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Abstract: A refractive sail is a special type of solar sail concept, whose membrane exposed to the Sun’s
rays is covered with an advanced engineered film made of micro-prisms. Unlike the well-known
reflective solar sail, an ideally flat refractive sail is able to generate a nonzero thrust component along
the sail’s nominal plane even when the Sun’s rays strike that plane perpendicularly, that is, when
the solar sail attitude is Sun-facing. This particular property of the refractive sail allows heliocentric
orbital transfers between orbits with different values of the semilatus rectum while maintaining a
Sun-facing attitude throughout the duration of the flight. In this case, the sail control is achieved by
rotating the structure around the Sun–spacecraft line, thus reducing the size of the control vector to a
single (scalar) parameter. A gradient-index solar sail (GIS) is a special type of refractive sail, in which
the membrane film design is optimized though a transformation optics-based method. In this case,
the membrane film is designed to achieve a desired refractive index distribution with the aid of a
waveguide array to increase the sail efficiency. This paper analyzes the optimal transfer performance
of a GIS with a Sun-facing attitude (SFGIS) in a series of typical heliocentric mission scenarios. In
addition, this paper studies the attitude control of the Sun-facing GIS using a simplified mathematical
model, in order to investigate the effective ability of the solar sail to follow the (optimal) variation
law of the rotation angle around the radial direction.

Keywords: refractive sail; interplanetary trajectories; trajectory optimization; sail attitude maneuvers

1. Introduction

The gradient-index solar sail (GIS) [1] is an innovative solar sail concept that can be
considered as a kind of evolution of the refractive solar sail model [2,3], whose thin exposed
membrane uses an advanced metamaterial, composed of metals and dielectrics, to convert
sunlight into propulsive force. This interesting type of propellantless propulsion system
was recently proposed by Firuzi et al. [1], who discussed a simplified thrust model for
preliminary mission design and also analyzed the problem of trajectory optimization by
considering spacecraft dynamics in a classical, Cartesian, heliocentric-ecliptic reference
frame. From the thrust vector point of view, as in the case of the Swartzlander’s diffractive
sail [4,5], a spacecraft whose primary propulsion system is GIS-based is able to create a
transverse thrust component (which belongs to the nominal plane of the sail) even when
the solar sail is in a Sun-facing condition, that is, in a configuration in which the direction
normal to the plane of the sail coincides with the Sun–spacecraft line. In this case, the only
control parameter is the sail roll angle around the radial direction, the value of which can be
controlled using a robust sail attitude control system based, for example, on a roll stabilizer
bar [6].

This paper analyzes the deterministic trajectories of an interplanetary spacecraft
propelled by a GIS with a Sun-facing attitude (SFGIS) in a typical heliocentric transfer,
considering a single control parameter, namely, the roll angle of the solar sail. In particular,
two different guidance laws are considered: (1) a case where the sail roll angle can be
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freely chosen by the control system; and (2) a case where during flight, the roll angle can
be chosen within a discrete set of values. In the latter scenario, the paper analyzes the
characteristics of the attitude maneuver required to appropriately change the sail roll angle,
using the simplified model proposed by Wie et al. [6].

2. Trajectory Design and Optimization

This section describes the mathematical model used to analyze the motion of an
interplanetary spacecraft propelled by an SFGIS. Specifically, the spacecraft motion is
studied in a three-dimensional heliocentric mission scenario, in which the deep space
vehicle moves between two assigned Keplerian orbits. The characteristics of the parking
and target orbits are described in Section 3 along with the optimal spacecraft transfer
trajectory, while the next subsection describes the SFGIS thrust model used to schematize
the propulsive acceleration vector. The SFGIS thrust vector used in this paper is a simplified
version of the mathematical model recently proposed by Firuzi et al. [1]. The expression of
the propulsive acceleration vector is then used in Section 2.2 to describe the heliocentric
dynamics of the SFGIS-propelled spacecraft using a set of non-singular orbital elements [7]
proposed by Walker et al. [8], i.e., the modified equinoctial orbital elements (MEOEs).
In this regard, in order to simplify and speed up the discussion, details regarding the
transition between classical and non-singular orbital elements are here omitted, while the
interested reader can refer to the recent literature by the authors [9] for a more in-depth
discussion of the use of MEOEs in describing the heliocentric dynamics of a spacecraft
equipped with a propellantless propulsion system as the (photonic) solar sail or the Electric
Solar Wind Sail [10–12].

