which the ensemble is composed.
That combination disregards those objects with an IoU below the iou_ensemble
threshold and those predictions with at least a certain percentage of coincidence
between the ensemble’s members (quota).

iou_ensemble
IoU threshold for consensus merged prediction. The ensemble disregards those
merged objects detected with IoU below this threshold. In this work,
iou_ensemble = 0.5.

quota
The ensemble disregards those merged objects detected if the percentage of
coincidence between the ensemble’s members is below this threshold. In this
work, quota = {0.05, 0.1, 0.2, 0.3, 0.40.5}.

As mentioned in Section 2, the use of the YOLOv8x detector is not confined to the
proposed methodology and can be substituted with other detector models if required.
In this work, the YOLOv8x neural network was chosen after a preliminary performance
comparison between different YOLOv8 versions, such as YOLOv8n or YOLOv8m. Other
detectors, such as Faster-RCNN ResNet or MobileNet models, were discarded because
their detection performances, in general, are similar to those yielded by YOLOv8 models,
and their computational times are considerably longer [32]. The considered initial models
(YOLOv8 versions) were trained over the raw image dataset, and their achieved perfor-
mances related to the accurate detection of dicentric chromosomes were analyzed. Since
dicentric chromosome detection involves evaluating medical images, the computational
execution time is not crucial in terms of real time. Therefore, this measure was omitted in
our comparison. As expected, YOLOv8x achieved the highest scores in that preliminary
comparison. Thus, YOLOv8x was selected as the architecture detector to compose the
ensemble proposed in our methodology.

The possible combinations of the thresholding technique used in binarization (Spline
or Otsu), the morphological filter type (opening or closing), and the filter size (2 × 2, 3 × 3,
4 × 4 and 5 × 5) constituted the configurations with which each model was trained.

Regarding the consensus function, it combines the prediction provided by the different
methods that compose the ensemble. In this work, that combination was considered to be
the merging of the detections with an iou value higher than 0.50. After that, only those de-
tections with at least a certain percentage of coincidence between the ensemble’s members
were considered. Therefore, if a prediction was not provided by a certain percentage of the
ensemble’s members, that prediction was filtered out and not used within the prediction
provided by the ensemble. In this way, the aggregation function ϕ, which defines the con-
sensus strategy used in these experiments, is a combination of the predictions provided by
the ensemble methods where the detection prediction is filtered if a minimum percentage of
coincidence between the ensemble’s members is not surpassed. That minimum percentage
of coincidence between the ensemble’s members is noted as quota. In this way, for example,
“Consensus 0.10” returns a detection prediction if at least 10% of the members detect it.
Respecting the consensus classification prediction for a given predicted detection, it is
computed as the average of the classification predictions for that detection. The detections
to be merged were those provided by each combination of binarization technique (Otsu



Appl. Sci. 2024, 14, 10440 12 of 21

and Spline), morphological operator (opening and closing filters) and size of filter (2 × 2,
3 × 3, 4 × 4, and 5 × 5). Respecting the percentage of coincidence between the ensemble’s
members, different values were tested: 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5.

It must be emphasized that the balance between complexity and accuracy must be
managed critically when an ensemble strategy is proposed. Generally, the higher the
number of networks in the ensemble, the better the system’s detection performance, while
a lower number of networks leads to a faster system. However, the optimal number of
networks in an ensemble may vary greatly depending on different factors. For example,
the specific problem to be addressed is crucial for determining which kind of system will be
suitable: a sensitive issue (for example, evaluating medical images) may require the highest
possible detection performance, while a real-time problem (for example, estimating traffic
flow from road video sequences) may require a fast output. In our work, to achieve the
highest possible detection performance, we considered a high number of networks within
the ensemble. This number is the result of each combination of binarization technique
(Otsu and Spline (i.e., two possibilities)), morphological operator (opening and closing
filters (two possibilities)) and size of filter (2 × 2, 3 × 3, 4 × 4, and 5 × 5 (four possibilities)),
plus the non-operation model, resulting in an ensemble composed of 17 networks (thus,
M = 17).