2.1. Thrust Vector Model of the Gradient-Index Sail with a Sun-Facing Attitude

Consider an SFGIS and neglect the billowing of the sail membrane due to the interac-
tion of the sail exposed surface with the solar radiation pressure [13–15]. In this specific
configuration, we define the sail nominal plane P as the plane that (ideally) contains the
sail membrane and observe that the P plane is perpendicular to the Sun–spacecraft line,
because the sail attitude is Sun-facing; see the conceptual sketch in Figure 1.

Sun

n̂

m̂

C

P

array of waveguides

Figure 1. Sketch of the SFGIS with the normal unit vector n̂ and the reference unit vector m̂, whose
directions are fixed in a (spacecraft) body reference frame. Note that the sail nominal plane P is
perpendicular to the Sun–spacecraft line, and the unit vector m̂ belongs to the P plane. The conceptual
scheme of the waveguide array was adapted from Ref. [1], courtesy of Dr. Shengping Gong.

Keeping in mind the scheme of Figure 1, we introduce the unit vector n̂ normal to
the plane P in the direction opposite to the Sun, and the unit vector m̂ indicating a fixed
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direction along the sail nominal plane. In particular, the unit vector n̂ belongs to the
Sun–spacecraft line, while the direction of m̂ (which is fixed in P by assumption) depends
on the arrangement of the waveguide arrays covering the membrane of the solar sail [1].
According to Firuzi et al. [1], the SFGIS-induced propulsive acceleration vector ap can be
written as

ap = ac

( r⊕
r

)2
[ηn n̂ + ηm m̂] (1)

where r is the spacecraft’s distance from the Sun, r⊕ = 1 AU is a reference distance that
coincides with the average Earth–Sun distance, and ac is the characteristic acceleration
(which is the typical performance parameter in solar sail trajectory design) defined as
the maximum value of ∥ap∥ when the spacecraft’s distance from the Sun is equal to r⊕.
In Equation (1), the two terms {ηn, ηm} are dimensionless coefficients that depend on
the specific design of the waveguide array covering the sail membrane [1]. According to
Ref. [1], the value of the pair {ηn, ηm} can be obtained by using a semi-analytical procedure
employing the ray tracing technique. The result is [1]

ηn = 0.6299 , ηm = 0.7767 (2)

with
√

η2
n + η2

m = 1, according to the definition of the characteristic acceleration ac.
The expression of the propulsive acceleration vector in Equation (1) allows us to make

some important considerations. First, note that the thrust vector is fixed in a body (space-
craft) reference frame. Consequently, it is not possible to obtain the condition ∥ap∥ = 0
during the flight. In other terms, the heliocentric trajectory of a spacecraft propelled by
an SFGIS contains no coasting arcs. This interesting aspect is similar to the one found in
the mathematical model describing the thrust vector of a diffractive sail [4,5,16,17] with a
Sun-facing attitude, as discussed in Ref. [18]. More precisely, the main difference between
the thrust model described by Equation (1) and the one proposed by Dubill and Swartzlan-
der [18] is the value of the so-called “cone angle” α, i.e., the angle between the direction
of the propulsive acceleration vector and the Sun–spacecraft line. In fact, in a Sun-facing
diffractive sail, the value of the cone angle is 45◦, while for the case of an SFGIS, according
to Equations (1) and (2), we have

α = arctan
(

ηm

ηn

)
≃ 51◦ (3)

which is therefore a constant of motion.
Second, since the sail nominal plane P is assumed perpendicular to the Sun–spacecraft

line at each instant, the normal unit vector n̂ coincides with the (radial) Sun-spacecraft unit
vector r̂. Therefore, Equation (1) indicates that the component of ap along (perpendicular to)
the Sun–spacecraft direction, that is, the radial (or horizontal) component of the propulsive
acceleration apR (or apH ) depends only on the distance of the spacecraft from the Sun, viz.,

apR = ap · n̂ = ac

( r⊕
r

)2
ηn (4)

apH = ap · m̂ = ac

( r⊕
r

)2
ηm (5)

with the ratio apH /apR = ηm/ηn ≃ 1.233 remaining fixed during flight.

2.2. Heliocentric Dynamics of the Spacecraft’s Center of Mass

Based on the mathematical model of the propulsive acceleration vector presented
in the previous subsection, and taking into account the results obtained in Ref. [1], the
thrust vectoring of an SFGIS is obtained by rotating the sail nominal plane around the
Sun–spacecraft line. This is equivalent to rotating the sail nominal plane P around the
direction of the unit vector n̂, that is, the direction of r̂.
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The problem of spacecraft thrust vectoring can be more easily studied by introducing
an orbital reference frame. For this purpose, consider a classical Radial–Transverse–Normal
(RTN) reference frame TRTN, whose origin coincides with the spacecraft’s center of mass
C, in which îR ≡ r̂ is the radial unit vector, îT is the transverse unit vector, and îN is the
normal unit vector. In particular, the direction of îN coincides with that of the spacecraft
angular momentum vector, while (îR, îT) coincides with the plane of the osculating orbit;
see Figure 2.

SFGIS

r

R
�i

T
�i N

�i

Sun n̂

m̂

C

P

d

T
�i

R
�i

Figure 2. Sketch of the Radial–Transverse–Normal (RTN) reference frame TRTN of unit vectors {îR, îT, îN}.
The sail clock angle δ ∈ [0, 360]◦ is the single control parameter of an SFGIS-propelled spacecraft.

With reference to the sketch of Figure 2, we introduce the sail clock angle δ ∈ [0, 360]◦

defined as the angle between the direction of the transverse unit vector îT and the direction
of the (body-fixed) unit vector m̂. The clock angle is measured in the P-plane counterclock-
wise from the direction of îT. According to Equation (1) and recalling the expressions of
{apR , apH} in Equations (4) and (5), the angle δ allows the transverse (apT ) and normal (apN )
component of the propulsive acceleration vector to be written as

apT = ap · îT = ac

( r⊕
r

)2
ηm cos δ (6)

apN = ap · îN = ac

( r⊕
r

)2
ηm sin δ (7)

with
√

a2
pN

+ a2
pT

= apH , where apH is given by Equation (5), so that

[ap]RTN = ac

( r⊕
r

)2
 ηn

ηm cos δ
ηm sin δ

 (8)

The orientation of the thrust vector is therefore defined by a single (scalar) control variable,
namely, the sail clock angle δ, whose value indicates the direction of the horizontal compo-
nent of the propulsive acceleration apH with respect to the direction of îT. Note that, when
δ = {0, 180}◦ (or δ = {90, 270}◦) the thrust vector belongs to a plane coincident with (or
perpendicular to) the plane of the osculating orbit. The ratio of the generic component
{apR , apT , apN} to the characteristic acceleration ac, when the solar distance is equal to r⊕,
is drawn in Figure 3 as a function of the clock angle.
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Figure 3. Dimensionless components {apR /ac, apT /ac, apN /ac} of the propulsive acceleration vector
as a function of the sail clock angle δ ∈ [0, 360]◦, when the solar distance is one astronomical unit.

The expressions of the three components of ap in the RTN reference frame, see
Equation (8), can be used to write the spacecraft equations of motion in a heliocentric sce-
nario in which µ⊙ is the Sun’s gravitational parameter. To this end, the spacecraft state vec-
tor is described in terms of the six modified equinoctial orbital elements {p, f , g, h, k, L},
the geometric interpretation of which is discussed in Refs. [8]. According to the mathemati-
cal model proposed by Betts [19] and using Equations (9)–(12) of Ref. [9], the heliocentric
spacecraft equations of motion are

dp
dt

=
2 p

1 + f cos L + g sin L

√
p

µ⊙
apT (9)

d f
dt

= sin L
√

p
µ⊙

apR +
(2 + f cos L + g sin L) cos L + f

1 + f cos L + g sin L

√
p

µ⊙
apT+

− g (h sin L − k cos L)
1 + f cos L + g sin L

√
p

µ⊙
apN (10)

dg
dt

= − cos L
√

p
µ⊙

apR +
(2 + f cos L + g sin L) sin L + g

1 + f cos L + g sin L

√
p

µ⊙
apT+

+
f (h sin L − k cos L)

1 + f cos L + g sin L

√
p

µ⊙
apN (11)

dh
dt

=

(
1 + h2 + k2) cos L

2 (1 + f cos L + g sin L)

√
p

µ⊙
apN (12)

dk
dt

=

(
1 + h2 + k2) sin L

2 (1 + f cos L + g sin L)

√
p

µ⊙
apN (13)

dL
dt

=
h sin L − k cos L

1 + f cos L + g sin L

√
p

µ⊙
apN +

√
µ⊙ p

(
1 + f cos L + g sin L

p

)2
(14)
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where {apR , apT , apN} are given by Equation (8) as a function of the performance character-
istics (ac, ηn, and ηm), the dimensionless control term (δ), and the solar distance (r). The
latter can be written as a function of the modified equinoctial orbital elements as [20]

r =
p

1 + f cos L + g sin L
(15)

The initial conditions of the differential equations (9)–(14) depend on the characteristics of
the spacecraft parking orbit at the initial time instant t0 = 0. In this regard, as discussed in
detail in Section 3, we assume that the shape of the spacecraft parking orbit coincides with
that of the Earth’s heliocentric orbit. Specifically, the orbital elements of Earth’s heliocentric
orbit were retrieved from JPL’s Horizon system [21] on 1 August 2024. The control law
δ = δ(t) is discussed in the next two subsections.