It has been observed that, for most subdivisions of the dataset from all the methods,
the loss function tends to decrease over epochs (see Figure 6) for both the detection and
classification of chromosomes into dicentric or non-dicentric. This behaviour occurs in
both the training and validation processes, so the model does not exhibit overfitting
characteristics. Likewise, it is also noteworthy that the precision, completeness and mAP50
functions tend to grow over epochs, which is a remarkable aspect of the model performance.
However, it should be noted that the values reached in the last epoch are not always as
high as desired. It is interesting to observe how the evaluation curve of the mAP50
indicator shows abnormal fluctuations. The reason for this is that the dataset exhibits
a strongly unbalanced class distribution besides a high variance in object sizes, a low
number of samples, and low-resolution images. These facts raised difficulties in accurately
classifying dicentric chromosomes, impacting the evaluation metric throughout the training.
An example of the predictions is shown in Figure 7. As illustrated, all the chromosomes are
well detected, but not well classified.

Figure 6. Model performance for the 2 × 2 Spline closing method. It can be noted that loss function
decreases over the epochs, whereas the recall, precision and mAP50 metrics increase.
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Figure 7. Prediction for the chromosomes of the image 2Gy-329 for the experiment where the Spline
thresholding technique with 2 × 2 closing filter was employed. In green: predictions as ‘non-dicentric’;
in red: predictions as ‘dicentric’.

From a qualitative point of view, it could be stated that the models, in general, have
not presented problems in the detection of chromosomes and the predictions showed a
high correspondence with the bounding boxes of the ground truth. As far as classification is
concerned, each experiment showed better or worse results depending on the image being
examined. Figures 8 and 9 compare their performance in the recognition of a dicentric
(anomalous) chromosome and a non-dicentric (non-anomalous, or normal) chromosome,
respectively. In Figure 8, it can be seen that a specific dicentric chromosome is detected and
classified as dicentric in most experiments. Figure 9 shows a monocentric chromosome that
was detected and classified as undamaged in most experiments.

The results achieved by our methodology have been interpreted in two phases: detec-
tion and classification. A schematic diagram is given in Figure 10.

In the detection phase, we analyzed whether the chromosomes were detected by
the model regardless of their class. To consider that a chromosome has been detected,
a condition was imposed requiring a prediction with an IoU (Intersection over Union)
greater than 0.7. Subsequently, analysis of the count of detected chromosomes (true
positives), undetected chromosomes (false negatives) and uncorrelated predictions (false
positives) was carried out.

In the classification phase, we studied whether the chromosomes detected were correctly
classified by the model. Four cases were recorded: anomalous chromosomes predicted
as such (true positives), non-anomalous chromosomes predicted as such (true negatives),
anomalous chromosomes predicted as non-anomalous chromosomes (false negatives) and
non-anomalous chromosomes predicted as anomalous chromosomes (false positives).
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Figure 8. Composition of 2Gy-329 image predictions for a dicentric chromosome. In green: predictions
as ‘non-dicentric’; in red: predictions as ‘dicentric’.

Figure 9. Composition of 2Gy-329 image predictions for a non-dicentric chromosome. In green:
predictions as ‘non-dicentric’; in red: predictions as ‘dicentric’.
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Figure 10. Schema of the ensemble operation. In a first phase, it is shown whether each ground truth
chromosome is detected by the model. Then, in a second phase, for those chromosomes that were
detected, it is shown whether the model classifies correctly as dicentric or non-dicentric.

Subsequently, a data assembly (ensemble) was performed to evaluate the results
obtained and to determine a consensus function that will enhance the overall performance.