2.3. Trajectory Optimization: Unconstrained Case

The time variation in the sail clock angle during the interplanetary transfer is obtained
by solving an optimization problem in which the performance index to maximize is J = −∆t,
where ∆t = t f − t0 ≡ t f is the flight time (t f is the final time instant) required to complete
the heliocentric transfer between two assigned Keplerian orbits. In this case, the angular
position of the spacecraft both along the parking orbit (at time t0) and along the target
orbit (at time t f ) is left free, so that the problem considered here is a classical obit-to-orbit
optimal transfer without ephemeris constraints.

The procedure used to solve the optimization problem parallels the approach dis-
cussed in Ref. [9]. More precisely, an indirect method [22–24] is used to determine the
spacecraft rapid transfer trajectory, while the Pontryagin Maximum Principle (PMP) [25–27]
is employed to obtain the optimal control law in terms of the variation in the sail clock angle
during the flight. The approach used is standard and has been discussed in several articles
by authors. For this reason, only the calculation of the optimal control law is discussed
here, since the analytical expression obtained is new and extends the literature results
related to the (optimal) performance of a gradient-index solar sail [1]. In this subsection,
we assume that the sail clock angle is freely selectable within the range [0, 360]◦, while the
next subsection discusses the case where δ can take a finite set of values.

In order to use the PMP to obtain the optimal control law, we first determine the
expression of the part of the Hamiltonian function Hc that depends explicitly on the control
parameter δ. To this end, firstly note that the clock angle appears in the expressions of apT

and apN , see Equations (6) and (7), and observe that the two components {apT , apN} appear
in the expressions of the time-derivative of the generic modified equinoctial orbital element,
see Equations (9)–(14). Introducing the six adjoint variables {λp, λ f , λg, λh, λk, λL} [22,23],
we obtain the following expression of Hc

Hc =

ac

( r⊕
r

)2√ p
µ⊙

1 + f cos L + g sin L
[T cos δ + N sin δ] (16)

where {T, N} are two auxiliary functions defined as

T ≜ 2pλpηm + [(2 + f cos L + g sin L) cos L + f ]λ f ηm+

+ [(2 + f cos L + g sin L) sin L + f ]λgηm (17)

N ≜ −g (h sin L − k cos L)λ f ηn + f (h sin L − k cos L)λgηn + cos L
1 + h2 + k2

2
λhηn+

+ sin L
1 + h2 + k2

2
λkηn + (h sin L − k cos L)λLηn (18)
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According to the PMP, the optimal value of the clock angle is the one that maximizes at each
time instant the value of Hc. Bearing in mind Equation (16), this corresponds to selecting
the value of δ that maximizes (T cos δ + N sin δ), viz.,

cos δ =
T√

T2 + N2
, sin δ =

N√
T2 + N2

(19)

where {T, N} are given by Equations (17) and (18).

2.4. Trajectory Optimization: Case of Constrained Clock Angle

Consider now the case in which the clock angle can take only a finite number of values
in the admissible interval [0, 360]◦. Assume, for example, that the angle δ can take four
values only, that is, δ ∈ I , where I is a discrete set. In this case, at a given point of the
transfer trajectory, the function Hc can take only four values depending on the selected sail
clock angle. Therefore, the optimal clock angle can be easily obtained using a (numerical)
vector sorting procedure [28] that finds the value of δ that maximizes Hc.

3. Mission Application and Trajectory Simulations

The optimal control law of Equation (19) was used to obtain the minimum-time
orbit-to-orbit transfer in some typical heliocentric mission scenarios. In all the numerical
simulations, the differential equation was integrated using a PECE solver [29] based on the
Adams–Bashforth method with a tolerance of 10−12, while the associated boundary value
problem was solved by a shooting procedure [28] with a tolerance of 10−6. The initial guess
was obtained by adapting the procedure recently described in Ref. [30].

The optimization procedure was first validated using, as a comparison, the results reported
in Ref. [1] which, however, refer to ephemeris-constrained transfer scenarios. Therefore, it was
reasonable to expect that the flight times obtained with the technique proposed in this paper
(which refer to a less constrained orbit-to-orbit transfer) would be lower than those reported
in Ref. [1]. In the case of an unconstrained sail clock angle, consider an Earth–Venus mission
scenario, and assume a characteristic acceleration ac = 0.175 mm/s2 [1]. The proposed proce-
dure gave a minimum flight time of about 434.8 days, while Ref. [1] indicated a (constrained)
flight time of 456.3 days with a departure on 29 April 2021 and arrival on 27 July 2022. The time
variation in the sail clock angle during the flight is shown in Figure 4, while Figure 5 shows the
optimal transfer trajectory in a heliocentric-ecliptic Cartesian reference frame [31].

0 50 100 150 200 250 300 350 400 450
0

60

120

180

240

300

360

Figure 4. Time variation in the (unconstrained) sail clock angle δ in the minimum-time Earth–Venus
mission scenario when ac = 0.175 mm/s2. Blue dot → starting point; red square → arrival point.
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0
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0.05

-0.50 0.5 -11

Figure 5. Ecliptic projection and isometric view of the rapid transfer trajectory in an Earth–Venus
mission scenario, when ac = 0.175 mm/s2 and the sail clock angle δ is unconstrained. The z-axis
of the isometric view is exaggerated to highlight the three-dimensionality of the transfer trajectory.
Black line → spacecraft transfer trajectory; blue line → Earth’s orbit; red line → Venus’s orbit; filled
star → perihelion; blue dot → starting point; red square → arrival point; orange dot → the Sun.

The second mission scenario illustrated in Ref. [1] is a heliocentric orbit transfer from
Earth to asteroid 433 Eros. In that case, considering again a characteristic acceleration of
0.175 mm/s2, Firuzi et al. [1] indicated an optimal (constrained) flight time of 1207.3 days,
departing on 11 November 2024 and arriving on 2 March 2028. The procedure proposed
in this paper gave a minimum flight time (in an orbit-to-orbit transfer), of 1125 days,
with the optimal time variation in the clock angle shown in Figure 6 and the optimal
transfer trajectory shown in Figure 7. Note that the function δ = δ(t) drawn in Figure 6 is
only apparently discontinuous, due to the range of variation chosen to describe the sail
clock angle.

0 200 400 600 800 1000 1200
0

60

120

180

240

300

360

Figure 6. Time variation of the (unconstrained) sail clock angle δ in a minimum-time Earth–asteroid
433 Eros mission scenario when ac = 0.175 mm/s2. The legend is reported in Figure 4.
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Figure 7. Ecliptic projection and isometric view of the rapid transfer trajectory in an Earth–asteroid
433 Eros mission scenario, when ac = 0.175 mm/s2 and unconstrained sail clock angle δ. The legend
is reported in Figure 5.

The simulations performed demonstrated that the optimization method and control
law described above provided numerical results consistent with the literature and therefore
could be used to analyze new mission scenarios, as discussed in the next subsection.

3.1. Case of Unconstrained Clock Angle

Consider the general case of an unconstrained sail clock angle, in which the optimal
control law is given by Equation (19). The proposed optimization procedure was used
to parametrically analyze the Earth–Venus transfer as a function of the characteristic
acceleration value ac ∈ [0.1, 0.2]mm/s2. The results are summarized in Figure 8, which
shows that the flight time ∆t depends strongly on ac. Note, in fact, that changing from a
value of ac = 0.175 mm/s2 to a value of ac = 0.2 mm/s2 results in a reduction in the flight
time of more than 60 days.

0.1 0.12 0.14 0.16 0.18 0.2
350

400

450

500

550

600

650

700

Figure 8. Minimum flight time as a function of the characteristic acceleration ac ∈ [0.1, 0.2]mm/s2 in
an Earth–Venus orbit-to-orbit transfer. The black dot refers to the special case of ac = 0.175 mm/s2

discussed in the first part of the section.
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The second mission scenario analyzed an Earth–Mars interplanetary transfer. In that
case, we again assumed the same characteristic acceleration reported in Ref. [1], that is,
ac = 0.175 mm/s2. The minimum flight time for an orbit-to-orbit transfer was about
752 days, and the SFGIS-propelled spacecraft completed one revolution around the Sun be-
fore reaching the target planet orbit, as shown in Figure 9. The optimal control law δ = δ(t)
is shown in Figure 10, where the clock angle remains close to the value δ = 0 (or δ = 360◦,
which is equivalent in terms of the direction of m̂ in the RTN reference frame) during the
entire flight.