To establish a fair comparison between the tested models, different well-known metrics
were selected. In this study, spatial accuracy (S), accuracy (Acc) and F-measures (Fm) were
considered. These metrics provide an overall view of the model performance and return
values between 0 and 1 (higher values are better). Their definitions are as follows:

Fm = 2
PR ∗ RC
PR + RC

S =
TP

TP + FN + FP
Acc =

TP + TN
TP + FP + FN + TN

(10)

RC =
TP

TP + FN
PR =

TP
TP + FP

(11)

From these measures, the performance of the proposal was studied for each of the
methods and the results are shown in Tables 2 and 3. In particular, Table 2 reports the
detection performance of all considered methods, while Table 3 shows their classification
performance. In both tables, the different methods considered in this work can be organized
into three groups: no operation method (the baseline), methods that combine binarization
and thresholding techniques, and consensus methods (that are composed of the methods
from both the two previous groups).

Figure 11 summarizes the detection performance of the baseline method (no opera-
tion), the best methods for each combination of binarization technique and morphological
filter (nc5, no2, sc2 and so3), and the best ensemble methods (consensus 0.1, 0.2 and 0.3).
As shown, the performance of the baseline method is considerably higher than that of
the remaining methods that belong to the ensemble (nc5, no2, sc2, and so3). Regarding
the ensemble, it considers the prediction of each method independently and merges them
by using the aggregation function. Although these other methods separately yield worse
results than the baseline, the ensemble offers a more accurate response compared with the
baseline.

Regarding chromosome detection, in general terms, it can be observed that the number
of true positives is much higher than the number of false positives (unmatched predictions)
and false negatives (undetected chromosomes), although these values are still significantly
high. Spatial accuracy is quite high in most of the experiments, whereas F-measure seems
to be better in those experiments that apply the opening morphological filter.
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Table 2. Performance of the detection of chromosomes. The first column indicates the operator (‘n’
and ‘s’ stand for Otsu and Spline techniques, respectively; ‘c’ and ‘o’ stand for closing and opening
morphological filter, respectively; the value next to consensus means the minimum percentage of
coincidence between the ensemble’s members to be considered for each predicted detection) and the
remaining columns show the yielded mean performance.

Method TP FP FN RC PR FM S

No operation 2256 2 83 0.96 1.00 0.49 0.96
nc2 2004 227 335 0.86 0.90 0.44 0.78
nc3 2139 854 200 0.91 0.71 0.40 0.67
nc4 1976 700 363 0.84 0.74 0.39 0.65
nc5 2004 0 335 0.86 1.00 0.46 0.86
no2 2144 7 195 0.92 1.00 0.48 0.91
no3 2086 2 253 0.89 1.00 0.47 0.89
no4 2139 51 200 0.91 0.98 0.47 0.89
no5 1956 1987 383 0.84 0.50 0.31 0.45
sc2 1836 100 503 0.78 0.95 0.43 0.75
sc3 1693 271 646 0.72 0.86 0.39 0.65
sc4 1030 8 1309 0.44 0.99 0.31 0.44
sc5 799 1794 1540 0.34 0.31 0.16 0.19
so2 1804 210 535 0.77 0.90 0.41 0.71
so3 1887 51 452 0.81 0.97 0.44 0.79
so4 1791 186 548 0.77 0.91 0.41 0.71
so5 1808 1 531 0.77 1.00 0.44 0.77

Consensus 0.05 2330 6450 9 1.00 0.27 0.42 0.27
Consensus 0.1 2314 0 25 0.99 1.00 0.99 0.99
Consensus 0.2 2278 0 61 0.97 1.00 0.99 0.97
Consensus 0.3 2211 0 128 0.95 1.00 0.97 0.95
Consensus 0.4 2159 0 180 0.92 1.00 0.96 0.92
Consensus 0.5 2012 0 327 0.86 1.00 0.92 0.86

Figure 11. Detection performance (spatial accuracy) achieved by the baseline method (no operation),
the best methods for each combination of binarization technique and morphological filter (nc5, no2,
sc2 and so3), and the best ensemble methods (consensus 0.1, 0.2 and 0.3).