-2
-1

.5 -1
-0

.5 0 0.
5 1 1.

5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

21.51-0.06 0.5

-0.04

-0.02

-2

0

0

0.02

-1
.5

0.04

-0.5-1

0.06

-0
.5 -10

0.
5 -1.51

1.
5 -22

Figure 9. Ecliptic projection and isometric view of the rapid transfer trajectory in an Earth–Mars
mission scenario, when ac = 0.175 mm/s2 and the sail clock angle δ is unconstrained. The legend is
reported in Figure 5.
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0

60

120

180

240

300

360

Figure 10. Time variation of the (unconstrained) sail clock angle δ in a minimum-time Earth–Mars
mission scenario when ac = 0.175 mm/s2. The legend is reported in Figure 4.

The last scenario analyzed in this subsection was an Earth–Mercury transfer with
ac = 0.175 mm/s2. The low-thrust transfer to Mercury is a challenging problem, typ-
ically requiring a long flight time and numerous revolutions around the Sun to com-
plete [32–35]. In this case, an SFGIS-propelled spacecraft required about 780 days to
reach Mercury’s heliocentric orbit, with four complete revolutions around the Sun. The
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spacecraft transfer trajectory and the time variation in the sail clock angle are shown in
Figures 11 and 12, respectively.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.5
10 0.5-0.5 0-0.5-1 -1

Figure 11. Ecliptic projection and isometric view of the rapid transfer trajectory of an Earth–Mercury
mission scenario, when ac = 0.175 mm/s2 and the sail clock angle δ is unconstrained. The legend is
reported in Figure 5.

0 100 200 300 400 500 600 700 800
0

60

120

180

240

300

360

Figure 12. Time variation in the (unconstrained) sail clock angle δ in a minimum-time Earth–Mercury
mission scenario when ac = 0.175 mm/s2. The legend is reported in Figure 4.

3.2. Case of Constrained Clock Angle

The performance of an SFGIS-powered spacecraft in a case where the sail clock angle is
constrained to assume only the values included in a discrete set I was analyzed considering
an Earth–Venus mission scenario with ac = 0.175 mm/s2. The results obtained in the same
transfer, but with the unconstrained clock angle, summarized in Figures 4 and 5, gave a
minimum flight time of 434.8 days.

Bearing in mind the shape of the graph δ = δ(t) of Figure 4, let us consider two
possible sets of admissible values of the sail clock angle, viz.,

I① = {180, 210, 240, 270, 300}◦ , I② = {180, 240, 300}◦ (20)

In other terms, when I = I① (or I = I②) the sail clock angle can only take five (or three)
different values during the transfer.
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In this δ-constrained mission scenario, the optimization procedure gave a minimum
flight time of ∆t① = 437.7 days when I = I①, and ∆t② = 441.9 days when I = I②. Note
that in both cases, the optimal flight time was (slightly) higher than the value obtained in
the unconstrained case, with ∆t① < ∆t② as expected, while the difference was only a few
days. According to Figure 13, the optimal control law in the δ-constrained mission scenario
presented a number of attitude maneuvers in which the direction of the unit vector m̂ in
the RTN frame was suitably changed. The attitude maneuvers were performed at a solar
distance r that could be retrieved from Figure 14. Specifically, there were 11 maneuvers
when I = I① and 6 maneuvers when I = I②. From the point of view of trajectory design,
these attitude maneuvers were considered instantaneous, although obviously, the rotation
of the SFGIS around the Sun–spacecraft direction required a finite time interval. This
analysis is the subject of the next section.
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Figure 13. Time variation of the constrained sail clock angle δ in a minimum-time Earth–Venus
mission scenario when ac = 0.175 mm/s2. The legend is reported in Figure 4. (a) Case of I = I①;
(b) Case of I = I②.
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Figure 14. Sun–spacecraft distance r as a function of time in a minimum-time Earth–Venus mission
scenario when ac = 0.175 mm/s2. The legend is reported in Figure 4. (a) Case of I = I①; (b) Case
of I = I②.

4. Spacecraft Attitude Maneuvers

To address the problem of attitude maneuvers, it was assumed that the SFGIS was
equipped with a pair of rectangular control vanes, mounted at the end of the sides of the
SFGIS symmetrically to the diagonal of the sail; see Figure 15. These control vanes were
reflective surfaces (essentially small solar sails) capable of generating a force orthogonal to
the plane of their surface. They were also capable of generating a torque component along
the axis normal to the sail nominal plane by rotating the control angle of the vane, i.e., β1
for surface 1 and β2 for surface 2, as shown in Figure 15. By construction, the rotations were
positive (or negative) if the surfaces rotated toward the positive (or negative) semi-axis z.
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Figure 15. Sketch of an SFGIS with two control vanes. The force due to the solar radiation pressure
acting on the two moving surfaces is applied at the vane pressure center Cp. The rotation of the
surfaces, denoted by β, is the vane control angle.