The performance of the experiment applying Otsu’s 2 × 2 opening stands out from
the rest, but falls short of the performance of the experiment applying no operator at all.
However, when the ensemble of all operators is used, it outperforms the experiment that
does not apply any operator. It must be highlighted that the performance yielded by the
consensus respects that achieved by the detector applied directly over the raw images
(the traditional and simplest strategy to face a detection problem), which corresponds
with the “No operation” row. As reported for “Consensus 0.1” and “Consensus 0.2”, both
proposals outperform the “No operation” method.
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Table 3. Performance of the classification of chromosomes. The first column indicates the operator (‘n’
and ‘s’ stand for Otsu and Spline techniques, respectively; ‘c’ and ‘o’ stand for closing and opening
morphological filter, respectively; the value next to consensus means the minimum percentage of
coincidence between the ensemble’s members to be considered for each predicted detection) and the
remaining columns show the yielded mean performance.

Method TP TN FP FN RC PR FM S ACC

No operation 26 2178 6 46 0.36 0.81 0.50 0.33 0.98
nc2 12 1936 8 48 0.20 0.60 0.30 0.18 0.97
nc3 11 2068 9 51 0.18 0.55 0.27 0.15 0.97
nc4 9 1871 39 57 0.14 0.19 0.16 0.09 0.95
nc5 12 1936 8 48 0.20 0.60 0.30 0.18 0.97
no2 14 2068 9 53 0.21 0.61 0.31 0.18 0.97
no3 14 2026 2 44 0.24 0.88 0.38 0.23 0.98
no4 14 2062 10 53 0.21 0.58 0.31 0.18 0.97
no5 10 1889 8 49 0.17 0.56 0.26 0.15 0.97
sc2 6 1778 4 48 0.11 0.60 0.19 0.10 0.97
sc3 5 1634 9 45 0.10 0.36 0.16 0.08 0.97
sc4 10 987 3 30 0.25 0.77 0.38 0.23 0.97
sc5 5 768 4 22 0.19 0.56 0.28 0.16 0.97
so2 8 1727 17 52 0.13 0.32 0.19 0.10 0.96
so3 9 1812 17 49 0.16 0.35 0.21 0.12 0.97
so4 9 1731 1 50 0.15 0.90 0.26 0.15 0.97
so5 11 1742 8 47 0.19 0.58 0.29 0.17 0.97

Consensus 0.05 35 2167 76 52 0.40 0.32 0.35 0.21 0.95
Consensus 0.1 25 2203 25 61 0.29 0.50 0.37 0.23 0.96
Consensus 0.2 16 2187 8 67 0.19 0.67 0.30 0.18 0.97
Consensus 0.3 11 2135 1 64 0.15 0.92 0.25 0.14 0.97
Consensus 0.4 6 2089 1 63 0.09 0.86 0.16 0.09 0.97
Consensus 0.5 5 1952 0 55 0.08 1.00 0.15 0.08 0.97

With respect to the classification task, the models yielded a greater number of true pre-
dictions than false predictions for the chromosomes that were detected, with a remarkable
majority of predictions corresponding to true negatives (correctly classified non-dicentrics).
However, it is notable that the models faced difficulties characterizing the dicentric chro-
mosomes. For example, in Figure 12, a dicentric chromosome was classified incorrectly
in most of the experiments. There are significantly more false negatives (dicentrics that
were not classified as such) than true positives (correctly classified dicentrics) in all the
experiments. This drawback is evident in the metrics of the classification phase, in which
the values for spatial accuracy and F-measure are not high enough for any of the methods.

It must be highlighted that there is no method that surpasses the performance achieved
by the no-operation operator. However, when the ensemble was used, a higher number
of dicentric chromosomes was correctly classified. These results might be due to the
reduced rate of dicentric chromosomes relative to undamaged monocentric chromosomes
in the images. This is presumably a stumbling block for the approach in the task of
extracting the patterns that allow the identification of dicentric chromosomes. Likewise,
if the initial dataset had a larger volume of images or the images had a higher resolution,
perhaps the model might have performed better in recognizing the patterns that allow
the classification of dicentric chromosomes. It should also be noted that this task by itself
is a challenge for health professionals in distinguishing a dicentric chromosome from a
monocentric chromosome when the chromatids are simply superimposed, which will
negatively influence the analysis and interpretation.
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Figure 12. Composition of 2Gy-023 image predictions for a dicentric chromosome. In green: predic-
tions as ‘non-dicentric’; in red: predictions as ‘dicentric’.