Using the reference system described in Figure 15 and with the sign convention
adopted for the vane control angles, the vector arms of the forces due to the solar radiation
pressure acting on the two vanes are

p1 =
1
2


l + b cos β1

l (1 − γ)

b sin β1

 , p2 = −1
2


l + b cos β2

l (1 − γ)

−b sin β2

 (21)

where l is the length of the SFGIS side, b is the width of the two control surfaces, and γ l
(with γ ∈ (0, 0.5]) represents their length. The two force vectors due to the solar radiation
pressure acting on the control surfaces are given by

F1 = 2 P A cos2 β1


sin β1

0

− cos β1

 , F2 = 2 P A cos2 β2


− sin β2

0

− cos β2

 (22)

where
P ≜ P⊕

( r⊕
r

)2
with P⊕ = 4.5391 × 10−6 Pa (23)

is the solar radiation pressure at a distance r from the Sun, A ≜ γ l b is the area of each
control surface, while the factor two in Equation (22) means that the control vanes are
assumed perfectly reflective. Note that, in principle, β1 and β2 can take different values.
The torque vectors are therefore



Appl. Sci. 2024, 14, 10463 14 of 19

M1 = p1 × F1 = P A cos2 β1


− cos β1 l (1 − γ)

b sin2 β1 + cos β1 (l + b cos β1)

− sin β1 l (1 − γ)

 (24)

M2 = p2 × F2 = P A cos2 β2


cos β2 l (1 − γ)

−b sin2 β2 − cos β2 (l + b cos β2)

− sin β2 l (1 − γ)

 (25)

from which it is easily concluded that the first two components of M ≜ M1 + M2 are zero
only if β1 = β2 = β. Under this assumption, the total torque becomes

M = 2 P A cos2 β


0

0

− sin β l (1 − γ)

 (26)

Therefore, a rotation of the same angle of the two control vanes generates a pure windmill
torque around the z-axis (orthogonal to the plane of the SFGIS) given by

M ≜ M · k̂ = −2 P⊕
( r⊕

r

)2
b l2 γ (1 − γ) cos2 β sin β (27)

where β ∈ [−βmax, βmax] is the vane control angle. It is assumed that βmax coincides with
the value of β that maximizes the torque magnitude, viz.,

βmax ≜ arcsin

(√
3

3

)
≃ 35.26◦ (28)

Equivalently, Equation (27) may be rewritten by introducing the dimensionless control
variable u ∈ [−1, 1], defined as

u ≜
cos2 β sin β

max(cos2 β sin β)
(29)

from which
M =

4
3
√

3
P⊕
( r⊕

r

)2
b l2 γ (1 − γ) u (30)

With reference to the simplified model discussed by Wie et al. [6], to estimate the time
required for an SFGIS to perform a reorientation maneuver around the z-axis, it is sufficient
to describe the attitude dynamics in the form

I δ̈ = M (31)

where I ≜ msail l2/6 is the moment of inertia of the SFGIS around z. Substituting Equation (30)
into Equation (31) gives

δ̈ = k u , with k ≜
8 P⊕

( r⊕
r

)2
b γ (1 − γ)

√
3 msail

(32)

where k is a design parameter that encompasses information about the geometry of the
control surfaces, the mass of the sail, and the distance from the Sun. The problem is to deter-
mine a control law u = u(t) (with |u| ≤ 1) capable of tracking a generic (constant) reference
value of δ, i.e., δref. To this end, consider the block diagram shown in Figure 16, where
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Gc represents the controller, Gs represents the system (i.e., the SFGIS attitude dynamics),
e ≜ δref − δ is the error signal, and u is the (unsaturated) input to the system.

Gc Gs

ue d+
_

dref u

Figure 16. Closed-loop control scheme with saturation of the input to the system.

Using Equation (32), the transfer function that describes the dynamics of the system is

Gs =
k
s2 (33)

where s is the complex variable, while the assumption is made that Gc has the form of a
proportional–derivative controller with a first-order filter on the derivative term (PDF), viz.,

Gc = Kp +
Kd s

Tf s + 1
(34)

The choice of control law parameters (Kp, Kd and Tf ) was achieved through a numerical
optimization procedure, in which the objective function to be minimized was the settling
time of the response of the closed-loop system in Figure 16. More precisely, the value of the
gain crossover frequency (ωc) of the open-loop system was varied iteratively, and for each
value of ωc, the calculation of Kp, Kd, and Tf was performed with the help of MATLAB
R2024a’s built-in function pidtune, which automatically adjusts the controller parameters
to balance performance (i.e., response time) against robustness (i.e., stability margins) [36].
The optimization problem was solved by using MATLAB’s built-in function fminsearch.

5. Numerical Results of the Spacecraft Attitude Maneuvers

This section discusses the results of the spacecraft attitude control problem, with the
goal of estimating the optimal time required for the SFGIS to complete a reorientation
maneuver. Recall that, with reference to the results obtained in the cases of Earth–Venus
transfers with constrained clock angles, the reorientation maneuvers were on the order
of 60 deg each. Based on that, the minimum settling time ts, defined as the time instant
such that |e| ≤ 0.01 rad for t ≥ ts, was estimated with respect to a rotation maneuver of
1 rad around z. Numerical simulations were performed for values of k ranging between
5 × 10−8 rad/s2 and 1.2 × 10−6 rad/s2. To give an idea of the order of magnitude of the
numbers used, consider a reorientation maneuver that occurs when the Sun–spacecraft
distance is r = r⊕, assuming b = 0.2 m, γ = 0.125, and msail = 5 kg. In this case, we
obtain k ≃ 9.1724 × 10−8 rad/s2. The simulation results for this particular case are shown
in Figure 17, from which it can be seen that the maneuver takes about 120 min to complete.

Note that the angle δ reached the reference value through a time response having a
maximum peak slightly greater than one, while the input to the system revealed that the
control law was essentially of bang–off–bang type. These results are in agreement with
what Wie found using a nonlinear PID control logic [37]. In all cases analyzed for different
values of k, control laws characterized by a limited maximum peak and with bang–off–bang
inputs were always found. Figure 18 shows the minimum settling time ts to perform a
rotation of δref = 1 rad around z as a function of k.
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Figure 17. Results of the numerical simulation when k ≃ 9.1724 × 10−8 rad/s2.
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Figure 18. Minimum settling time ts to perform a rotation of δref = 1 rad around z as a function of k.

As might be expected, the time of the optimal reorientation maneuver decreased as
k (and thus control angular acceleration) increased. For example, ts ≃ {136, 56, 28}min
were obtained when k = {5, 30, 120} × 10−8 rad/s2, respectively. Finally, Figure 19 shows
the variation in the optimal control parameters of the PDF controller with k.
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Figure 19. Optimal control parameters of the PDF controller as a function of k.

6. Conclusions

A gradient-index solar sail is able to generate a nonzero thrust component along the
nominal plane of the sail that is greater than that in the direction normal to the plane of
the sail. This allows for heliocentric orbital transfers while keeping the plane of the sail
constantly in a Sun-facing condition, that is, orthogonal to the direction of the Sun’s rays.
This feature is very interesting from an application point of view because the Sun-facing
attitude can be maintained passively, greatly simplifying sail maneuvering. In practice,
the direction of thrust depends solely on a single control variable (the clock angle), i.e.,
the angle of rotation of the sail with respect to the radial direction. The performance of a
gradient-index solar sail in a Sun-facing condition was studied from an optimal point of
view by preliminarily determining the control law that minimized the total transfer time
between two heliocentric orbits. Several optimal trajectories were studied, including Earth–
Venus, Earth–Mars, Earth–Mercury transfers, and the optimal trajectory from Earth to
asteroid 433 Eros. To further simplify the sail control, the optimal transfer problem was also
studied in the case where the clock angle was constrained to take only a finite number of
values (three or five depending on the cases studied). In an Earth–Venus transfer scenario,
simulations revealed that the constrained clock angle case provided similar performance
to the unconstrained problem, with an increase in flight time of about 1% only. These
results were obtained under the assumption of instantaneous maneuvers. However, in the
last part of the paper, the problem of estimating the time required for the sail to perform
such maneuvers was studied. Assuming that the maneuvers were performed with the aid
of two control vanes generating a pure windmill torque, the results were expressed as a
function of a single parameter that took into account the surface of the control vanes, the
mass of the sail, and the distance from the Sun. The simulations obtained showed that a
sail rotation maneuver of 1 rad took about 2 h at a distance of 1 AU from the Sun. Since the
characteristic transfer times are several hundred days, the assumption of instantaneous
maneuvering is amply justified.
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