In contrast, no notable differences was observed in general terms between the per-
formance presented by experiments that employed the Spline thresholding technique
versus those that used the Otsu thresholding technique. In addition, it was also previously
theorized that opening filters could lead to an increase in the number of false positives,
while closing filters could lead to an increase in false negatives. It has been observed
that, in the experiments that applied the Otsu thresholding technique, the number of false
negatives was slightly higher in the experiments that applied closing filters versus those
that applied opening filters, but no significant differences were observed in the number of
false positives between opening and closing filters. Likewise, in experiments that applied
the Spline thresholding technique, the number of false positives was slightly higher in
experiments that applied opening filters versus those that applied closing filters, but no
significant differences in the number of false negatives were observed between opening
and closing filters.

Besides these obtained results and their analysis, it is remarkable that the dataset
is highly challenging: it presents a low number of samples, a strongly imbalanced class
distribution, a high variance in object sizes, and low-resolution images. In fact, several
dicentric chromosomes from it are very difficult to detect, even by human experts in this
field. Therefore, this sample size limitation offered by the dataset negatively affects the
model’s generalizability.

The main goal of this study was to develop an AI-based tool for the efficient detection
of dicentric chromosomes which can expedite the dose estimation process and thereby
enable a rapid triage. An automated analysis of dicentric chromosomes is expected to
improve the dose prediction accuracy by avoiding variations in manual scoring between
individual scorers. Additionally, AI-based tools can substantially advance the field of
radiation biodosimetry in the development of predictive modeling for radiation induced
early and delayed effects based on dose estimation. Future studies are required with
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more images to fine-tune the AI tool for personalized medicine through dose estimation
following incidental, accidental, occupational and intentional exposures.

4. Conclusions

The application of artificial intelligence techniques in the detection of dicentric chro-
mosomes is a promising approach in the field of biological dosimetry, as AI-based tools
have the capacity to improve the detection of dicentric chromosomes as well as the dose
prediction accuracy when compared to laborious manual scoring. The automated detection
of dicentric chromosomes can also drastically reduce inter-laboratory variations arising
from discrepancies in dicentric chromosome scoring by laboratory personnel.

Our current work has focused on the use of convolutional neural networks to detect
dicentric chromosomes in images of metaphase cells prepared from human lymphocytes.
The images were preprocessed using different thresholding techniques, morphological
filters, and filter sizes, and a model detector was trained for each of the selected operators.
Then, we proceeded to apply data assembly techniques to enhance the performance of the
model due to the low number of samples in the considered dataset. In this way, the same
set of sample images was transformed into different datasets through several different
transformations, and then different models were learned, which were finally evaluated by
ensemble learning.

The performance, both in the process of chromosome detection and in the process
of classification into dicentric or non-dicentric, was examined. Our study convincingly
demonstrated that the approach applying the opening filters yielded significantly better
results. The application of a detector over the raw dataset offers the best performance with
respect to the individual performance achieved by each method; however, the use of an
ensemble slightly surpasses that performance.

The dataset poses significant challenges due to its limited number of samples, highly
imbalanced class distribution, considerable variance in object sizes, and low image reso-
lution. In fact, several dicentric chromosomes within it are so difficult to detect that even
human experts in the field struggle. Consequently, these sample size limitations negatively
impact the model’s generalizability.

Future experiments are needed for optimizing and developing AI-based tools to
expedite the biodosimetry-based triage process for prioritizing medical treatments to save
the lives of individuals exposed to high doses of IR. In particular, future research should
aim to expand the dataset to include a more diverse range of samples, thereby enhancing
the robustness and generalizability of the models. To achieve this, data augmentation
techniques may be explored. Super-resolution, generating more detailed images, could also
help to improve the detection and classification accuracies, besides exploring alternative
neural network architectures and modern techniques, which could yield new insights.
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